Properties

Label 600.6.a
Level $600$
Weight $6$
Character orbit 600.a
Rep. character $\chi_{600}(1,\cdot)$
Character field $\Q$
Dimension $47$
Newform subspaces $23$
Sturm bound $720$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(720\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(600))\).

Total New Old
Modular forms 624 47 577
Cusp forms 576 47 529
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(75\)\(6\)\(69\)\(69\)\(6\)\(63\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(80\)\(6\)\(74\)\(74\)\(6\)\(68\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(78\)\(5\)\(73\)\(72\)\(5\)\(67\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(79\)\(6\)\(73\)\(73\)\(6\)\(67\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(81\)\(7\)\(74\)\(75\)\(7\)\(68\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(76\)\(5\)\(71\)\(70\)\(5\)\(65\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(78\)\(5\)\(73\)\(72\)\(5\)\(67\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(77\)\(7\)\(70\)\(71\)\(7\)\(64\)\(6\)\(0\)\(6\)
Plus space\(+\)\(308\)\(22\)\(286\)\(284\)\(22\)\(262\)\(24\)\(0\)\(24\)
Minus space\(-\)\(316\)\(25\)\(291\)\(292\)\(25\)\(267\)\(24\)\(0\)\(24\)

Trace form

\( 47 q - 9 q^{3} + 100 q^{7} + 3807 q^{9} - 20 q^{11} + 662 q^{13} - 1902 q^{17} + 2128 q^{19} + 180 q^{21} - 2752 q^{23} - 729 q^{27} - 526 q^{29} - 9564 q^{31} - 4896 q^{33} + 4854 q^{37} - 5238 q^{39}+ \cdots - 1620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
600.6.a.a 600.a 1.a $1$ $96.230$ \(\Q\) None 24.6.a.c \(0\) \(-9\) \(0\) \(-120\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-120q^{7}+3^{4}q^{9}+524q^{11}+\cdots\)
600.6.a.b 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.e \(0\) \(-9\) \(0\) \(28\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+28q^{7}+3^{4}q^{9}-208q^{11}+\cdots\)
600.6.a.c 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.f \(0\) \(-9\) \(0\) \(160\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+160q^{7}+3^{4}q^{9}-596q^{11}+\cdots\)
600.6.a.d 600.a 1.a $1$ $96.230$ \(\Q\) None 24.6.a.b \(0\) \(9\) \(0\) \(-144\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-12^{2}q^{7}+3^{4}q^{9}-380q^{11}+\cdots\)
600.6.a.e 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.d \(0\) \(9\) \(0\) \(-128\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-2^{7}q^{7}+3^{4}q^{9}-308q^{11}+\cdots\)
600.6.a.f 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.b \(0\) \(9\) \(0\) \(-108\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-108q^{7}+3^{4}q^{9}-8q^{11}+\cdots\)
600.6.a.g 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.c \(0\) \(9\) \(0\) \(80\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+80q^{7}+3^{4}q^{9}+684q^{11}+\cdots\)
600.6.a.h 600.a 1.a $1$ $96.230$ \(\Q\) None 120.6.a.a \(0\) \(9\) \(0\) \(100\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+10^{2}q^{7}+3^{4}q^{9}-136q^{11}+\cdots\)
600.6.a.i 600.a 1.a $1$ $96.230$ \(\Q\) None 24.6.a.a \(0\) \(9\) \(0\) \(240\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+240q^{7}+3^{4}q^{9}-124q^{11}+\cdots\)
600.6.a.j 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{6661}) \) None 600.6.a.j \(0\) \(-18\) \(0\) \(-66\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-33-\beta )q^{7}+3^{4}q^{9}+(112+\cdots)q^{11}+\cdots\)
600.6.a.k 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{1489}) \) None 120.6.a.g \(0\) \(-18\) \(0\) \(-16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-8-\beta )q^{7}+3^{4}q^{9}+(2^{5}+\cdots)q^{11}+\cdots\)
600.6.a.l 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{2161}) \) None 120.6.a.h \(0\) \(-18\) \(0\) \(8\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+(4+\beta )q^{7}+3^{4}q^{9}+(244+2\beta )q^{11}+\cdots\)
600.6.a.m 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{109}) \) None 600.6.a.m \(0\) \(-18\) \(0\) \(38\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+(19-\beta )q^{7}+3^{4}q^{9}+(4-3^{3}\beta )q^{11}+\cdots\)
600.6.a.n 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{109}) \) None 600.6.a.m \(0\) \(18\) \(0\) \(-38\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+(-19-\beta )q^{7}+3^{4}q^{9}+(4+\cdots)q^{11}+\cdots\)
600.6.a.o 600.a 1.a $2$ $96.230$ \(\Q(\sqrt{6661}) \) None 600.6.a.j \(0\) \(18\) \(0\) \(66\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+(33-\beta )q^{7}+3^{4}q^{9}+(112+\cdots)q^{11}+\cdots\)
600.6.a.p 600.a 1.a $3$ $96.230$ 3.3.246388.1 None 600.6.a.p \(0\) \(-27\) \(0\) \(-81\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-3^{3}-\beta _{2})q^{7}+3^{4}q^{9}+(13+\cdots)q^{11}+\cdots\)
600.6.a.q 600.a 1.a $3$ $96.230$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 600.6.a.q \(0\) \(-27\) \(0\) \(-9\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-3+\beta _{1})q^{7}+3^{4}q^{9}+(-97+\cdots)q^{11}+\cdots\)
600.6.a.r 600.a 1.a $3$ $96.230$ 3.3.20073.1 None 120.6.f.a \(0\) \(-27\) \(0\) \(104\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+(33-2\beta _{1}-3\beta _{2})q^{7}+3^{4}q^{9}+\cdots\)
600.6.a.s 600.a 1.a $3$ $96.230$ 3.3.20073.1 None 120.6.f.a \(0\) \(27\) \(0\) \(-104\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+(-33+2\beta _{1}+3\beta _{2})q^{7}+3^{4}q^{9}+\cdots\)
600.6.a.t 600.a 1.a $3$ $96.230$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 600.6.a.q \(0\) \(27\) \(0\) \(9\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+(3-\beta _{1})q^{7}+3^{4}q^{9}+(-97+\cdots)q^{11}+\cdots\)
600.6.a.u 600.a 1.a $3$ $96.230$ 3.3.246388.1 None 600.6.a.p \(0\) \(27\) \(0\) \(81\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+(3^{3}+\beta _{2})q^{7}+3^{4}q^{9}+(13+\cdots)q^{11}+\cdots\)
600.6.a.v 600.a 1.a $4$ $96.230$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 120.6.f.b \(0\) \(-36\) \(0\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+(-2-\beta _{3})q^{7}+3^{4}q^{9}+(86+\cdots)q^{11}+\cdots\)
600.6.a.w 600.a 1.a $4$ $96.230$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 120.6.f.b \(0\) \(36\) \(0\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+(2+\beta _{3})q^{7}+3^{4}q^{9}+(86+2\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(600))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(600)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)