Properties

Label 6001.2.a.d
Level 6001
Weight 2
Character orbit 6001.a
Self dual Yes
Analytic conductor 47.918
Analytic rank 0
Dimension 121
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6001 = 17 \cdot 353 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6001.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(47.918226253\)
Analytic rank: \(0\)
Dimension: \(121\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(121q \) \(\mathstrut +\mathstrut 9q^{2} \) \(\mathstrut +\mathstrut 21q^{3} \) \(\mathstrut +\mathstrut 127q^{4} \) \(\mathstrut +\mathstrut 27q^{5} \) \(\mathstrut +\mathstrut 17q^{6} \) \(\mathstrut +\mathstrut 39q^{7} \) \(\mathstrut +\mathstrut 24q^{8} \) \(\mathstrut +\mathstrut 134q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(121q \) \(\mathstrut +\mathstrut 9q^{2} \) \(\mathstrut +\mathstrut 21q^{3} \) \(\mathstrut +\mathstrut 127q^{4} \) \(\mathstrut +\mathstrut 27q^{5} \) \(\mathstrut +\mathstrut 17q^{6} \) \(\mathstrut +\mathstrut 39q^{7} \) \(\mathstrut +\mathstrut 24q^{8} \) \(\mathstrut +\mathstrut 134q^{9} \) \(\mathstrut +\mathstrut 19q^{10} \) \(\mathstrut +\mathstrut 48q^{11} \) \(\mathstrut +\mathstrut 43q^{12} \) \(\mathstrut +\mathstrut 6q^{13} \) \(\mathstrut +\mathstrut 40q^{14} \) \(\mathstrut +\mathstrut 49q^{15} \) \(\mathstrut +\mathstrut 135q^{16} \) \(\mathstrut +\mathstrut 121q^{17} \) \(\mathstrut +\mathstrut 30q^{19} \) \(\mathstrut +\mathstrut 50q^{20} \) \(\mathstrut +\mathstrut 18q^{21} \) \(\mathstrut +\mathstrut 24q^{22} \) \(\mathstrut +\mathstrut 75q^{23} \) \(\mathstrut +\mathstrut 24q^{24} \) \(\mathstrut +\mathstrut 128q^{25} \) \(\mathstrut +\mathstrut 59q^{26} \) \(\mathstrut +\mathstrut 75q^{27} \) \(\mathstrut +\mathstrut 52q^{28} \) \(\mathstrut +\mathstrut 49q^{29} \) \(\mathstrut -\mathstrut 34q^{30} \) \(\mathstrut +\mathstrut 101q^{31} \) \(\mathstrut +\mathstrut 47q^{32} \) \(\mathstrut +\mathstrut 20q^{33} \) \(\mathstrut +\mathstrut 9q^{34} \) \(\mathstrut +\mathstrut 47q^{35} \) \(\mathstrut +\mathstrut 138q^{36} \) \(\mathstrut +\mathstrut 32q^{37} \) \(\mathstrut +\mathstrut 30q^{38} \) \(\mathstrut +\mathstrut 101q^{39} \) \(\mathstrut +\mathstrut 36q^{40} \) \(\mathstrut +\mathstrut 83q^{41} \) \(\mathstrut -\mathstrut 11q^{42} \) \(\mathstrut +\mathstrut 8q^{43} \) \(\mathstrut +\mathstrut 98q^{44} \) \(\mathstrut +\mathstrut 49q^{45} \) \(\mathstrut +\mathstrut 45q^{46} \) \(\mathstrut +\mathstrut 135q^{47} \) \(\mathstrut +\mathstrut 54q^{48} \) \(\mathstrut +\mathstrut 116q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut +\mathstrut 21q^{51} \) \(\mathstrut -\mathstrut 5q^{52} \) \(\mathstrut +\mathstrut 28q^{53} \) \(\mathstrut +\mathstrut 10q^{54} \) \(\mathstrut +\mathstrut 37q^{55} \) \(\mathstrut +\mathstrut 75q^{56} \) \(\mathstrut +\mathstrut 31q^{58} \) \(\mathstrut +\mathstrut 150q^{59} \) \(\mathstrut +\mathstrut 50q^{60} \) \(\mathstrut +\mathstrut 36q^{61} \) \(\mathstrut +\mathstrut 34q^{62} \) \(\mathstrut +\mathstrut 118q^{63} \) \(\mathstrut +\mathstrut 110q^{64} \) \(\mathstrut +\mathstrut 18q^{65} \) \(\mathstrut -\mathstrut 28q^{66} \) \(\mathstrut -\mathstrut 6q^{67} \) \(\mathstrut +\mathstrut 127q^{68} \) \(\mathstrut +\mathstrut 25q^{69} \) \(\mathstrut -\mathstrut 22q^{70} \) \(\mathstrut +\mathstrut 223q^{71} \) \(\mathstrut +\mathstrut q^{72} \) \(\mathstrut +\mathstrut 38q^{73} \) \(\mathstrut -\mathstrut 10q^{74} \) \(\mathstrut +\mathstrut 88q^{75} \) \(\mathstrut -\mathstrut 4q^{76} \) \(\mathstrut +\mathstrut 38q^{77} \) \(\mathstrut +\mathstrut 42q^{78} \) \(\mathstrut +\mathstrut 74q^{79} \) \(\mathstrut +\mathstrut 106q^{80} \) \(\mathstrut +\mathstrut 133q^{81} \) \(\mathstrut +\mathstrut 28q^{82} \) \(\mathstrut +\mathstrut 55q^{83} \) \(\mathstrut +\mathstrut 10q^{84} \) \(\mathstrut +\mathstrut 27q^{85} \) \(\mathstrut +\mathstrut 64q^{86} \) \(\mathstrut +\mathstrut 14q^{87} \) \(\mathstrut +\mathstrut 56q^{88} \) \(\mathstrut +\mathstrut 118q^{89} \) \(\mathstrut +\mathstrut 51q^{90} \) \(\mathstrut +\mathstrut 73q^{91} \) \(\mathstrut +\mathstrut 82q^{92} \) \(\mathstrut +\mathstrut 31q^{93} \) \(\mathstrut +\mathstrut 33q^{94} \) \(\mathstrut +\mathstrut 106q^{95} \) \(\mathstrut +\mathstrut 38q^{96} \) \(\mathstrut +\mathstrut 37q^{97} \) \(\mathstrut +\mathstrut 88q^{98} \) \(\mathstrut +\mathstrut 81q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.77548 −0.417524 5.70327 0.239845 1.15883 2.35024 −10.2783 −2.82567 −0.665684
1.2 −2.70572 −1.68319 5.32093 1.67453 4.55424 1.84178 −8.98553 −0.166876 −4.53081
1.3 −2.68420 3.02151 5.20492 3.70816 −8.11034 3.11131 −8.60266 6.12953 −9.95344
1.4 −2.66371 −2.14217 5.09536 −3.47946 5.70612 −4.33919 −8.24515 1.58889 9.26828
1.5 −2.63308 2.70578 4.93313 2.79051 −7.12456 −5.09743 −7.72317 4.32127 −7.34766
1.6 −2.58868 −1.67883 4.70126 −1.30271 4.34594 −1.36507 −6.99268 −0.181538 3.37229
1.7 −2.53489 1.89170 4.42568 −3.70427 −4.79525 1.26299 −6.14885 0.578524 9.38992
1.8 −2.51719 0.226046 4.33623 −1.31460 −0.569001 −1.40872 −5.88074 −2.94890 3.30910
1.9 −2.51330 −2.00286 4.31669 3.06325 5.03379 0.908464 −5.82253 1.01144 −7.69887
1.10 −2.48199 1.43528 4.16025 0.277666 −3.56234 3.77920 −5.36171 −0.939973 −0.689164
1.11 −2.43959 2.16595 3.95162 −1.55175 −5.28403 −2.38051 −4.76117 1.69132 3.78564
1.12 −2.40063 1.09881 3.76301 3.50161 −2.63784 −0.487426 −4.23233 −1.79261 −8.40605
1.13 −2.26922 −1.02425 3.14937 −0.261054 2.32424 2.61024 −2.60816 −1.95092 0.592389
1.14 −2.25245 −3.40363 3.07353 −2.33953 7.66650 2.81637 −2.41808 8.58466 5.26966
1.15 −2.24229 2.77352 3.02787 0.258648 −6.21903 3.59133 −2.30477 4.69240 −0.579964
1.16 −2.20655 2.67875 2.86888 −1.00223 −5.91080 −0.364832 −1.91723 4.17568 2.21147
1.17 −2.15090 0.00192410 2.62636 −2.18392 −0.00413853 −0.0660171 −1.34723 −3.00000 4.69738
1.18 −2.15009 −0.229401 2.62287 4.13461 0.493233 −0.301576 −1.33923 −2.94737 −8.88976
1.19 −2.08098 −2.15379 2.33048 2.78537 4.48200 −3.81134 −0.687730 1.63882 −5.79629
1.20 −1.98791 3.32266 1.95179 2.27659 −6.60516 3.45158 0.0958417 8.04010 −4.52565
See next 80 embeddings (of 121 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.121
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(17\) \(-1\)
\(353\) \(1\)