Properties

Label 600.4.f.j.49.4
Level $600$
Weight $4$
Character 600.49
Analytic conductor $35.401$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,4,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-36,0,-32,0,0,0,0,0,0,0,420] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.4011460034\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 55x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(-5.72015i\) of defining polynomial
Character \(\chi\) \(=\) 600.49
Dual form 600.4.f.j.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +21.8806i q^{7} -9.00000 q^{9} +54.6418 q^{11} -82.7612i q^{13} -100.403i q^{17} +84.1194 q^{19} -65.6418 q^{21} +0.880613i q^{23} -27.0000i q^{27} +99.1194 q^{29} -78.9255 q^{31} +163.926i q^{33} +390.806i q^{37} +248.284 q^{39} +104.642 q^{41} -241.403i q^{43} +512.567i q^{47} -135.761 q^{49} +301.209 q^{51} -284.642i q^{53} +252.358i q^{57} +709.045 q^{59} +470.522 q^{61} -196.926i q^{63} -667.583i q^{67} -2.64184 q^{69} -51.5378 q^{71} -371.284i q^{73} +1195.60i q^{77} +79.3428 q^{79} +81.0000 q^{81} +682.180i q^{83} +297.358i q^{87} -628.478 q^{89} +1810.87 q^{91} -236.777i q^{93} +1519.09i q^{97} -491.777 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} - 32 q^{11} + 420 q^{19} - 12 q^{21} + 480 q^{29} + 436 q^{31} + 492 q^{39} + 168 q^{41} - 376 q^{49} - 48 q^{51} + 2168 q^{59} + 1548 q^{61} + 240 q^{69} + 2216 q^{71} + 2656 q^{79} + 324 q^{81}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 21.8806i 1.18144i 0.806876 + 0.590721i \(0.201157\pi\)
−0.806876 + 0.590721i \(0.798843\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 54.6418 1.49774 0.748870 0.662717i \(-0.230597\pi\)
0.748870 + 0.662717i \(0.230597\pi\)
\(12\) 0 0
\(13\) − 82.7612i − 1.76568i −0.469674 0.882840i \(-0.655629\pi\)
0.469674 0.882840i \(-0.344371\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 100.403i − 1.43243i −0.697879 0.716215i \(-0.745873\pi\)
0.697879 0.716215i \(-0.254127\pi\)
\(18\) 0 0
\(19\) 84.1194 1.01570 0.507850 0.861445i \(-0.330440\pi\)
0.507850 + 0.861445i \(0.330440\pi\)
\(20\) 0 0
\(21\) −65.6418 −0.682106
\(22\) 0 0
\(23\) 0.880613i 0.00798350i 0.999992 + 0.00399175i \(0.00127062\pi\)
−0.999992 + 0.00399175i \(0.998729\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) 99.1194 0.634690 0.317345 0.948310i \(-0.397209\pi\)
0.317345 + 0.948310i \(0.397209\pi\)
\(30\) 0 0
\(31\) −78.9255 −0.457272 −0.228636 0.973512i \(-0.573427\pi\)
−0.228636 + 0.973512i \(0.573427\pi\)
\(32\) 0 0
\(33\) 163.926i 0.864720i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 390.806i 1.73644i 0.496183 + 0.868218i \(0.334735\pi\)
−0.496183 + 0.868218i \(0.665265\pi\)
\(38\) 0 0
\(39\) 248.284 1.01942
\(40\) 0 0
\(41\) 104.642 0.398593 0.199296 0.979939i \(-0.436134\pi\)
0.199296 + 0.979939i \(0.436134\pi\)
\(42\) 0 0
\(43\) − 241.403i − 0.856131i −0.903748 0.428065i \(-0.859195\pi\)
0.903748 0.428065i \(-0.140805\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 512.567i 1.59076i 0.606112 + 0.795379i \(0.292728\pi\)
−0.606112 + 0.795379i \(0.707272\pi\)
\(48\) 0 0
\(49\) −135.761 −0.395805
\(50\) 0 0
\(51\) 301.209 0.827014
\(52\) 0 0
\(53\) − 284.642i − 0.737709i −0.929487 0.368854i \(-0.879750\pi\)
0.929487 0.368854i \(-0.120250\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 252.358i 0.586415i
\(58\) 0 0
\(59\) 709.045 1.56457 0.782286 0.622919i \(-0.214053\pi\)
0.782286 + 0.622919i \(0.214053\pi\)
\(60\) 0 0
\(61\) 470.522 0.987610 0.493805 0.869573i \(-0.335606\pi\)
0.493805 + 0.869573i \(0.335606\pi\)
\(62\) 0 0
\(63\) − 196.926i − 0.393814i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 667.583i − 1.21729i −0.793444 0.608643i \(-0.791714\pi\)
0.793444 0.608643i \(-0.208286\pi\)
\(68\) 0 0
\(69\) −2.64184 −0.00460928
\(70\) 0 0
\(71\) −51.5378 −0.0861466 −0.0430733 0.999072i \(-0.513715\pi\)
−0.0430733 + 0.999072i \(0.513715\pi\)
\(72\) 0 0
\(73\) − 371.284i − 0.595280i −0.954678 0.297640i \(-0.903800\pi\)
0.954678 0.297640i \(-0.0961996\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1195.60i 1.76949i
\(78\) 0 0
\(79\) 79.3428 0.112997 0.0564985 0.998403i \(-0.482006\pi\)
0.0564985 + 0.998403i \(0.482006\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 682.180i 0.902156i 0.892485 + 0.451078i \(0.148960\pi\)
−0.892485 + 0.451078i \(0.851040\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 297.358i 0.366438i
\(88\) 0 0
\(89\) −628.478 −0.748522 −0.374261 0.927323i \(-0.622104\pi\)
−0.374261 + 0.927323i \(0.622104\pi\)
\(90\) 0 0
\(91\) 1810.87 2.08605
\(92\) 0 0
\(93\) − 236.777i − 0.264006i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1519.09i 1.59011i 0.606541 + 0.795053i \(0.292557\pi\)
−0.606541 + 0.795053i \(0.707443\pi\)
\(98\) 0 0
\(99\) −491.777 −0.499246
\(100\) 0 0
\(101\) 977.777 0.963291 0.481646 0.876366i \(-0.340039\pi\)
0.481646 + 0.876366i \(0.340039\pi\)
\(102\) 0 0
\(103\) − 759.194i − 0.726268i −0.931737 0.363134i \(-0.881707\pi\)
0.931737 0.363134i \(-0.118293\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 945.448i 0.854205i 0.904203 + 0.427102i \(0.140466\pi\)
−0.904203 + 0.427102i \(0.859534\pi\)
\(108\) 0 0
\(109\) 688.314 0.604849 0.302425 0.953173i \(-0.402204\pi\)
0.302425 + 0.953173i \(0.402204\pi\)
\(110\) 0 0
\(111\) −1172.42 −1.00253
\(112\) 0 0
\(113\) 350.865i 0.292094i 0.989278 + 0.146047i \(0.0466551\pi\)
−0.989278 + 0.146047i \(0.953345\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 744.851i 0.588560i
\(118\) 0 0
\(119\) 2196.88 1.69233
\(120\) 0 0
\(121\) 1654.73 1.24322
\(122\) 0 0
\(123\) 313.926i 0.230128i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1588.21i 1.10969i 0.831953 + 0.554846i \(0.187223\pi\)
−0.831953 + 0.554846i \(0.812777\pi\)
\(128\) 0 0
\(129\) 724.209 0.494287
\(130\) 0 0
\(131\) −2156.02 −1.43795 −0.718977 0.695034i \(-0.755389\pi\)
−0.718977 + 0.695034i \(0.755389\pi\)
\(132\) 0 0
\(133\) 1840.58i 1.19999i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 316.716i 0.197510i 0.995112 + 0.0987551i \(0.0314860\pi\)
−0.995112 + 0.0987551i \(0.968514\pi\)
\(138\) 0 0
\(139\) 2624.87 1.60171 0.800857 0.598855i \(-0.204377\pi\)
0.800857 + 0.598855i \(0.204377\pi\)
\(140\) 0 0
\(141\) −1537.70 −0.918425
\(142\) 0 0
\(143\) − 4522.23i − 2.64453i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 407.284i − 0.228518i
\(148\) 0 0
\(149\) −2782.87 −1.53008 −0.765038 0.643985i \(-0.777280\pi\)
−0.765038 + 0.643985i \(0.777280\pi\)
\(150\) 0 0
\(151\) 1227.25 0.661407 0.330704 0.943735i \(-0.392714\pi\)
0.330704 + 0.943735i \(0.392714\pi\)
\(152\) 0 0
\(153\) 903.628i 0.477477i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3187.33i − 1.62023i −0.586268 0.810117i \(-0.699404\pi\)
0.586268 0.810117i \(-0.300596\pi\)
\(158\) 0 0
\(159\) 853.926 0.425916
\(160\) 0 0
\(161\) −19.2684 −0.00943204
\(162\) 0 0
\(163\) − 2481.64i − 1.19250i −0.802800 0.596249i \(-0.796657\pi\)
0.802800 0.596249i \(-0.203343\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1904.55i − 0.882508i −0.897382 0.441254i \(-0.854534\pi\)
0.897382 0.441254i \(-0.145466\pi\)
\(168\) 0 0
\(169\) −4652.42 −2.11762
\(170\) 0 0
\(171\) −757.074 −0.338567
\(172\) 0 0
\(173\) 3788.88i 1.66511i 0.553946 + 0.832553i \(0.313121\pi\)
−0.553946 + 0.832553i \(0.686879\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2127.13i 0.903306i
\(178\) 0 0
\(179\) 1390.63 0.580672 0.290336 0.956925i \(-0.406233\pi\)
0.290336 + 0.956925i \(0.406233\pi\)
\(180\) 0 0
\(181\) 2512.55 1.03180 0.515902 0.856647i \(-0.327457\pi\)
0.515902 + 0.856647i \(0.327457\pi\)
\(182\) 0 0
\(183\) 1411.57i 0.570197i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5486.21i − 2.14541i
\(188\) 0 0
\(189\) 590.777 0.227369
\(190\) 0 0
\(191\) 2872.82 1.08833 0.544163 0.838980i \(-0.316847\pi\)
0.544163 + 0.838980i \(0.316847\pi\)
\(192\) 0 0
\(193\) − 4130.79i − 1.54063i −0.637665 0.770314i \(-0.720100\pi\)
0.637665 0.770314i \(-0.279900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2243.52i 0.811393i 0.914008 + 0.405697i \(0.132971\pi\)
−0.914008 + 0.405697i \(0.867029\pi\)
\(198\) 0 0
\(199\) −1111.28 −0.395864 −0.197932 0.980216i \(-0.563422\pi\)
−0.197932 + 0.980216i \(0.563422\pi\)
\(200\) 0 0
\(201\) 2002.75 0.702801
\(202\) 0 0
\(203\) 2168.79i 0.749849i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 7.92552i − 0.00266117i
\(208\) 0 0
\(209\) 4596.44 1.52125
\(210\) 0 0
\(211\) −4546.63 −1.48343 −0.741713 0.670717i \(-0.765986\pi\)
−0.741713 + 0.670717i \(0.765986\pi\)
\(212\) 0 0
\(213\) − 154.613i − 0.0497368i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1726.94i − 0.540241i
\(218\) 0 0
\(219\) 1113.85 0.343685
\(220\) 0 0
\(221\) −8309.48 −2.52921
\(222\) 0 0
\(223\) − 3012.93i − 0.904755i −0.891826 0.452378i \(-0.850576\pi\)
0.891826 0.452378i \(-0.149424\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1515.27i 0.443049i 0.975155 + 0.221524i \(0.0711032\pi\)
−0.975155 + 0.221524i \(0.928897\pi\)
\(228\) 0 0
\(229\) −2539.98 −0.732956 −0.366478 0.930427i \(-0.619436\pi\)
−0.366478 + 0.930427i \(0.619436\pi\)
\(230\) 0 0
\(231\) −3586.79 −1.02162
\(232\) 0 0
\(233\) 4772.91i 1.34199i 0.741461 + 0.670996i \(0.234133\pi\)
−0.741461 + 0.670996i \(0.765867\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 238.029i 0.0652389i
\(238\) 0 0
\(239\) −244.344 −0.0661309 −0.0330655 0.999453i \(-0.510527\pi\)
−0.0330655 + 0.999453i \(0.510527\pi\)
\(240\) 0 0
\(241\) 5573.18 1.48963 0.744813 0.667273i \(-0.232538\pi\)
0.744813 + 0.667273i \(0.232538\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 6961.82i − 1.79340i
\(248\) 0 0
\(249\) −2046.54 −0.520860
\(250\) 0 0
\(251\) −5786.78 −1.45521 −0.727606 0.685995i \(-0.759367\pi\)
−0.727606 + 0.685995i \(0.759367\pi\)
\(252\) 0 0
\(253\) 48.1183i 0.0119572i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 7780.75i − 1.88852i −0.329200 0.944260i \(-0.606779\pi\)
0.329200 0.944260i \(-0.393221\pi\)
\(258\) 0 0
\(259\) −8551.08 −2.05150
\(260\) 0 0
\(261\) −892.074 −0.211563
\(262\) 0 0
\(263\) 5122.61i 1.20104i 0.799609 + 0.600521i \(0.205040\pi\)
−0.799609 + 0.600521i \(0.794960\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1885.43i − 0.432160i
\(268\) 0 0
\(269\) −7125.12 −1.61497 −0.807484 0.589890i \(-0.799171\pi\)
−0.807484 + 0.589890i \(0.799171\pi\)
\(270\) 0 0
\(271\) 1761.58 0.394865 0.197433 0.980316i \(-0.436740\pi\)
0.197433 + 0.980316i \(0.436740\pi\)
\(272\) 0 0
\(273\) 5432.60i 1.20438i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5810.41i 1.26034i 0.776458 + 0.630169i \(0.217014\pi\)
−0.776458 + 0.630169i \(0.782986\pi\)
\(278\) 0 0
\(279\) 710.330 0.152424
\(280\) 0 0
\(281\) −4126.19 −0.875972 −0.437986 0.898982i \(-0.644308\pi\)
−0.437986 + 0.898982i \(0.644308\pi\)
\(282\) 0 0
\(283\) − 718.330i − 0.150884i −0.997150 0.0754422i \(-0.975963\pi\)
0.997150 0.0754422i \(-0.0240368\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2289.63i 0.470914i
\(288\) 0 0
\(289\) −5167.78 −1.05186
\(290\) 0 0
\(291\) −4557.27 −0.918048
\(292\) 0 0
\(293\) 3756.21i 0.748942i 0.927239 + 0.374471i \(0.122176\pi\)
−0.927239 + 0.374471i \(0.877824\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1475.33i − 0.288240i
\(298\) 0 0
\(299\) 72.8806 0.0140963
\(300\) 0 0
\(301\) 5282.05 1.01147
\(302\) 0 0
\(303\) 2933.33i 0.556156i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 7599.52i − 1.41279i −0.707816 0.706397i \(-0.750319\pi\)
0.707816 0.706397i \(-0.249681\pi\)
\(308\) 0 0
\(309\) 2277.58 0.419311
\(310\) 0 0
\(311\) 2850.03 0.519648 0.259824 0.965656i \(-0.416336\pi\)
0.259824 + 0.965656i \(0.416336\pi\)
\(312\) 0 0
\(313\) − 799.684i − 0.144411i −0.997390 0.0722057i \(-0.976996\pi\)
0.997390 0.0722057i \(-0.0230038\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1003.79i − 0.177850i −0.996038 0.0889250i \(-0.971657\pi\)
0.996038 0.0889250i \(-0.0283431\pi\)
\(318\) 0 0
\(319\) 5416.07 0.950600
\(320\) 0 0
\(321\) −2836.34 −0.493175
\(322\) 0 0
\(323\) − 8445.84i − 1.45492i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2064.94i 0.349210i
\(328\) 0 0
\(329\) −11215.3 −1.87939
\(330\) 0 0
\(331\) 8367.68 1.38951 0.694757 0.719245i \(-0.255512\pi\)
0.694757 + 0.719245i \(0.255512\pi\)
\(332\) 0 0
\(333\) − 3517.26i − 0.578812i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 5034.79i − 0.813835i −0.913465 0.406918i \(-0.866604\pi\)
0.913465 0.406918i \(-0.133396\pi\)
\(338\) 0 0
\(339\) −1052.60 −0.168641
\(340\) 0 0
\(341\) −4312.64 −0.684875
\(342\) 0 0
\(343\) 4534.51i 0.713821i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2105.53i − 0.325737i −0.986648 0.162868i \(-0.947925\pi\)
0.986648 0.162868i \(-0.0520746\pi\)
\(348\) 0 0
\(349\) 8813.47 1.35179 0.675894 0.736999i \(-0.263758\pi\)
0.675894 + 0.736999i \(0.263758\pi\)
\(350\) 0 0
\(351\) −2234.55 −0.339805
\(352\) 0 0
\(353\) − 9348.98i − 1.40962i −0.709396 0.704810i \(-0.751032\pi\)
0.709396 0.704810i \(-0.248968\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6590.64i 0.977069i
\(358\) 0 0
\(359\) 9233.33 1.35743 0.678714 0.734403i \(-0.262538\pi\)
0.678714 + 0.734403i \(0.262538\pi\)
\(360\) 0 0
\(361\) 217.071 0.0316477
\(362\) 0 0
\(363\) 4964.19i 0.717775i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 6996.60i − 0.995148i −0.867421 0.497574i \(-0.834224\pi\)
0.867421 0.497574i \(-0.165776\pi\)
\(368\) 0 0
\(369\) −941.777 −0.132864
\(370\) 0 0
\(371\) 6228.14 0.871560
\(372\) 0 0
\(373\) − 2945.48i − 0.408877i −0.978879 0.204438i \(-0.934463\pi\)
0.978879 0.204438i \(-0.0655368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8203.24i − 1.12066i
\(378\) 0 0
\(379\) −8499.83 −1.15200 −0.575998 0.817451i \(-0.695387\pi\)
−0.575998 + 0.817451i \(0.695387\pi\)
\(380\) 0 0
\(381\) −4764.63 −0.640681
\(382\) 0 0
\(383\) 6426.01i 0.857320i 0.903466 + 0.428660i \(0.141014\pi\)
−0.903466 + 0.428660i \(0.858986\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2172.63i 0.285377i
\(388\) 0 0
\(389\) 675.805 0.0880840 0.0440420 0.999030i \(-0.485976\pi\)
0.0440420 + 0.999030i \(0.485976\pi\)
\(390\) 0 0
\(391\) 88.4162 0.0114358
\(392\) 0 0
\(393\) − 6468.05i − 0.830203i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 9331.43i − 1.17967i −0.807522 0.589837i \(-0.799192\pi\)
0.807522 0.589837i \(-0.200808\pi\)
\(398\) 0 0
\(399\) −5521.75 −0.692815
\(400\) 0 0
\(401\) −427.213 −0.0532021 −0.0266010 0.999646i \(-0.508468\pi\)
−0.0266010 + 0.999646i \(0.508468\pi\)
\(402\) 0 0
\(403\) 6531.97i 0.807396i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21354.4i 2.60073i
\(408\) 0 0
\(409\) −1243.18 −0.150297 −0.0751484 0.997172i \(-0.523943\pi\)
−0.0751484 + 0.997172i \(0.523943\pi\)
\(410\) 0 0
\(411\) −950.149 −0.114033
\(412\) 0 0
\(413\) 15514.3i 1.84845i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7874.60i 0.924750i
\(418\) 0 0
\(419\) 3802.17 0.443313 0.221656 0.975125i \(-0.428854\pi\)
0.221656 + 0.975125i \(0.428854\pi\)
\(420\) 0 0
\(421\) −12785.6 −1.48012 −0.740059 0.672542i \(-0.765203\pi\)
−0.740059 + 0.672542i \(0.765203\pi\)
\(422\) 0 0
\(423\) − 4613.11i − 0.530253i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10295.3i 1.16680i
\(428\) 0 0
\(429\) 13566.7 1.52682
\(430\) 0 0
\(431\) −9588.11 −1.07156 −0.535781 0.844357i \(-0.679983\pi\)
−0.535781 + 0.844357i \(0.679983\pi\)
\(432\) 0 0
\(433\) − 8493.83i − 0.942697i −0.881947 0.471348i \(-0.843767\pi\)
0.881947 0.471348i \(-0.156233\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 74.0766i 0.00810885i
\(438\) 0 0
\(439\) −5167.40 −0.561792 −0.280896 0.959738i \(-0.590632\pi\)
−0.280896 + 0.959738i \(0.590632\pi\)
\(440\) 0 0
\(441\) 1221.85 0.131935
\(442\) 0 0
\(443\) − 8192.86i − 0.878679i −0.898321 0.439339i \(-0.855213\pi\)
0.898321 0.439339i \(-0.144787\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 8348.60i − 0.883390i
\(448\) 0 0
\(449\) 18252.3 1.91844 0.959218 0.282666i \(-0.0912188\pi\)
0.959218 + 0.282666i \(0.0912188\pi\)
\(450\) 0 0
\(451\) 5717.82 0.596988
\(452\) 0 0
\(453\) 3681.76i 0.381864i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 330.123i − 0.0337910i −0.999857 0.0168955i \(-0.994622\pi\)
0.999857 0.0168955i \(-0.00537826\pi\)
\(458\) 0 0
\(459\) −2710.88 −0.275671
\(460\) 0 0
\(461\) −4773.18 −0.482232 −0.241116 0.970496i \(-0.577513\pi\)
−0.241116 + 0.970496i \(0.577513\pi\)
\(462\) 0 0
\(463\) − 7860.46i − 0.788999i −0.918896 0.394499i \(-0.870918\pi\)
0.918896 0.394499i \(-0.129082\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10520.8i 1.04250i 0.853404 + 0.521249i \(0.174534\pi\)
−0.853404 + 0.521249i \(0.825466\pi\)
\(468\) 0 0
\(469\) 14607.1 1.43815
\(470\) 0 0
\(471\) 9561.99 0.935442
\(472\) 0 0
\(473\) − 13190.7i − 1.28226i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2561.78i 0.245903i
\(478\) 0 0
\(479\) 3013.64 0.287467 0.143734 0.989616i \(-0.454089\pi\)
0.143734 + 0.989616i \(0.454089\pi\)
\(480\) 0 0
\(481\) 32343.6 3.06599
\(482\) 0 0
\(483\) − 57.8051i − 0.00544559i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7048.81i 0.655876i 0.944699 + 0.327938i \(0.106354\pi\)
−0.944699 + 0.327938i \(0.893646\pi\)
\(488\) 0 0
\(489\) 7444.93 0.688489
\(490\) 0 0
\(491\) 6338.68 0.582608 0.291304 0.956630i \(-0.405911\pi\)
0.291304 + 0.956630i \(0.405911\pi\)
\(492\) 0 0
\(493\) − 9951.89i − 0.909149i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1127.68i − 0.101777i
\(498\) 0 0
\(499\) 5402.66 0.484682 0.242341 0.970191i \(-0.422085\pi\)
0.242341 + 0.970191i \(0.422085\pi\)
\(500\) 0 0
\(501\) 5713.66 0.509516
\(502\) 0 0
\(503\) 7770.85i 0.688837i 0.938816 + 0.344419i \(0.111924\pi\)
−0.938816 + 0.344419i \(0.888076\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 13957.3i − 1.22261i
\(508\) 0 0
\(509\) −729.019 −0.0634837 −0.0317418 0.999496i \(-0.510105\pi\)
−0.0317418 + 0.999496i \(0.510105\pi\)
\(510\) 0 0
\(511\) 8123.91 0.703289
\(512\) 0 0
\(513\) − 2271.22i − 0.195472i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 28007.6i 2.38254i
\(518\) 0 0
\(519\) −11366.6 −0.961349
\(520\) 0 0
\(521\) 14783.8 1.24317 0.621585 0.783346i \(-0.286489\pi\)
0.621585 + 0.783346i \(0.286489\pi\)
\(522\) 0 0
\(523\) − 395.434i − 0.0330614i −0.999863 0.0165307i \(-0.994738\pi\)
0.999863 0.0165307i \(-0.00526212\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7924.36i 0.655011i
\(528\) 0 0
\(529\) 12166.2 0.999936
\(530\) 0 0
\(531\) −6381.40 −0.521524
\(532\) 0 0
\(533\) − 8660.29i − 0.703787i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4171.88i 0.335251i
\(538\) 0 0
\(539\) −7418.24 −0.592813
\(540\) 0 0
\(541\) −16507.9 −1.31188 −0.655942 0.754811i \(-0.727728\pi\)
−0.655942 + 0.754811i \(0.727728\pi\)
\(542\) 0 0
\(543\) 7537.66i 0.595713i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9242.35i 0.722440i 0.932481 + 0.361220i \(0.117640\pi\)
−0.932481 + 0.361220i \(0.882360\pi\)
\(548\) 0 0
\(549\) −4234.70 −0.329203
\(550\) 0 0
\(551\) 8337.86 0.644655
\(552\) 0 0
\(553\) 1736.07i 0.133499i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 10449.5i − 0.794898i −0.917624 0.397449i \(-0.869896\pi\)
0.917624 0.397449i \(-0.130104\pi\)
\(558\) 0 0
\(559\) −19978.8 −1.51165
\(560\) 0 0
\(561\) 16458.6 1.23865
\(562\) 0 0
\(563\) 13670.1i 1.02331i 0.859191 + 0.511656i \(0.170968\pi\)
−0.859191 + 0.511656i \(0.829032\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1772.33i 0.131271i
\(568\) 0 0
\(569\) −13616.7 −1.00323 −0.501617 0.865090i \(-0.667261\pi\)
−0.501617 + 0.865090i \(0.667261\pi\)
\(570\) 0 0
\(571\) −11833.4 −0.867270 −0.433635 0.901089i \(-0.642769\pi\)
−0.433635 + 0.901089i \(0.642769\pi\)
\(572\) 0 0
\(573\) 8618.47i 0.628345i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7131.30i 0.514523i 0.966342 + 0.257262i \(0.0828202\pi\)
−0.966342 + 0.257262i \(0.917180\pi\)
\(578\) 0 0
\(579\) 12392.4 0.889482
\(580\) 0 0
\(581\) −14926.5 −1.06584
\(582\) 0 0
\(583\) − 15553.4i − 1.10490i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25214.3i 1.77292i 0.462804 + 0.886461i \(0.346843\pi\)
−0.462804 + 0.886461i \(0.653157\pi\)
\(588\) 0 0
\(589\) −6639.17 −0.464452
\(590\) 0 0
\(591\) −6730.57 −0.468458
\(592\) 0 0
\(593\) − 4218.04i − 0.292098i −0.989277 0.146049i \(-0.953344\pi\)
0.989277 0.146049i \(-0.0466557\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 3333.85i − 0.228552i
\(598\) 0 0
\(599\) −5956.57 −0.406308 −0.203154 0.979147i \(-0.565119\pi\)
−0.203154 + 0.979147i \(0.565119\pi\)
\(600\) 0 0
\(601\) −5182.29 −0.351731 −0.175865 0.984414i \(-0.556272\pi\)
−0.175865 + 0.984414i \(0.556272\pi\)
\(602\) 0 0
\(603\) 6008.24i 0.405762i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10142.0i 0.678171i 0.940755 + 0.339086i \(0.110118\pi\)
−0.940755 + 0.339086i \(0.889882\pi\)
\(608\) 0 0
\(609\) −6506.38 −0.432926
\(610\) 0 0
\(611\) 42420.7 2.80877
\(612\) 0 0
\(613\) 4022.95i 0.265066i 0.991179 + 0.132533i \(0.0423110\pi\)
−0.991179 + 0.132533i \(0.957689\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 27074.4i − 1.76657i −0.468837 0.883285i \(-0.655327\pi\)
0.468837 0.883285i \(-0.344673\pi\)
\(618\) 0 0
\(619\) 17245.7 1.11981 0.559905 0.828557i \(-0.310838\pi\)
0.559905 + 0.828557i \(0.310838\pi\)
\(620\) 0 0
\(621\) 23.7766 0.00153643
\(622\) 0 0
\(623\) − 13751.5i − 0.884336i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 13789.3i 0.878297i
\(628\) 0 0
\(629\) 39238.1 2.48732
\(630\) 0 0
\(631\) −14254.4 −0.899302 −0.449651 0.893204i \(-0.648452\pi\)
−0.449651 + 0.893204i \(0.648452\pi\)
\(632\) 0 0
\(633\) − 13639.9i − 0.856456i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11235.8i 0.698865i
\(638\) 0 0
\(639\) 463.840 0.0287155
\(640\) 0 0
\(641\) 2611.61 0.160924 0.0804621 0.996758i \(-0.474360\pi\)
0.0804621 + 0.996758i \(0.474360\pi\)
\(642\) 0 0
\(643\) 27414.4i 1.68136i 0.541529 + 0.840682i \(0.317846\pi\)
−0.541529 + 0.840682i \(0.682154\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12820.8i 0.779041i 0.921018 + 0.389521i \(0.127359\pi\)
−0.921018 + 0.389521i \(0.872641\pi\)
\(648\) 0 0
\(649\) 38743.5 2.34332
\(650\) 0 0
\(651\) 5180.82 0.311908
\(652\) 0 0
\(653\) 15786.4i 0.946049i 0.881049 + 0.473025i \(0.156838\pi\)
−0.881049 + 0.473025i \(0.843162\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3341.55i 0.198427i
\(658\) 0 0
\(659\) −4822.61 −0.285072 −0.142536 0.989790i \(-0.545526\pi\)
−0.142536 + 0.989790i \(0.545526\pi\)
\(660\) 0 0
\(661\) −23624.9 −1.39017 −0.695084 0.718929i \(-0.744633\pi\)
−0.695084 + 0.718929i \(0.744633\pi\)
\(662\) 0 0
\(663\) − 24928.4i − 1.46024i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 87.2858i 0.00506705i
\(668\) 0 0
\(669\) 9038.78 0.522361
\(670\) 0 0
\(671\) 25710.2 1.47918
\(672\) 0 0
\(673\) 8903.65i 0.509971i 0.966945 + 0.254985i \(0.0820707\pi\)
−0.966945 + 0.254985i \(0.917929\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9034.56i − 0.512890i −0.966559 0.256445i \(-0.917449\pi\)
0.966559 0.256445i \(-0.0825512\pi\)
\(678\) 0 0
\(679\) −33238.6 −1.87862
\(680\) 0 0
\(681\) −4545.81 −0.255794
\(682\) 0 0
\(683\) − 28676.8i − 1.60657i −0.595596 0.803284i \(-0.703084\pi\)
0.595596 0.803284i \(-0.296916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 7619.95i − 0.423172i
\(688\) 0 0
\(689\) −23557.3 −1.30256
\(690\) 0 0
\(691\) −20653.1 −1.13702 −0.568509 0.822677i \(-0.692480\pi\)
−0.568509 + 0.822677i \(0.692480\pi\)
\(692\) 0 0
\(693\) − 10760.4i − 0.589831i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 10506.4i − 0.570957i
\(698\) 0 0
\(699\) −14318.7 −0.774799
\(700\) 0 0
\(701\) −11000.1 −0.592678 −0.296339 0.955083i \(-0.595766\pi\)
−0.296339 + 0.955083i \(0.595766\pi\)
\(702\) 0 0
\(703\) 32874.4i 1.76370i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21394.4i 1.13807i
\(708\) 0 0
\(709\) 372.560 0.0197345 0.00986725 0.999951i \(-0.496859\pi\)
0.00986725 + 0.999951i \(0.496859\pi\)
\(710\) 0 0
\(711\) −714.086 −0.0376657
\(712\) 0 0
\(713\) − 69.5028i − 0.00365063i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 733.032i − 0.0381807i
\(718\) 0 0
\(719\) 7207.32 0.373835 0.186918 0.982376i \(-0.440150\pi\)
0.186918 + 0.982376i \(0.440150\pi\)
\(720\) 0 0
\(721\) 16611.6 0.858043
\(722\) 0 0
\(723\) 16719.5i 0.860036i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 23423.6i − 1.19496i −0.801885 0.597479i \(-0.796169\pi\)
0.801885 0.597479i \(-0.203831\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −24237.6 −1.22635
\(732\) 0 0
\(733\) 20368.0i 1.02634i 0.858286 + 0.513172i \(0.171530\pi\)
−0.858286 + 0.513172i \(0.828470\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 36477.9i − 1.82318i
\(738\) 0 0
\(739\) −2603.64 −0.129603 −0.0648014 0.997898i \(-0.520641\pi\)
−0.0648014 + 0.997898i \(0.520641\pi\)
\(740\) 0 0
\(741\) 20885.5 1.03542
\(742\) 0 0
\(743\) − 8627.83i − 0.426009i −0.977051 0.213004i \(-0.931675\pi\)
0.977051 0.213004i \(-0.0683249\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6139.62i − 0.300719i
\(748\) 0 0
\(749\) −20687.0 −1.00919
\(750\) 0 0
\(751\) −18735.5 −0.910343 −0.455172 0.890404i \(-0.650422\pi\)
−0.455172 + 0.890404i \(0.650422\pi\)
\(752\) 0 0
\(753\) − 17360.3i − 0.840167i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10787.3i 0.517926i 0.965887 + 0.258963i \(0.0833807\pi\)
−0.965887 + 0.258963i \(0.916619\pi\)
\(758\) 0 0
\(759\) −144.355 −0.00690349
\(760\) 0 0
\(761\) −2175.95 −0.103651 −0.0518253 0.998656i \(-0.516504\pi\)
−0.0518253 + 0.998656i \(0.516504\pi\)
\(762\) 0 0
\(763\) 15060.7i 0.714594i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 58681.4i − 2.76253i
\(768\) 0 0
\(769\) −18705.8 −0.877176 −0.438588 0.898688i \(-0.644521\pi\)
−0.438588 + 0.898688i \(0.644521\pi\)
\(770\) 0 0
\(771\) 23342.2 1.09034
\(772\) 0 0
\(773\) − 8243.60i − 0.383573i −0.981437 0.191786i \(-0.938572\pi\)
0.981437 0.191786i \(-0.0614281\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 25653.2i − 1.18443i
\(778\) 0 0
\(779\) 8802.41 0.404851
\(780\) 0 0
\(781\) −2816.12 −0.129025
\(782\) 0 0
\(783\) − 2676.22i − 0.122146i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 29442.1i − 1.33354i −0.745263 0.666770i \(-0.767676\pi\)
0.745263 0.666770i \(-0.232324\pi\)
\(788\) 0 0
\(789\) −15367.8 −0.693422
\(790\) 0 0
\(791\) −7677.15 −0.345092
\(792\) 0 0
\(793\) − 38941.0i − 1.74380i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42045.4i 1.86866i 0.356403 + 0.934332i \(0.384003\pi\)
−0.356403 + 0.934332i \(0.615997\pi\)
\(798\) 0 0
\(799\) 51463.3 2.27865
\(800\) 0 0
\(801\) 5656.30 0.249507
\(802\) 0 0
\(803\) − 20287.6i − 0.891575i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 21375.4i − 0.932402i
\(808\) 0 0
\(809\) −43757.6 −1.90165 −0.950825 0.309727i \(-0.899762\pi\)
−0.950825 + 0.309727i \(0.899762\pi\)
\(810\) 0 0
\(811\) 3273.00 0.141715 0.0708574 0.997486i \(-0.477426\pi\)
0.0708574 + 0.997486i \(0.477426\pi\)
\(812\) 0 0
\(813\) 5284.74i 0.227976i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 20306.7i − 0.869572i
\(818\) 0 0
\(819\) −16297.8 −0.695349
\(820\) 0 0
\(821\) −40442.6 −1.71919 −0.859595 0.510976i \(-0.829284\pi\)
−0.859595 + 0.510976i \(0.829284\pi\)
\(822\) 0 0
\(823\) 27236.8i 1.15360i 0.816884 + 0.576802i \(0.195700\pi\)
−0.816884 + 0.576802i \(0.804300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 33344.5i − 1.40206i −0.713133 0.701028i \(-0.752725\pi\)
0.713133 0.701028i \(-0.247275\pi\)
\(828\) 0 0
\(829\) 32085.0 1.34422 0.672110 0.740452i \(-0.265388\pi\)
0.672110 + 0.740452i \(0.265388\pi\)
\(830\) 0 0
\(831\) −17431.2 −0.727656
\(832\) 0 0
\(833\) 13630.8i 0.566964i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2130.99i 0.0880021i
\(838\) 0 0
\(839\) 7072.24 0.291014 0.145507 0.989357i \(-0.453519\pi\)
0.145507 + 0.989357i \(0.453519\pi\)
\(840\) 0 0
\(841\) −14564.3 −0.597169
\(842\) 0 0
\(843\) − 12378.6i − 0.505743i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 36206.5i 1.46880i
\(848\) 0 0
\(849\) 2154.99 0.0871131
\(850\) 0 0
\(851\) −344.149 −0.0138628
\(852\) 0 0
\(853\) 10225.0i 0.410431i 0.978717 + 0.205215i \(0.0657895\pi\)
−0.978717 + 0.205215i \(0.934211\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9783.87i 0.389977i 0.980805 + 0.194989i \(0.0624670\pi\)
−0.980805 + 0.194989i \(0.937533\pi\)
\(858\) 0 0
\(859\) 22931.8 0.910853 0.455427 0.890273i \(-0.349487\pi\)
0.455427 + 0.890273i \(0.349487\pi\)
\(860\) 0 0
\(861\) −6868.88 −0.271883
\(862\) 0 0
\(863\) 23506.0i 0.927175i 0.886051 + 0.463588i \(0.153438\pi\)
−0.886051 + 0.463588i \(0.846562\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 15503.3i − 0.607290i
\(868\) 0 0
\(869\) 4335.44 0.169240
\(870\) 0 0
\(871\) −55250.0 −2.14934
\(872\) 0 0
\(873\) − 13671.8i − 0.530035i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34672.0i 1.33499i 0.744613 + 0.667497i \(0.232634\pi\)
−0.744613 + 0.667497i \(0.767366\pi\)
\(878\) 0 0
\(879\) −11268.6 −0.432402
\(880\) 0 0
\(881\) −2920.92 −0.111701 −0.0558504 0.998439i \(-0.517787\pi\)
−0.0558504 + 0.998439i \(0.517787\pi\)
\(882\) 0 0
\(883\) − 7123.74i − 0.271498i −0.990743 0.135749i \(-0.956656\pi\)
0.990743 0.135749i \(-0.0433441\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 7923.42i − 0.299935i −0.988691 0.149968i \(-0.952083\pi\)
0.988691 0.149968i \(-0.0479169\pi\)
\(888\) 0 0
\(889\) −34751.0 −1.31104
\(890\) 0 0
\(891\) 4425.99 0.166415
\(892\) 0 0
\(893\) 43116.9i 1.61573i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 218.642i 0.00813850i
\(898\) 0 0
\(899\) −7823.05 −0.290226
\(900\) 0 0
\(901\) −28578.9 −1.05672
\(902\) 0 0
\(903\) 15846.1i 0.583972i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 19771.7i 0.723825i 0.932212 + 0.361912i \(0.117876\pi\)
−0.932212 + 0.361912i \(0.882124\pi\)
\(908\) 0 0
\(909\) −8799.99 −0.321097
\(910\) 0 0
\(911\) 38222.7 1.39009 0.695046 0.718966i \(-0.255384\pi\)
0.695046 + 0.718966i \(0.255384\pi\)
\(912\) 0 0
\(913\) 37275.5i 1.35119i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 47174.9i − 1.69886i
\(918\) 0 0
\(919\) −39237.3 −1.40840 −0.704199 0.710003i \(-0.748694\pi\)
−0.704199 + 0.710003i \(0.748694\pi\)
\(920\) 0 0
\(921\) 22798.6 0.815677
\(922\) 0 0
\(923\) 4265.33i 0.152107i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6832.74i 0.242089i
\(928\) 0 0
\(929\) −20024.5 −0.707194 −0.353597 0.935398i \(-0.615042\pi\)
−0.353597 + 0.935398i \(0.615042\pi\)
\(930\) 0 0
\(931\) −11420.2 −0.402020
\(932\) 0 0
\(933\) 8550.09i 0.300019i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 8717.10i − 0.303922i −0.988386 0.151961i \(-0.951441\pi\)
0.988386 0.151961i \(-0.0485588\pi\)
\(938\) 0 0
\(939\) 2399.05 0.0833760
\(940\) 0 0
\(941\) 39276.2 1.36065 0.680323 0.732913i \(-0.261840\pi\)
0.680323 + 0.732913i \(0.261840\pi\)
\(942\) 0 0
\(943\) 92.1490i 0.00318217i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 20080.8i − 0.689060i −0.938775 0.344530i \(-0.888038\pi\)
0.938775 0.344530i \(-0.111962\pi\)
\(948\) 0 0
\(949\) −30727.9 −1.05107
\(950\) 0 0
\(951\) 3011.37 0.102682
\(952\) 0 0
\(953\) − 38549.9i − 1.31034i −0.755481 0.655170i \(-0.772597\pi\)
0.755481 0.655170i \(-0.227403\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16248.2i 0.548829i
\(958\) 0 0
\(959\) −6929.95 −0.233347
\(960\) 0 0
\(961\) −23561.8 −0.790902
\(962\) 0 0
\(963\) − 8509.03i − 0.284735i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 24108.2i − 0.801724i −0.916138 0.400862i \(-0.868711\pi\)
0.916138 0.400862i \(-0.131289\pi\)
\(968\) 0 0
\(969\) 25337.5 0.839999
\(970\) 0 0
\(971\) −41760.1 −1.38017 −0.690084 0.723729i \(-0.742427\pi\)
−0.690084 + 0.723729i \(0.742427\pi\)
\(972\) 0 0
\(973\) 57433.7i 1.89233i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4532.52i 0.148422i 0.997243 + 0.0742109i \(0.0236438\pi\)
−0.997243 + 0.0742109i \(0.976356\pi\)
\(978\) 0 0
\(979\) −34341.2 −1.12109
\(980\) 0 0
\(981\) −6194.83 −0.201616
\(982\) 0 0
\(983\) 48822.8i 1.58414i 0.610432 + 0.792068i \(0.290996\pi\)
−0.610432 + 0.792068i \(0.709004\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 33645.9i − 1.08507i
\(988\) 0 0
\(989\) 212.583 0.00683492
\(990\) 0 0
\(991\) −26937.6 −0.863473 −0.431737 0.902000i \(-0.642099\pi\)
−0.431737 + 0.902000i \(0.642099\pi\)
\(992\) 0 0
\(993\) 25103.0i 0.802236i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 9191.03i − 0.291959i −0.989288 0.145979i \(-0.953367\pi\)
0.989288 0.145979i \(-0.0466333\pi\)
\(998\) 0 0
\(999\) 10551.8 0.334177
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.4.f.j.49.4 4
3.2 odd 2 1800.4.f.z.649.4 4
4.3 odd 2 1200.4.f.x.49.1 4
5.2 odd 4 600.4.a.u.1.1 yes 2
5.3 odd 4 600.4.a.s.1.2 2
5.4 even 2 inner 600.4.f.j.49.1 4
15.2 even 4 1800.4.a.bm.1.1 2
15.8 even 4 1800.4.a.bo.1.2 2
15.14 odd 2 1800.4.f.z.649.1 4
20.3 even 4 1200.4.a.br.1.1 2
20.7 even 4 1200.4.a.bp.1.2 2
20.19 odd 2 1200.4.f.x.49.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.4.a.s.1.2 2 5.3 odd 4
600.4.a.u.1.1 yes 2 5.2 odd 4
600.4.f.j.49.1 4 5.4 even 2 inner
600.4.f.j.49.4 4 1.1 even 1 trivial
1200.4.a.bp.1.2 2 20.7 even 4
1200.4.a.br.1.1 2 20.3 even 4
1200.4.f.x.49.1 4 4.3 odd 2
1200.4.f.x.49.4 4 20.19 odd 2
1800.4.a.bm.1.1 2 15.2 even 4
1800.4.a.bo.1.2 2 15.8 even 4
1800.4.f.z.649.1 4 15.14 odd 2
1800.4.f.z.649.4 4 3.2 odd 2