Properties

Label 600.6.a.u
Level $600$
Weight $6$
Character orbit 600.a
Self dual yes
Analytic conductor $96.230$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(1,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,27,0,0,0,81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.246388.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 89x + 183 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + (\beta_{2} + 27) q^{7} + 81 q^{9} + ( - 3 \beta_{2} + \beta_1 + 13) q^{11} + ( - 4 \beta_{2} - 7 \beta_1 - 240) q^{13} + (13 \beta_{2} + 3 \beta_1 - 297) q^{17} + ( - 5 \beta_{2} + 17 \beta_1 - 484) q^{19}+ \cdots + ( - 243 \beta_{2} + 81 \beta_1 + 1053) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 27 q^{3} + 81 q^{7} + 243 q^{9} + 38 q^{11} - 713 q^{13} - 894 q^{17} - 1469 q^{19} + 729 q^{21} - 1198 q^{23} + 2187 q^{27} - 6774 q^{29} - 10039 q^{31} + 342 q^{33} - 17522 q^{37} - 6417 q^{39}+ \cdots + 3078 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 89x + 183 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -8\nu^{2} + 16\nu + 471 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{2} + 44\nu - 492 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 7 ) / 20 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} - 11\beta _1 + 2383 ) / 40 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.11190
−9.88123
8.76933
0 9.00000 0 0 0 −94.1318 0 81.0000 0
1.2 0 9.00000 0 0 0 −21.5548 0 81.0000 0
1.3 0 9.00000 0 0 0 196.687 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.a.u yes 3
5.b even 2 1 600.6.a.p 3
5.c odd 4 2 600.6.f.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.6.a.p 3 5.b even 2 1
600.6.a.u yes 3 1.a even 1 1 trivial
600.6.f.o 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} - 81T_{7}^{2} - 20725T_{7} - 399075 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 81 T^{2} + \cdots - 399075 \) Copy content Toggle raw display
$11$ \( T^{3} - 38 T^{2} + \cdots + 687480 \) Copy content Toggle raw display
$13$ \( T^{3} + 713 T^{2} + \cdots - 809372709 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 3731232408 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 10898987009 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 3059368488 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 65540735544 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 30382097115 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 556723838376 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 503596157760 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 598620517581 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 607569920600 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 1898584398720 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 19463994415080 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 318660736299 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 5442746686001 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 171119857803840 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 231250667106600 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 238255782882816 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 59289716448792 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 162093891612672 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 834679641090457 \) Copy content Toggle raw display
show more
show less