Defining parameters
| Level: | \( N \) | \(=\) | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 600.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 23 \) | ||
| Sturm bound: | \(720\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(600))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 624 | 47 | 577 |
| Cusp forms | 576 | 47 | 529 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(75\) | \(6\) | \(69\) | \(69\) | \(6\) | \(63\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(80\) | \(6\) | \(74\) | \(74\) | \(6\) | \(68\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(78\) | \(5\) | \(73\) | \(72\) | \(5\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(79\) | \(6\) | \(73\) | \(73\) | \(6\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(81\) | \(7\) | \(74\) | \(75\) | \(7\) | \(68\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(76\) | \(5\) | \(71\) | \(70\) | \(5\) | \(65\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(78\) | \(5\) | \(73\) | \(72\) | \(5\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(77\) | \(7\) | \(70\) | \(71\) | \(7\) | \(64\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(308\) | \(22\) | \(286\) | \(284\) | \(22\) | \(262\) | \(24\) | \(0\) | \(24\) | |||||
| Minus space | \(-\) | \(316\) | \(25\) | \(291\) | \(292\) | \(25\) | \(267\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(600))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(600)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 2}\)