Properties

Label 6003.2.a.r
Level 6003
Weight 2
Character orbit 6003.a
Self dual Yes
Analytic conductor 47.934
Analytic rank 0
Dimension 16
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6003 = 3^{2} \cdot 23 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6003.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(47.9341963334\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( 2 + \beta_{2} ) q^{4} + \beta_{8} q^{5} + ( 1 - \beta_{10} ) q^{7} + ( \beta_{1} + \beta_{3} ) q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( 2 + \beta_{2} ) q^{4} + \beta_{8} q^{5} + ( 1 - \beta_{10} ) q^{7} + ( \beta_{1} + \beta_{3} ) q^{8} + ( -\beta_{1} - \beta_{13} - \beta_{15} ) q^{10} + ( -1 - \beta_{13} ) q^{11} + ( 1 - \beta_{2} - \beta_{7} ) q^{13} + ( -1 + \beta_{1} - \beta_{6} - \beta_{10} ) q^{14} + ( 3 + \beta_{2} + \beta_{8} + \beta_{12} - \beta_{14} ) q^{16} + ( -\beta_{1} - \beta_{5} + \beta_{8} + \beta_{12} ) q^{17} + ( 1 - \beta_{5} + \beta_{15} ) q^{19} + ( -1 - \beta_{1} + \beta_{4} - \beta_{5} + \beta_{8} - \beta_{9} - \beta_{11} ) q^{20} + ( -\beta_{1} - \beta_{5} + \beta_{8} - \beta_{11} ) q^{22} + q^{23} + ( 1 - \beta_{4} + \beta_{14} ) q^{25} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{6} ) q^{26} + ( 2 - \beta_{1} + 2 \beta_{2} + \beta_{4} - \beta_{6} + 2 \beta_{7} - \beta_{9} - \beta_{10} ) q^{28} + q^{29} + ( 2 + \beta_{3} - \beta_{9} ) q^{31} + ( 2 + 2 \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{9} + \beta_{11} - \beta_{14} ) q^{32} + ( -1 + \beta_{3} + \beta_{4} + \beta_{9} ) q^{34} + ( 2 - \beta_{4} - \beta_{7} + 2 \beta_{8} - \beta_{14} ) q^{35} + ( 2 + \beta_{8} + \beta_{11} ) q^{37} + ( -1 + 2 \beta_{1} + \beta_{4} - 2 \beta_{8} + \beta_{9} ) q^{38} + ( -2 + \beta_{5} - \beta_{6} - \beta_{8} + \beta_{11} - \beta_{12} - \beta_{13} + \beta_{14} ) q^{40} + ( 1 - \beta_{3} + \beta_{6} - \beta_{7} - \beta_{15} ) q^{41} + ( 2 + \beta_{8} - \beta_{11} + \beta_{12} ) q^{43} + ( -1 + \beta_{5} + \beta_{11} - \beta_{13} + \beta_{14} - \beta_{15} ) q^{44} + \beta_{1} q^{46} + ( -1 - \beta_{1} + \beta_{4} - \beta_{5} - \beta_{9} - \beta_{11} ) q^{47} + ( 3 + 3 \beta_{1} - \beta_{4} + \beta_{6} + \beta_{9} - 2 \beta_{10} - \beta_{14} ) q^{49} + ( -1 + 2 \beta_{1} - \beta_{3} + \beta_{5} - \beta_{7} - \beta_{11} + \beta_{14} ) q^{50} + ( -2 + 2 \beta_{1} - \beta_{4} + 2 \beta_{5} - \beta_{7} - \beta_{8} + \beta_{9} + 2 \beta_{10} - \beta_{12} + \beta_{14} ) q^{52} + ( 2 \beta_{1} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} ) q^{53} + ( \beta_{1} - \beta_{5} - \beta_{7} - \beta_{8} - \beta_{11} - \beta_{12} ) q^{55} + ( -3 - \beta_{1} + 2 \beta_{3} + 3 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - \beta_{8} - \beta_{9} - \beta_{10} - \beta_{12} - \beta_{15} ) q^{56} + \beta_{1} q^{58} + ( \beta_{2} - \beta_{8} - \beta_{9} + \beta_{12} + \beta_{14} ) q^{59} + ( 2 + \beta_{4} + \beta_{8} + \beta_{9} - \beta_{14} ) q^{61} + ( 4 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{14} - \beta_{15} ) q^{62} + ( 4 + 2 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{6} + 2 \beta_{13} - \beta_{14} + \beta_{15} ) q^{64} + ( -1 + \beta_{1} - \beta_{4} + \beta_{5} + \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} - \beta_{13} ) q^{65} + ( 2 + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} + 2 \beta_{10} + \beta_{11} - \beta_{13} ) q^{67} + ( 2 + 2 \beta_{2} - 2 \beta_{5} + \beta_{6} + 2 \beta_{7} - \beta_{14} + \beta_{15} ) q^{68} + ( 2 + 2 \beta_{1} + \beta_{3} - \beta_{4} + 3 \beta_{5} + \beta_{6} - \beta_{7} + \beta_{11} - 2 \beta_{13} - \beta_{14} - 2 \beta_{15} ) q^{70} + ( -2 + \beta_{2} - \beta_{6} - \beta_{7} + 2 \beta_{14} + \beta_{15} ) q^{71} + ( 2 + \beta_{3} + \beta_{4} + \beta_{5} - \beta_{9} + \beta_{11} - \beta_{15} ) q^{73} + ( 1 + 2 \beta_{4} - \beta_{5} - \beta_{11} + \beta_{13} - \beta_{14} - \beta_{15} ) q^{74} + ( 5 + 2 \beta_{2} - 2 \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{12} + 2 \beta_{13} + \beta_{15} ) q^{76} + ( 2 - \beta_{4} + \beta_{5} - \beta_{7} + \beta_{11} - \beta_{15} ) q^{77} + ( 3 + \beta_{3} + \beta_{5} - \beta_{6} + 2 \beta_{10} + \beta_{14} ) q^{79} + ( -\beta_{1} - 2 \beta_{3} - \beta_{5} + 2 \beta_{7} - \beta_{8} - 2 \beta_{10} - \beta_{11} + 2 \beta_{13} ) q^{80} + ( \beta_{1} - 2 \beta_{2} - \beta_{4} + \beta_{6} - 2 \beta_{7} + \beta_{8} + 2 \beta_{10} - \beta_{12} + \beta_{14} ) q^{82} + ( -2 + \beta_{1} - \beta_{5} + \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - \beta_{11} + \beta_{14} + \beta_{15} ) q^{83} + ( 1 + \beta_{1} - \beta_{3} + \beta_{4} + \beta_{6} + 2 \beta_{7} + \beta_{9} + 2 \beta_{13} ) q^{85} + ( 3 \beta_{1} + \beta_{3} - 3 \beta_{4} + \beta_{5} + \beta_{9} + \beta_{11} - 2 \beta_{13} + \beta_{14} ) q^{86} + ( 1 - \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} + \beta_{8} - \beta_{9} - \beta_{11} + 2 \beta_{13} ) q^{88} + ( 2 \beta_{1} - 2 \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{8} + \beta_{9} + \beta_{11} - \beta_{12} + \beta_{15} ) q^{89} + ( -2 - 4 \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{13} ) q^{91} + ( 2 + \beta_{2} ) q^{92} + ( -2 - \beta_{1} + \beta_{5} - \beta_{6} - \beta_{8} + \beta_{11} - \beta_{12} - 2 \beta_{13} + \beta_{14} - \beta_{15} ) q^{94} + ( -2 - 4 \beta_{1} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{8} - \beta_{12} - \beta_{14} + \beta_{15} ) q^{95} + ( 2 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{6} + \beta_{9} - \beta_{10} ) q^{97} + ( 9 + 4 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} + \beta_{11} + \beta_{12} - \beta_{14} + \beta_{15} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + q^{2} + 25q^{4} - 3q^{5} + 13q^{7} + O(q^{10}) \) \( 16q + q^{2} + 25q^{4} - 3q^{5} + 13q^{7} + 11q^{10} - 8q^{11} + 19q^{13} - 16q^{14} + 31q^{16} + 4q^{17} + 19q^{19} - 16q^{20} + 6q^{22} + 16q^{23} + 23q^{25} + 15q^{26} + 18q^{28} + 16q^{29} + 24q^{31} + 21q^{32} - 9q^{34} + 13q^{35} + 26q^{37} - 22q^{40} + 15q^{41} + 33q^{43} - 6q^{44} + q^{46} - 13q^{47} + 41q^{49} - 13q^{50} - 26q^{52} - 5q^{53} + 9q^{55} - 40q^{56} + q^{58} - 2q^{59} + 29q^{61} + 32q^{62} + 28q^{64} - 18q^{65} + 32q^{67} + 26q^{68} + 18q^{70} - 29q^{71} + 19q^{73} + 16q^{74} + 64q^{76} + 21q^{77} + 56q^{79} + 14q^{82} - 5q^{83} + 16q^{85} + 20q^{86} + q^{88} - 7q^{89} - 6q^{91} + 25q^{92} - 11q^{94} - 39q^{95} + 35q^{97} + 109q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - x^{15} - 28 x^{14} + 27 x^{13} + 316 x^{12} - 295 x^{11} - 1835 x^{10} + 1665 x^{9} + 5778 x^{8} - 5124 x^{7} - 9405 x^{6} + 8288 x^{5} + 6405 x^{4} - 6032 x^{3} - 400 x^{2} + 1088 x - 192\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 4 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 5 \nu \)
\(\beta_{4}\)\(=\)\((\)\( -35 \nu^{15} - 86 \nu^{14} + 850 \nu^{13} + 2133 \nu^{12} - 7813 \nu^{11} - 20506 \nu^{10} + 33795 \nu^{9} + 95926 \nu^{8} - 69732 \nu^{7} - 222160 \nu^{6} + 62103 \nu^{5} + 219845 \nu^{4} - 18368 \nu^{3} - 50704 \nu^{2} + 1952 \nu + 4864 \)\()/3904\)
\(\beta_{5}\)\(=\)\((\)\( -5 \nu^{15} + 40 \nu^{14} + 226 \nu^{13} - 985 \nu^{12} - 3713 \nu^{11} + 9288 \nu^{10} + 29681 \nu^{9} - 42120 \nu^{8} - 124816 \nu^{7} + 95352 \nu^{6} + 269185 \nu^{5} - 103543 \nu^{4} - 251870 \nu^{3} + 48528 \nu^{2} + 50752 \nu - 7392 \)\()/1952\)
\(\beta_{6}\)\(=\)\((\)\( 19 \nu^{15} - 30 \nu^{14} - 566 \nu^{13} + 815 \nu^{12} + 6765 \nu^{11} - 8674 \nu^{10} - 41247 \nu^{9} + 45498 \nu^{8} + 134604 \nu^{7} - 120680 \nu^{6} - 224535 \nu^{5} + 146511 \nu^{4} + 162520 \nu^{3} - 61040 \nu^{2} - 29768 \nu + 7008 \)\()/976\)
\(\beta_{7}\)\(=\)\((\)\(-141 \nu^{15} + 30 \nu^{14} + 3982 \nu^{13} - 693 \nu^{12} - 45683 \nu^{11} + 6722 \nu^{10} + 272925 \nu^{9} - 35982 \nu^{8} - 900764 \nu^{7} + 114336 \nu^{6} + 1586665 \nu^{5} - 208365 \nu^{4} - 1269304 \nu^{3} + 182064 \nu^{2} + 249856 \nu - 36288\)\()/3904\)
\(\beta_{8}\)\(=\)\((\)\(147 \nu^{15} - 78 \nu^{14} - 4302 \nu^{13} + 2119 \nu^{12} + 51261 \nu^{11} - 23626 \nu^{10} - 318351 \nu^{9} + 138498 \nu^{8} + 1089876 \nu^{7} - 451872 \nu^{6} - 1976055 \nu^{5} + 791727 \nu^{4} + 1595216 \nu^{3} - 632064 \nu^{2} - 290848 \nu + 113088\)\()/3904\)
\(\beta_{9}\)\(=\)\((\)\(207 \nu^{15} - 314 \nu^{14} - 5794 \nu^{13} + 7839 \nu^{12} + 65561 \nu^{11} - 77254 \nu^{10} - 382455 \nu^{9} + 381394 \nu^{8} + 1211508 \nu^{7} - 988048 \nu^{6} - 1996211 \nu^{5} + 1282479 \nu^{4} + 1439312 \nu^{3} - 715664 \nu^{2} - 236192 \nu + 108096\)\()/3904\)
\(\beta_{10}\)\(=\)\((\)\(-71 \nu^{15} + 19 \nu^{14} + 1977 \nu^{13} - 506 \nu^{12} - 22127 \nu^{11} + 5583 \nu^{10} + 127194 \nu^{9} - 32268 \nu^{8} - 397008 \nu^{7} + 101400 \nu^{6} + 648475 \nu^{5} - 164508 \nu^{4} - 472752 \nu^{3} + 118040 \nu^{2} + 85400 \nu - 21616\)\()/976\)
\(\beta_{11}\)\(=\)\((\)\(163 \nu^{15} - 84 \nu^{14} - 4830 \nu^{13} + 2343 \nu^{12} + 58043 \nu^{11} - 26532 \nu^{10} - 361895 \nu^{9} + 155796 \nu^{8} + 1238992 \nu^{7} - 501384 \nu^{6} - 2245015 \nu^{5} + 853469 \nu^{4} + 1823774 \nu^{3} - 654520 \nu^{2} - 346480 \nu + 116832\)\()/1952\)
\(\beta_{12}\)\(=\)\((\)\(411 \nu^{15} - 238 \nu^{14} - 11550 \nu^{13} + 6303 \nu^{12} + 130773 \nu^{11} - 67610 \nu^{10} - 762327 \nu^{9} + 374322 \nu^{8} + 2419716 \nu^{7} - 1126080 \nu^{6} - 4037823 \nu^{5} + 1774663 \nu^{4} + 3041408 \nu^{3} - 1272208 \nu^{2} - 597312 \nu + 236352\)\()/3904\)
\(\beta_{13}\)\(=\)\((\)\(551 \nu^{15} - 382 \nu^{14} - 15438 \nu^{13} + 9971 \nu^{12} + 174713 \nu^{11} - 105146 \nu^{10} - 1021947 \nu^{9} + 571338 \nu^{8} + 3272532 \nu^{7} - 1684848 \nu^{6} - 5542347 \nu^{5} + 2591083 \nu^{4} + 4237280 \nu^{3} - 1775040 \nu^{2} - 800320 \nu + 298880\)\()/3904\)
\(\beta_{14}\)\(=\)\((\)\(279 \nu^{15} - 158 \nu^{14} - 7926 \nu^{13} + 4211 \nu^{12} + 91017 \nu^{11} - 45618 \nu^{10} - 540339 \nu^{9} + 256410 \nu^{8} + 1754796 \nu^{7} - 788976 \nu^{6} - 3006939 \nu^{5} + 1281243 \nu^{4} + 2318312 \nu^{3} - 938472 \nu^{2} - 444080 \nu + 164960\)\()/1952\)
\(\beta_{15}\)\(=\)\((\)\(-155 \nu^{15} + 142 \nu^{14} + 4322 \nu^{13} - 3695 \nu^{12} - 48613 \nu^{11} + 38438 \nu^{10} + 282051 \nu^{9} - 202962 \nu^{8} - 893472 \nu^{7} + 569592 \nu^{6} + 1492239 \nu^{5} - 811191 \nu^{4} - 1122980 \nu^{3} + 501772 \nu^{2} + 210816 \nu - 81776\)\()/976\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 4\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 5 \beta_{1}\)
\(\nu^{4}\)\(=\)\(-\beta_{14} + \beta_{12} + \beta_{8} + 7 \beta_{2} + 23\)
\(\nu^{5}\)\(=\)\(-\beta_{14} + \beta_{11} + \beta_{9} + \beta_{5} - \beta_{4} + 9 \beta_{3} + 30 \beta_{1} + 2\)
\(\nu^{6}\)\(=\)\(\beta_{15} - 11 \beta_{14} + 2 \beta_{13} + 10 \beta_{12} + 10 \beta_{8} + \beta_{6} + \beta_{3} + 47 \beta_{2} + 2 \beta_{1} + 146\)
\(\nu^{7}\)\(=\)\(-12 \beta_{14} + \beta_{12} + 13 \beta_{11} + 2 \beta_{10} + 12 \beta_{9} - 3 \beta_{8} - 2 \beta_{7} + 13 \beta_{5} - 12 \beta_{4} + 68 \beta_{3} + 2 \beta_{2} + 194 \beta_{1} + 28\)
\(\nu^{8}\)\(=\)\(16 \beta_{15} - 93 \beta_{14} + 30 \beta_{13} + 80 \beta_{12} - \beta_{11} + 2 \beta_{10} + \beta_{9} + 80 \beta_{8} + 16 \beta_{6} - \beta_{5} - 3 \beta_{4} + 15 \beta_{3} + 317 \beta_{2} + 35 \beta_{1} + 972\)
\(\nu^{9}\)\(=\)\(\beta_{15} - 107 \beta_{14} - 2 \beta_{13} + 16 \beta_{12} + 124 \beta_{11} + 34 \beta_{10} + 112 \beta_{9} - 46 \beta_{8} - 34 \beta_{7} + 3 \beta_{6} + 128 \beta_{5} - 112 \beta_{4} + 490 \beta_{3} + 34 \beta_{2} + 1309 \beta_{1} + 296\)
\(\nu^{10}\)\(=\)\(174 \beta_{15} - 721 \beta_{14} + 310 \beta_{13} + 602 \beta_{12} - 19 \beta_{11} + 40 \beta_{10} + 20 \beta_{9} + 602 \beta_{8} - 6 \beta_{7} + 180 \beta_{6} - 19 \beta_{5} - 62 \beta_{4} + 157 \beta_{3} + 2157 \beta_{2} + 415 \beta_{1} + 6647\)
\(\nu^{11}\)\(=\)\(20 \beta_{15} - 859 \beta_{14} - 38 \beta_{13} + 177 \beta_{12} + 1050 \beta_{11} + 400 \beta_{10} + 956 \beta_{9} - 481 \beta_{8} - 402 \beta_{7} + 66 \beta_{6} + 1134 \beta_{5} - 962 \beta_{4} + 3480 \beta_{3} + 394 \beta_{2} + 9065 \beta_{1} + 2797\)
\(\nu^{12}\)\(=\)\(1614 \beta_{15} - 5389 \beta_{14} + 2758 \beta_{13} + 4436 \beta_{12} - 229 \beta_{11} + 532 \beta_{10} + 263 \beta_{9} + 4434 \beta_{8} - 138 \beta_{7} + 1758 \beta_{6} - 217 \beta_{5} - 833 \beta_{4} + 1430 \beta_{3} + 14805 \beta_{2} + 4183 \beta_{1} + 46238\)
\(\nu^{13}\)\(=\)\(265 \beta_{15} - 6590 \beta_{14} - 456 \beta_{13} + 1693 \beta_{12} + 8376 \beta_{11} + 4048 \beta_{10} + 7808 \beta_{9} - 4293 \beta_{8} - 4086 \beta_{7} + 933 \beta_{6} + 9516 \beta_{5} - 7970 \beta_{4} + 24630 \beta_{3} + 3888 \beta_{2} + 63859 \beta_{1} + 24859\)
\(\nu^{14}\)\(=\)\(13794 \beta_{15} - 39596 \beta_{14} + 22738 \beta_{13} + 32438 \beta_{12} - 2242 \beta_{11} + 5914 \beta_{10} + 2891 \beta_{9} + 32364 \beta_{8} - 2028 \beta_{7} + 15942 \beta_{6} - 1918 \beta_{5} - 9257 \beta_{4} + 12171 \beta_{3} + 102405 \beta_{2} + 38678 \beta_{1} + 325551\)
\(\nu^{15}\)\(=\)\(2965 \beta_{15} - 49525 \beta_{14} - 4410 \beta_{13} + 15062 \beta_{12} + 64576 \beta_{11} + 37798 \beta_{10} + 62174 \beta_{9} - 35264 \beta_{8} - 38250 \beta_{7} + 10833 \beta_{6} + 77308 \beta_{5} - 64850 \beta_{4} + 174439 \beta_{3} + 35202 \beta_{2} + 455351 \beta_{1} + 212580\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.65986
−2.50224
−2.39038
−2.00482
−1.53756
−1.44866
−0.510814
0.300211
0.386616
0.563182
1.40306
1.78406
2.03156
2.18082
2.63319
2.77164
−2.65986 0 5.07484 2.26251 0 3.13860 −8.17864 0 −6.01796
1.2 −2.50224 0 4.26120 −0.499377 0 0.377265 −5.65806 0 1.24956
1.3 −2.39038 0 3.71391 −3.15865 0 2.42988 −4.09689 0 7.55038
1.4 −2.00482 0 2.01932 −3.94433 0 −2.43681 −0.0387322 0 7.90768
1.5 −1.53756 0 0.364091 2.97145 0 1.52213 2.51531 0 −4.56878
1.6 −1.44866 0 0.0986233 −2.08765 0 4.31885 2.75445 0 3.02430
1.7 −0.510814 0 −1.73907 −2.52081 0 1.21289 1.90997 0 1.28766
1.8 0.300211 0 −1.90987 3.45593 0 −1.15345 −1.17379 0 1.03751
1.9 0.386616 0 −1.85053 −0.287925 0 −2.57107 −1.48868 0 −0.111317
1.10 0.563182 0 −1.68283 1.59433 0 4.95339 −2.07410 0 0.897897
1.11 1.40306 0 −0.0314276 −1.13298 0 −1.90949 −2.85021 0 −1.58963
1.12 1.78406 0 1.18288 −3.42296 0 3.39829 −1.45779 0 −6.10677
1.13 2.03156 0 2.12722 2.52723 0 −2.32870 0.258453 0 5.13421
1.14 2.18082 0 2.75597 3.64804 0 2.94825 1.64864 0 7.95571
1.15 2.63319 0 4.93371 −0.107081 0 4.37350 7.72501 0 −0.281966
1.16 2.77164 0 5.68196 −2.29773 0 −5.27354 10.2051 0 −6.36848
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(23\) \(-1\)
\(29\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6003))\):

\(T_{2}^{16} - \cdots\)
\(T_{5}^{16} + \cdots\)