Newspace parameters
Level: | \( N \) | = | \( 6008 = 2^{3} \cdot 751 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 6008.a (trivial) |
Newform invariants
Self dual: | Yes |
Analytic conductor: | \(47.9741215344\) |
Analytic rank: | \(0\) |
Dimension: | \(49\) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 0 | −3.18877 | 0 | 2.23846 | 0 | 2.57450 | 0 | 7.16824 | 0 | ||||||||||||||||||
1.2 | 0 | −2.93504 | 0 | −2.06805 | 0 | 2.42601 | 0 | 5.61445 | 0 | ||||||||||||||||||
1.3 | 0 | −2.90482 | 0 | −3.52511 | 0 | 3.26846 | 0 | 5.43799 | 0 | ||||||||||||||||||
1.4 | 0 | −2.65403 | 0 | −0.749159 | 0 | −1.02284 | 0 | 4.04389 | 0 | ||||||||||||||||||
1.5 | 0 | −2.55321 | 0 | −4.16598 | 0 | −2.08978 | 0 | 3.51888 | 0 | ||||||||||||||||||
1.6 | 0 | −2.54750 | 0 | −2.18138 | 0 | −2.46793 | 0 | 3.48974 | 0 | ||||||||||||||||||
1.7 | 0 | −2.35470 | 0 | 0.425735 | 0 | −0.578482 | 0 | 2.54461 | 0 | ||||||||||||||||||
1.8 | 0 | −2.20855 | 0 | 1.60744 | 0 | 2.65561 | 0 | 1.87768 | 0 | ||||||||||||||||||
1.9 | 0 | −2.08107 | 0 | −0.324432 | 0 | −2.64730 | 0 | 1.33086 | 0 | ||||||||||||||||||
1.10 | 0 | −1.95337 | 0 | 3.19909 | 0 | 4.95256 | 0 | 0.815657 | 0 | ||||||||||||||||||
1.11 | 0 | −1.83267 | 0 | 0.130732 | 0 | −0.665399 | 0 | 0.358681 | 0 | ||||||||||||||||||
1.12 | 0 | −1.52312 | 0 | 3.48921 | 0 | −1.44076 | 0 | −0.680107 | 0 | ||||||||||||||||||
1.13 | 0 | −1.49420 | 0 | −0.747906 | 0 | 4.82128 | 0 | −0.767369 | 0 | ||||||||||||||||||
1.14 | 0 | −1.42908 | 0 | 1.27830 | 0 | −2.61604 | 0 | −0.957738 | 0 | ||||||||||||||||||
1.15 | 0 | −1.11974 | 0 | 2.58610 | 0 | 0.902449 | 0 | −1.74619 | 0 | ||||||||||||||||||
1.16 | 0 | −1.08636 | 0 | −0.0864029 | 0 | −0.643099 | 0 | −1.81982 | 0 | ||||||||||||||||||
1.17 | 0 | −1.04405 | 0 | −3.83943 | 0 | 4.18991 | 0 | −1.90997 | 0 | ||||||||||||||||||
1.18 | 0 | −1.04212 | 0 | −3.77557 | 0 | 1.06595 | 0 | −1.91399 | 0 | ||||||||||||||||||
1.19 | 0 | −0.502181 | 0 | −0.673128 | 0 | 2.13432 | 0 | −2.74781 | 0 | ||||||||||||||||||
1.20 | 0 | −0.385942 | 0 | −1.81441 | 0 | −4.21344 | 0 | −2.85105 | 0 | ||||||||||||||||||
See all 49 embeddings |
Inner twists
This newform does not have CM; other inner twists have not been computed.
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(751\) | \(-1\) |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \(T_{3}^{49} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6008))\).