gp: [N,k,chi] = [600,6,Mod(1,600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("600.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-9,0,0,0,160]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 7 − 160 T_{7} - 160 T 7 − 1 6 0
T7 - 160
acting on S 6 n e w ( Γ 0 ( 600 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(600)) S 6 n e w ( Γ 0 ( 6 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 9 T + 9 T + 9
T + 9
5 5 5
T T T
T
7 7 7
T − 160 T - 160 T − 1 6 0
T - 160
11 11 1 1
T + 596 T + 596 T + 5 9 6
T + 596
13 13 1 3
T − 122 T - 122 T − 1 2 2
T - 122
17 17 1 7
T − 1078 T - 1078 T − 1 0 7 8
T - 1078
19 19 1 9
T − 796 T - 796 T − 7 9 6
T - 796
23 23 2 3
T − 1088 T - 1088 T − 1 0 8 8
T - 1088
29 29 2 9
T − 46 T - 46 T − 4 6
T - 46
31 31 3 1
T + 4952 T + 4952 T + 4 9 5 2
T + 4952
37 37 3 7
T − 6114 T - 6114 T − 6 1 1 4
T - 6114
41 41 4 1
T + 6 T + 6 T + 6
T + 6
43 43 4 3
T − 24116 T - 24116 T − 2 4 1 1 6
T - 24116
47 47 4 7
T + 13480 T + 13480 T + 1 3 4 8 0
T + 13480
53 53 5 3
T + 20598 T + 20598 T + 2 0 5 9 8
T + 20598
59 59 5 9
T + 46756 T + 46756 T + 4 6 7 5 6
T + 46756
61 61 6 1
T + 9602 T + 9602 T + 9 6 0 2
T + 9602
67 67 6 7
T − 17404 T - 17404 T − 1 7 4 0 4
T - 17404
71 71 7 1
T − 26568 T - 26568 T − 2 6 5 6 8
T - 26568
73 73 7 3
T + 75450 T + 75450 T + 7 5 4 5 0
T + 75450
79 79 7 9
T − 50472 T - 50472 T − 5 0 4 7 2
T - 50472
83 83 8 3
T + 33236 T + 33236 T + 3 3 2 3 6
T + 33236
89 89 8 9
T − 133194 T - 133194 T − 1 3 3 1 9 4
T - 133194
97 97 9 7
T − 42878 T - 42878 T − 4 2 8 7 8
T - 42878
show more
show less