Properties

Label 600.6.a.c
Level 600600
Weight 66
Character orbit 600.a
Self dual yes
Analytic conductor 96.23096.230
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(1,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-9,0,0,0,160] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 96.230291887896.2302918878
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 120)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q9q3+160q7+81q9596q11+122q13+1078q17+796q191440q21+1088q23729q27+46q294952q31+5364q33+6114q371098q396q41+48276q99+O(q100) q - 9 q^{3} + 160 q^{7} + 81 q^{9} - 596 q^{11} + 122 q^{13} + 1078 q^{17} + 796 q^{19} - 1440 q^{21} + 1088 q^{23} - 729 q^{27} + 46 q^{29} - 4952 q^{31} + 5364 q^{33} + 6114 q^{37} - 1098 q^{39} - 6 q^{41}+ \cdots - 48276 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −9.00000 0 0 0 160.000 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.a.c 1
5.b even 2 1 120.6.a.f 1
5.c odd 4 2 600.6.f.a 2
15.d odd 2 1 360.6.a.a 1
20.d odd 2 1 240.6.a.g 1
40.e odd 2 1 960.6.a.t 1
40.f even 2 1 960.6.a.a 1
60.h even 2 1 720.6.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.a.f 1 5.b even 2 1
240.6.a.g 1 20.d odd 2 1
360.6.a.a 1 15.d odd 2 1
600.6.a.c 1 1.a even 1 1 trivial
600.6.f.a 2 5.c odd 4 2
720.6.a.i 1 60.h even 2 1
960.6.a.a 1 40.f even 2 1
960.6.a.t 1 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7160 T_{7} - 160 acting on S6new(Γ0(600))S_{6}^{\mathrm{new}}(\Gamma_0(600)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T160 T - 160 Copy content Toggle raw display
1111 T+596 T + 596 Copy content Toggle raw display
1313 T122 T - 122 Copy content Toggle raw display
1717 T1078 T - 1078 Copy content Toggle raw display
1919 T796 T - 796 Copy content Toggle raw display
2323 T1088 T - 1088 Copy content Toggle raw display
2929 T46 T - 46 Copy content Toggle raw display
3131 T+4952 T + 4952 Copy content Toggle raw display
3737 T6114 T - 6114 Copy content Toggle raw display
4141 T+6 T + 6 Copy content Toggle raw display
4343 T24116 T - 24116 Copy content Toggle raw display
4747 T+13480 T + 13480 Copy content Toggle raw display
5353 T+20598 T + 20598 Copy content Toggle raw display
5959 T+46756 T + 46756 Copy content Toggle raw display
6161 T+9602 T + 9602 Copy content Toggle raw display
6767 T17404 T - 17404 Copy content Toggle raw display
7171 T26568 T - 26568 Copy content Toggle raw display
7373 T+75450 T + 75450 Copy content Toggle raw display
7979 T50472 T - 50472 Copy content Toggle raw display
8383 T+33236 T + 33236 Copy content Toggle raw display
8989 T133194 T - 133194 Copy content Toggle raw display
9797 T42878 T - 42878 Copy content Toggle raw display
show more
show less