Properties

Label 600.4.f.j.49.2
Level $600$
Weight $4$
Character 600.49
Analytic conductor $35.401$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,4,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-36,0,-32,0,0,0,0,0,0,0,420] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.4011460034\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 55x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-4.72015i\) of defining polynomial
Character \(\chi\) \(=\) 600.49
Dual form 600.4.f.j.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +19.8806i q^{7} -9.00000 q^{9} -70.6418 q^{11} -0.761226i q^{13} -108.403i q^{17} +125.881 q^{19} +59.6418 q^{21} +40.8806i q^{23} +27.0000i q^{27} +140.881 q^{29} +296.926 q^{31} +211.926i q^{33} +26.8061i q^{37} -2.28368 q^{39} -20.6418 q^{41} +32.5969i q^{43} -11.4326i q^{47} -52.2388 q^{49} -325.209 q^{51} +159.358i q^{53} -377.642i q^{57} +374.955 q^{59} +303.478 q^{61} -178.926i q^{63} -877.583i q^{67} +122.642 q^{69} +1159.54 q^{71} +120.716i q^{73} -1404.40i q^{77} +1248.66 q^{79} +81.0000 q^{81} +654.180i q^{83} -422.642i q^{87} -795.522 q^{89} +15.1336 q^{91} -890.777i q^{93} -850.910i q^{97} +635.777 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} - 32 q^{11} + 420 q^{19} - 12 q^{21} + 480 q^{29} + 436 q^{31} + 492 q^{39} + 168 q^{41} - 376 q^{49} - 48 q^{51} + 2168 q^{59} + 1548 q^{61} + 240 q^{69} + 2216 q^{71} + 2656 q^{79} + 324 q^{81}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 19.8806i 1.07345i 0.843757 + 0.536726i \(0.180339\pi\)
−0.843757 + 0.536726i \(0.819661\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −70.6418 −1.93630 −0.968151 0.250368i \(-0.919448\pi\)
−0.968151 + 0.250368i \(0.919448\pi\)
\(12\) 0 0
\(13\) − 0.761226i − 0.0162405i −0.999967 0.00812024i \(-0.997415\pi\)
0.999967 0.00812024i \(-0.00258478\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 108.403i − 1.54657i −0.634062 0.773283i \(-0.718613\pi\)
0.634062 0.773283i \(-0.281387\pi\)
\(18\) 0 0
\(19\) 125.881 1.51995 0.759974 0.649954i \(-0.225212\pi\)
0.759974 + 0.649954i \(0.225212\pi\)
\(20\) 0 0
\(21\) 59.6418 0.619758
\(22\) 0 0
\(23\) 40.8806i 0.370617i 0.982680 + 0.185309i \(0.0593285\pi\)
−0.982680 + 0.185309i \(0.940672\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 140.881 0.902099 0.451050 0.892499i \(-0.351050\pi\)
0.451050 + 0.892499i \(0.351050\pi\)
\(30\) 0 0
\(31\) 296.926 1.72030 0.860152 0.510039i \(-0.170369\pi\)
0.860152 + 0.510039i \(0.170369\pi\)
\(32\) 0 0
\(33\) 211.926i 1.11792i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 26.8061i 0.119105i 0.998225 + 0.0595527i \(0.0189674\pi\)
−0.998225 + 0.0595527i \(0.981033\pi\)
\(38\) 0 0
\(39\) −2.28368 −0.00937644
\(40\) 0 0
\(41\) −20.6418 −0.0786272 −0.0393136 0.999227i \(-0.512517\pi\)
−0.0393136 + 0.999227i \(0.512517\pi\)
\(42\) 0 0
\(43\) 32.5969i 0.115604i 0.998328 + 0.0578022i \(0.0184093\pi\)
−0.998328 + 0.0578022i \(0.981591\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 11.4326i − 0.0354813i −0.999843 0.0177407i \(-0.994353\pi\)
0.999843 0.0177407i \(-0.00564733\pi\)
\(48\) 0 0
\(49\) −52.2388 −0.152300
\(50\) 0 0
\(51\) −325.209 −0.892910
\(52\) 0 0
\(53\) 159.358i 0.413010i 0.978446 + 0.206505i \(0.0662090\pi\)
−0.978446 + 0.206505i \(0.933791\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 377.642i − 0.877542i
\(58\) 0 0
\(59\) 374.955 0.827373 0.413686 0.910419i \(-0.364241\pi\)
0.413686 + 0.910419i \(0.364241\pi\)
\(60\) 0 0
\(61\) 303.478 0.636989 0.318494 0.947925i \(-0.396823\pi\)
0.318494 + 0.947925i \(0.396823\pi\)
\(62\) 0 0
\(63\) − 178.926i − 0.357817i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 877.583i − 1.60021i −0.599863 0.800103i \(-0.704778\pi\)
0.599863 0.800103i \(-0.295222\pi\)
\(68\) 0 0
\(69\) 122.642 0.213976
\(70\) 0 0
\(71\) 1159.54 1.93819 0.969097 0.246679i \(-0.0793393\pi\)
0.969097 + 0.246679i \(0.0793393\pi\)
\(72\) 0 0
\(73\) 120.716i 0.193545i 0.995307 + 0.0967724i \(0.0308519\pi\)
−0.995307 + 0.0967724i \(0.969148\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1404.40i − 2.07853i
\(78\) 0 0
\(79\) 1248.66 1.77829 0.889145 0.457626i \(-0.151300\pi\)
0.889145 + 0.457626i \(0.151300\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 654.180i 0.865127i 0.901603 + 0.432564i \(0.142391\pi\)
−0.901603 + 0.432564i \(0.857609\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 422.642i − 0.520827i
\(88\) 0 0
\(89\) −795.522 −0.947474 −0.473737 0.880666i \(-0.657095\pi\)
−0.473737 + 0.880666i \(0.657095\pi\)
\(90\) 0 0
\(91\) 15.1336 0.0174334
\(92\) 0 0
\(93\) − 890.777i − 0.993217i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 850.910i − 0.890689i −0.895359 0.445345i \(-0.853081\pi\)
0.895359 0.445345i \(-0.146919\pi\)
\(98\) 0 0
\(99\) 635.777 0.645434
\(100\) 0 0
\(101\) −149.777 −0.147558 −0.0737788 0.997275i \(-0.523506\pi\)
−0.0737788 + 0.997275i \(0.523506\pi\)
\(102\) 0 0
\(103\) 1176.81i 1.12577i 0.826536 + 0.562884i \(0.190308\pi\)
−0.826536 + 0.562884i \(0.809692\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 402.552i − 0.363703i −0.983326 0.181851i \(-0.941791\pi\)
0.983326 0.181851i \(-0.0582089\pi\)
\(108\) 0 0
\(109\) −1650.31 −1.45020 −0.725098 0.688645i \(-0.758206\pi\)
−0.725098 + 0.688645i \(0.758206\pi\)
\(110\) 0 0
\(111\) 80.4184 0.0687655
\(112\) 0 0
\(113\) − 1353.13i − 1.12648i −0.826293 0.563240i \(-0.809555\pi\)
0.826293 0.563240i \(-0.190445\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.85103i 0.00541349i
\(118\) 0 0
\(119\) 2155.12 1.66016
\(120\) 0 0
\(121\) 3659.27 2.74926
\(122\) 0 0
\(123\) 61.9255i 0.0453954i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1836.21i 1.28297i 0.767135 + 0.641485i \(0.221682\pi\)
−0.767135 + 0.641485i \(0.778318\pi\)
\(128\) 0 0
\(129\) 97.7908 0.0667442
\(130\) 0 0
\(131\) −1111.98 −0.741638 −0.370819 0.928705i \(-0.620923\pi\)
−0.370819 + 0.928705i \(0.620923\pi\)
\(132\) 0 0
\(133\) 2502.58i 1.63159i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 567.284i − 0.353769i −0.984232 0.176884i \(-0.943398\pi\)
0.984232 0.176884i \(-0.0566019\pi\)
\(138\) 0 0
\(139\) −1968.87 −1.20142 −0.600709 0.799468i \(-0.705115\pi\)
−0.600709 + 0.799468i \(0.705115\pi\)
\(140\) 0 0
\(141\) −34.2979 −0.0204852
\(142\) 0 0
\(143\) 53.7744i 0.0314464i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 156.716i 0.0879302i
\(148\) 0 0
\(149\) 1810.87 0.995651 0.497826 0.867277i \(-0.334132\pi\)
0.497826 + 0.867277i \(0.334132\pi\)
\(150\) 0 0
\(151\) 266.746 0.143758 0.0718791 0.997413i \(-0.477100\pi\)
0.0718791 + 0.997413i \(0.477100\pi\)
\(152\) 0 0
\(153\) 975.628i 0.515522i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2993.33i − 1.52162i −0.648977 0.760808i \(-0.724803\pi\)
0.648977 0.760808i \(-0.275197\pi\)
\(158\) 0 0
\(159\) 478.074 0.238451
\(160\) 0 0
\(161\) −812.732 −0.397840
\(162\) 0 0
\(163\) 2356.36i 1.13230i 0.824304 + 0.566148i \(0.191567\pi\)
−0.824304 + 0.566148i \(0.808433\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3148.55i − 1.45894i −0.684015 0.729468i \(-0.739768\pi\)
0.684015 0.729468i \(-0.260232\pi\)
\(168\) 0 0
\(169\) 2196.42 0.999736
\(170\) 0 0
\(171\) −1132.93 −0.506649
\(172\) 0 0
\(173\) − 3747.12i − 1.64675i −0.567496 0.823376i \(-0.692088\pi\)
0.567496 0.823376i \(-0.307912\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 1124.87i − 0.477684i
\(178\) 0 0
\(179\) 2309.37 0.964305 0.482153 0.876087i \(-0.339855\pi\)
0.482153 + 0.876087i \(0.339855\pi\)
\(180\) 0 0
\(181\) 257.447 0.105723 0.0528615 0.998602i \(-0.483166\pi\)
0.0528615 + 0.998602i \(0.483166\pi\)
\(182\) 0 0
\(183\) − 910.433i − 0.367766i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7657.79i 2.99462i
\(188\) 0 0
\(189\) −536.777 −0.206586
\(190\) 0 0
\(191\) −4184.82 −1.58536 −0.792679 0.609640i \(-0.791314\pi\)
−0.792679 + 0.609640i \(0.791314\pi\)
\(192\) 0 0
\(193\) − 3636.79i − 1.35638i −0.734885 0.678192i \(-0.762764\pi\)
0.734885 0.678192i \(-0.237236\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3519.52i 1.27287i 0.771330 + 0.636436i \(0.219592\pi\)
−0.771330 + 0.636436i \(0.780408\pi\)
\(198\) 0 0
\(199\) 1937.28 0.690103 0.345051 0.938584i \(-0.387861\pi\)
0.345051 + 0.938584i \(0.387861\pi\)
\(200\) 0 0
\(201\) −2632.75 −0.923879
\(202\) 0 0
\(203\) 2800.79i 0.968360i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 367.926i − 0.123539i
\(208\) 0 0
\(209\) −8892.44 −2.94308
\(210\) 0 0
\(211\) 2928.63 0.955522 0.477761 0.878490i \(-0.341448\pi\)
0.477761 + 0.878490i \(0.341448\pi\)
\(212\) 0 0
\(213\) − 3478.61i − 1.11902i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5903.06i 1.84666i
\(218\) 0 0
\(219\) 362.149 0.111743
\(220\) 0 0
\(221\) −82.5192 −0.0251169
\(222\) 0 0
\(223\) 2637.07i 0.791890i 0.918274 + 0.395945i \(0.129583\pi\)
−0.918274 + 0.395945i \(0.870417\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3287.27i 0.961162i 0.876950 + 0.480581i \(0.159574\pi\)
−0.876950 + 0.480581i \(0.840426\pi\)
\(228\) 0 0
\(229\) −6382.02 −1.84164 −0.920820 0.389988i \(-0.872479\pi\)
−0.920820 + 0.389988i \(0.872479\pi\)
\(230\) 0 0
\(231\) −4213.21 −1.20004
\(232\) 0 0
\(233\) 2952.91i 0.830265i 0.909761 + 0.415133i \(0.136265\pi\)
−0.909761 + 0.415133i \(0.863735\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3745.97i − 1.02670i
\(238\) 0 0
\(239\) 1384.34 0.374668 0.187334 0.982296i \(-0.440015\pi\)
0.187334 + 0.982296i \(0.440015\pi\)
\(240\) 0 0
\(241\) 4236.82 1.13244 0.566219 0.824255i \(-0.308406\pi\)
0.566219 + 0.824255i \(0.308406\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 95.8236i − 0.0246847i
\(248\) 0 0
\(249\) 1962.54 0.499481
\(250\) 0 0
\(251\) −1861.22 −0.468045 −0.234023 0.972231i \(-0.575189\pi\)
−0.234023 + 0.972231i \(0.575189\pi\)
\(252\) 0 0
\(253\) − 2887.88i − 0.717627i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 347.251i 0.0842837i 0.999112 + 0.0421419i \(0.0134181\pi\)
−0.999112 + 0.0421419i \(0.986582\pi\)
\(258\) 0 0
\(259\) −532.922 −0.127854
\(260\) 0 0
\(261\) −1267.93 −0.300700
\(262\) 0 0
\(263\) − 1489.39i − 0.349200i −0.984639 0.174600i \(-0.944137\pi\)
0.984639 0.174600i \(-0.0558632\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2386.57i 0.547025i
\(268\) 0 0
\(269\) −1570.88 −0.356053 −0.178026 0.984026i \(-0.556971\pi\)
−0.178026 + 0.984026i \(0.556971\pi\)
\(270\) 0 0
\(271\) 3014.42 0.675693 0.337847 0.941201i \(-0.390301\pi\)
0.337847 + 0.941201i \(0.390301\pi\)
\(272\) 0 0
\(273\) − 45.4009i − 0.0100652i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2792.41i 0.605702i 0.953038 + 0.302851i \(0.0979384\pi\)
−0.953038 + 0.302851i \(0.902062\pi\)
\(278\) 0 0
\(279\) −2672.33 −0.573434
\(280\) 0 0
\(281\) −1745.81 −0.370626 −0.185313 0.982680i \(-0.559330\pi\)
−0.185313 + 0.982680i \(0.559330\pi\)
\(282\) 0 0
\(283\) − 2664.33i − 0.559639i −0.960053 0.279820i \(-0.909725\pi\)
0.960053 0.279820i \(-0.0902747\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 410.372i − 0.0844025i
\(288\) 0 0
\(289\) −6838.22 −1.39186
\(290\) 0 0
\(291\) −2552.73 −0.514240
\(292\) 0 0
\(293\) − 5927.79i − 1.18193i −0.806697 0.590965i \(-0.798747\pi\)
0.806697 0.590965i \(-0.201253\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1907.33i − 0.372641i
\(298\) 0 0
\(299\) 31.1194 0.00601900
\(300\) 0 0
\(301\) −648.047 −0.124096
\(302\) 0 0
\(303\) 449.330i 0.0851925i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4634.48i 0.861575i 0.902453 + 0.430788i \(0.141764\pi\)
−0.902453 + 0.430788i \(0.858236\pi\)
\(308\) 0 0
\(309\) 3530.42 0.649963
\(310\) 0 0
\(311\) 761.969 0.138930 0.0694651 0.997584i \(-0.477871\pi\)
0.0694651 + 0.997584i \(0.477871\pi\)
\(312\) 0 0
\(313\) 8734.32i 1.57729i 0.614847 + 0.788647i \(0.289218\pi\)
−0.614847 + 0.788647i \(0.710782\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4428.21i 0.784584i 0.919841 + 0.392292i \(0.128318\pi\)
−0.919841 + 0.392292i \(0.871682\pi\)
\(318\) 0 0
\(319\) −9952.07 −1.74674
\(320\) 0 0
\(321\) −1207.66 −0.209984
\(322\) 0 0
\(323\) − 13645.8i − 2.35070i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4950.94i 0.837271i
\(328\) 0 0
\(329\) 227.288 0.0380875
\(330\) 0 0
\(331\) −2239.68 −0.371915 −0.185957 0.982558i \(-0.559539\pi\)
−0.185957 + 0.982558i \(0.559539\pi\)
\(332\) 0 0
\(333\) − 241.255i − 0.0397018i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8459.21i 1.36737i 0.729779 + 0.683683i \(0.239623\pi\)
−0.729779 + 0.683683i \(0.760377\pi\)
\(338\) 0 0
\(339\) −4059.40 −0.650373
\(340\) 0 0
\(341\) −20975.4 −3.33103
\(342\) 0 0
\(343\) 5780.51i 0.909966i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9253.53i − 1.43157i −0.698320 0.715786i \(-0.746069\pi\)
0.698320 0.715786i \(-0.253931\pi\)
\(348\) 0 0
\(349\) 1630.53 0.250087 0.125044 0.992151i \(-0.460093\pi\)
0.125044 + 0.992151i \(0.460093\pi\)
\(350\) 0 0
\(351\) 20.5531 0.00312548
\(352\) 0 0
\(353\) − 8148.98i − 1.22869i −0.789039 0.614343i \(-0.789421\pi\)
0.789039 0.614343i \(-0.210579\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 6465.36i − 0.958496i
\(358\) 0 0
\(359\) 5850.67 0.860130 0.430065 0.902798i \(-0.358491\pi\)
0.430065 + 0.902798i \(0.358491\pi\)
\(360\) 0 0
\(361\) 8986.93 1.31024
\(362\) 0 0
\(363\) − 10977.8i − 1.58729i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7205.40i 1.02485i 0.858733 + 0.512424i \(0.171252\pi\)
−0.858733 + 0.512424i \(0.828748\pi\)
\(368\) 0 0
\(369\) 185.777 0.0262091
\(370\) 0 0
\(371\) −3168.14 −0.443346
\(372\) 0 0
\(373\) 8708.52i 1.20887i 0.796653 + 0.604437i \(0.206602\pi\)
−0.796653 + 0.604437i \(0.793398\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 107.242i − 0.0146505i
\(378\) 0 0
\(379\) 4153.83 0.562975 0.281488 0.959565i \(-0.409172\pi\)
0.281488 + 0.959565i \(0.409172\pi\)
\(380\) 0 0
\(381\) 5508.63 0.740724
\(382\) 0 0
\(383\) 10362.0i 1.38244i 0.722645 + 0.691219i \(0.242926\pi\)
−0.722645 + 0.691219i \(0.757074\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 293.372i − 0.0385348i
\(388\) 0 0
\(389\) 3056.19 0.398343 0.199171 0.979965i \(-0.436175\pi\)
0.199171 + 0.979965i \(0.436175\pi\)
\(390\) 0 0
\(391\) 4431.58 0.573184
\(392\) 0 0
\(393\) 3335.95i 0.428185i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 14305.4i − 1.80849i −0.427019 0.904243i \(-0.640436\pi\)
0.427019 0.904243i \(-0.359564\pi\)
\(398\) 0 0
\(399\) 7507.75 0.941999
\(400\) 0 0
\(401\) 11391.2 1.41858 0.709289 0.704917i \(-0.249016\pi\)
0.709289 + 0.704917i \(0.249016\pi\)
\(402\) 0 0
\(403\) − 226.027i − 0.0279385i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1893.63i − 0.230624i
\(408\) 0 0
\(409\) 5689.18 0.687804 0.343902 0.939006i \(-0.388251\pi\)
0.343902 + 0.939006i \(0.388251\pi\)
\(410\) 0 0
\(411\) −1701.85 −0.204248
\(412\) 0 0
\(413\) 7454.34i 0.888145i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5906.60i 0.693639i
\(418\) 0 0
\(419\) −2086.17 −0.243236 −0.121618 0.992577i \(-0.538808\pi\)
−0.121618 + 0.992577i \(0.538808\pi\)
\(420\) 0 0
\(421\) 661.557 0.0765851 0.0382926 0.999267i \(-0.487808\pi\)
0.0382926 + 0.999267i \(0.487808\pi\)
\(422\) 0 0
\(423\) 102.894i 0.0118271i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6033.32i 0.683777i
\(428\) 0 0
\(429\) 161.323 0.0181556
\(430\) 0 0
\(431\) 14508.1 1.62142 0.810709 0.585449i \(-0.199082\pi\)
0.810709 + 0.585449i \(0.199082\pi\)
\(432\) 0 0
\(433\) 11584.2i 1.28568i 0.766000 + 0.642840i \(0.222244\pi\)
−0.766000 + 0.642840i \(0.777756\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5146.08i 0.563319i
\(438\) 0 0
\(439\) −10554.6 −1.14748 −0.573740 0.819038i \(-0.694508\pi\)
−0.573740 + 0.819038i \(0.694508\pi\)
\(440\) 0 0
\(441\) 470.149 0.0507665
\(442\) 0 0
\(443\) 14791.1i 1.58634i 0.609001 + 0.793169i \(0.291571\pi\)
−0.609001 + 0.793169i \(0.708429\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 5432.60i − 0.574840i
\(448\) 0 0
\(449\) −540.276 −0.0567866 −0.0283933 0.999597i \(-0.509039\pi\)
−0.0283933 + 0.999597i \(0.509039\pi\)
\(450\) 0 0
\(451\) 1458.18 0.152246
\(452\) 0 0
\(453\) − 800.238i − 0.0829988i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 8022.12i − 0.821136i −0.911830 0.410568i \(-0.865330\pi\)
0.911830 0.410568i \(-0.134670\pi\)
\(458\) 0 0
\(459\) 2926.88 0.297637
\(460\) 0 0
\(461\) −11830.8 −1.19526 −0.597632 0.801771i \(-0.703891\pi\)
−0.597632 + 0.801771i \(0.703891\pi\)
\(462\) 0 0
\(463\) − 12268.5i − 1.23145i −0.787959 0.615727i \(-0.788862\pi\)
0.787959 0.615727i \(-0.211138\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 12567.2i − 1.24526i −0.782515 0.622632i \(-0.786063\pi\)
0.782515 0.622632i \(-0.213937\pi\)
\(468\) 0 0
\(469\) 17446.9 1.71774
\(470\) 0 0
\(471\) −8979.99 −0.878506
\(472\) 0 0
\(473\) − 2302.71i − 0.223845i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1434.22i − 0.137670i
\(478\) 0 0
\(479\) 5686.36 0.542414 0.271207 0.962521i \(-0.412577\pi\)
0.271207 + 0.962521i \(0.412577\pi\)
\(480\) 0 0
\(481\) 20.4055 0.00193433
\(482\) 0 0
\(483\) 2438.19i 0.229693i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 9429.19i − 0.877367i −0.898642 0.438683i \(-0.855445\pi\)
0.898642 0.438683i \(-0.144555\pi\)
\(488\) 0 0
\(489\) 7069.07 0.653731
\(490\) 0 0
\(491\) 19869.3 1.82625 0.913126 0.407677i \(-0.133661\pi\)
0.913126 + 0.407677i \(0.133661\pi\)
\(492\) 0 0
\(493\) − 15271.9i − 1.39515i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23052.3i 2.08056i
\(498\) 0 0
\(499\) −4160.66 −0.373260 −0.186630 0.982430i \(-0.559757\pi\)
−0.186630 + 0.982430i \(0.559757\pi\)
\(500\) 0 0
\(501\) −9445.66 −0.842318
\(502\) 0 0
\(503\) − 9817.15i − 0.870229i −0.900375 0.435114i \(-0.856708\pi\)
0.900375 0.435114i \(-0.143292\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6589.26i − 0.577198i
\(508\) 0 0
\(509\) 8709.02 0.758390 0.379195 0.925317i \(-0.376201\pi\)
0.379195 + 0.925317i \(0.376201\pi\)
\(510\) 0 0
\(511\) −2399.91 −0.207761
\(512\) 0 0
\(513\) 3398.78i 0.292514i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 807.623i 0.0687025i
\(518\) 0 0
\(519\) −11241.4 −0.950753
\(520\) 0 0
\(521\) −1711.84 −0.143948 −0.0719742 0.997406i \(-0.522930\pi\)
−0.0719742 + 0.997406i \(0.522930\pi\)
\(522\) 0 0
\(523\) − 1901.43i − 0.158975i −0.996836 0.0794875i \(-0.974672\pi\)
0.996836 0.0794875i \(-0.0253284\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 32187.6i − 2.66056i
\(528\) 0 0
\(529\) 10495.8 0.862643
\(530\) 0 0
\(531\) −3374.60 −0.275791
\(532\) 0 0
\(533\) 15.7131i 0.00127694i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 6928.12i − 0.556742i
\(538\) 0 0
\(539\) 3690.24 0.294898
\(540\) 0 0
\(541\) 10469.9 0.832043 0.416021 0.909355i \(-0.363424\pi\)
0.416021 + 0.909355i \(0.363424\pi\)
\(542\) 0 0
\(543\) − 772.341i − 0.0610392i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 23357.6i − 1.82578i −0.408207 0.912889i \(-0.633846\pi\)
0.408207 0.912889i \(-0.366154\pi\)
\(548\) 0 0
\(549\) −2731.30 −0.212330
\(550\) 0 0
\(551\) 17734.1 1.37114
\(552\) 0 0
\(553\) 24824.1i 1.90891i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7925.47i − 0.602896i −0.953483 0.301448i \(-0.902530\pi\)
0.953483 0.301448i \(-0.0974699\pi\)
\(558\) 0 0
\(559\) 24.8136 0.00187747
\(560\) 0 0
\(561\) 22973.4 1.72894
\(562\) 0 0
\(563\) 11846.1i 0.886770i 0.896331 + 0.443385i \(0.146223\pi\)
−0.896331 + 0.443385i \(0.853777\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1610.33i 0.119272i
\(568\) 0 0
\(569\) −5807.33 −0.427866 −0.213933 0.976848i \(-0.568627\pi\)
−0.213933 + 0.976848i \(0.568627\pi\)
\(570\) 0 0
\(571\) −2520.62 −0.184737 −0.0923685 0.995725i \(-0.529444\pi\)
−0.0923685 + 0.995725i \(0.529444\pi\)
\(572\) 0 0
\(573\) 12554.5i 0.915306i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 8634.70i − 0.622994i −0.950247 0.311497i \(-0.899170\pi\)
0.950247 0.311497i \(-0.100830\pi\)
\(578\) 0 0
\(579\) −10910.4 −0.783109
\(580\) 0 0
\(581\) −13005.5 −0.928672
\(582\) 0 0
\(583\) − 11257.4i − 0.799712i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 22165.7i − 1.55856i −0.626674 0.779282i \(-0.715584\pi\)
0.626674 0.779282i \(-0.284416\pi\)
\(588\) 0 0
\(589\) 37377.2 2.61477
\(590\) 0 0
\(591\) 10558.6 0.734893
\(592\) 0 0
\(593\) 17874.0i 1.23777i 0.785483 + 0.618883i \(0.212415\pi\)
−0.785483 + 0.618883i \(0.787585\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 5811.85i − 0.398431i
\(598\) 0 0
\(599\) −11051.4 −0.753839 −0.376919 0.926246i \(-0.623017\pi\)
−0.376919 + 0.926246i \(0.623017\pi\)
\(600\) 0 0
\(601\) 17452.3 1.18452 0.592258 0.805749i \(-0.298237\pi\)
0.592258 + 0.805749i \(0.298237\pi\)
\(602\) 0 0
\(603\) 7898.24i 0.533402i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4557.98i 0.304782i 0.988320 + 0.152391i \(0.0486973\pi\)
−0.988320 + 0.152391i \(0.951303\pi\)
\(608\) 0 0
\(609\) 8402.38 0.559083
\(610\) 0 0
\(611\) −8.70283 −0.000576233 0
\(612\) 0 0
\(613\) − 26741.1i − 1.76193i −0.473185 0.880963i \(-0.656896\pi\)
0.473185 0.880963i \(-0.343104\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6569.62i 0.428659i 0.976761 + 0.214330i \(0.0687567\pi\)
−0.976761 + 0.214330i \(0.931243\pi\)
\(618\) 0 0
\(619\) −12947.7 −0.840729 −0.420365 0.907355i \(-0.638098\pi\)
−0.420365 + 0.907355i \(0.638098\pi\)
\(620\) 0 0
\(621\) −1103.78 −0.0713253
\(622\) 0 0
\(623\) − 15815.5i − 1.01707i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 26677.3i 1.69919i
\(628\) 0 0
\(629\) 2905.87 0.184204
\(630\) 0 0
\(631\) −15799.6 −0.996785 −0.498393 0.866951i \(-0.666076\pi\)
−0.498393 + 0.866951i \(0.666076\pi\)
\(632\) 0 0
\(633\) − 8785.89i − 0.551671i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 39.7655i 0.00247342i
\(638\) 0 0
\(639\) −10435.8 −0.646065
\(640\) 0 0
\(641\) 7372.39 0.454278 0.227139 0.973862i \(-0.427063\pi\)
0.227139 + 0.973862i \(0.427063\pi\)
\(642\) 0 0
\(643\) 3238.37i 0.198614i 0.995057 + 0.0993070i \(0.0316626\pi\)
−0.995057 + 0.0993070i \(0.968337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23260.8i 1.41341i 0.707507 + 0.706707i \(0.249820\pi\)
−0.707507 + 0.706707i \(0.750180\pi\)
\(648\) 0 0
\(649\) −26487.5 −1.60204
\(650\) 0 0
\(651\) 17709.2 1.06617
\(652\) 0 0
\(653\) − 20129.6i − 1.20633i −0.797618 0.603163i \(-0.793907\pi\)
0.797618 0.603163i \(-0.206093\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1086.45i − 0.0645150i
\(658\) 0 0
\(659\) −12381.4 −0.731882 −0.365941 0.930638i \(-0.619253\pi\)
−0.365941 + 0.930638i \(0.619253\pi\)
\(660\) 0 0
\(661\) −24627.1 −1.44914 −0.724572 0.689199i \(-0.757963\pi\)
−0.724572 + 0.689199i \(0.757963\pi\)
\(662\) 0 0
\(663\) 247.558i 0.0145013i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5759.29i 0.334333i
\(668\) 0 0
\(669\) 7911.22 0.457198
\(670\) 0 0
\(671\) −21438.2 −1.23340
\(672\) 0 0
\(673\) 5211.65i 0.298506i 0.988799 + 0.149253i \(0.0476868\pi\)
−0.988799 + 0.149253i \(0.952313\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 18402.6i − 1.04471i −0.852728 0.522354i \(-0.825054\pi\)
0.852728 0.522354i \(-0.174946\pi\)
\(678\) 0 0
\(679\) 16916.6 0.956112
\(680\) 0 0
\(681\) 9861.81 0.554927
\(682\) 0 0
\(683\) 30347.2i 1.70015i 0.526659 + 0.850076i \(0.323444\pi\)
−0.526659 + 0.850076i \(0.676556\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 19146.0i 1.06327i
\(688\) 0 0
\(689\) 121.308 0.00670748
\(690\) 0 0
\(691\) 18853.1 1.03792 0.518961 0.854798i \(-0.326319\pi\)
0.518961 + 0.854798i \(0.326319\pi\)
\(692\) 0 0
\(693\) 12639.6i 0.692842i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2237.64i 0.121602i
\(698\) 0 0
\(699\) 8858.74 0.479354
\(700\) 0 0
\(701\) 11008.1 0.593109 0.296555 0.955016i \(-0.404162\pi\)
0.296555 + 0.955016i \(0.404162\pi\)
\(702\) 0 0
\(703\) 3374.37i 0.181034i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 2977.65i − 0.158396i
\(708\) 0 0
\(709\) −18670.6 −0.988981 −0.494491 0.869183i \(-0.664645\pi\)
−0.494491 + 0.869183i \(0.664645\pi\)
\(710\) 0 0
\(711\) −11237.9 −0.592763
\(712\) 0 0
\(713\) 12138.5i 0.637574i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 4153.03i − 0.216315i
\(718\) 0 0
\(719\) 26208.7 1.35941 0.679707 0.733484i \(-0.262107\pi\)
0.679707 + 0.733484i \(0.262107\pi\)
\(720\) 0 0
\(721\) −23395.6 −1.20846
\(722\) 0 0
\(723\) − 12710.5i − 0.653813i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 24977.6i − 1.27424i −0.770767 0.637118i \(-0.780127\pi\)
0.770767 0.637118i \(-0.219873\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 3533.61 0.178790
\(732\) 0 0
\(733\) − 1491.96i − 0.0751800i −0.999293 0.0375900i \(-0.988032\pi\)
0.999293 0.0375900i \(-0.0119681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 61994.1i 3.09848i
\(738\) 0 0
\(739\) −5276.36 −0.262644 −0.131322 0.991340i \(-0.541922\pi\)
−0.131322 + 0.991340i \(0.541922\pi\)
\(740\) 0 0
\(741\) −287.471 −0.0142517
\(742\) 0 0
\(743\) − 23611.8i − 1.16586i −0.812522 0.582930i \(-0.801906\pi\)
0.812522 0.582930i \(-0.198094\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 5887.62i − 0.288376i
\(748\) 0 0
\(749\) 8002.98 0.390417
\(750\) 0 0
\(751\) −31848.5 −1.54749 −0.773747 0.633494i \(-0.781620\pi\)
−0.773747 + 0.633494i \(0.781620\pi\)
\(752\) 0 0
\(753\) 5583.67i 0.270226i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 19974.7i − 0.959041i −0.877531 0.479521i \(-0.840811\pi\)
0.877531 0.479521i \(-0.159189\pi\)
\(758\) 0 0
\(759\) −8663.65 −0.414322
\(760\) 0 0
\(761\) 27224.0 1.29680 0.648402 0.761298i \(-0.275438\pi\)
0.648402 + 0.761298i \(0.275438\pi\)
\(762\) 0 0
\(763\) − 32809.3i − 1.55672i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 285.426i − 0.0134369i
\(768\) 0 0
\(769\) 29987.8 1.40623 0.703113 0.711078i \(-0.251793\pi\)
0.703113 + 0.711078i \(0.251793\pi\)
\(770\) 0 0
\(771\) 1041.75 0.0486612
\(772\) 0 0
\(773\) 2856.40i 0.132908i 0.997790 + 0.0664538i \(0.0211685\pi\)
−0.997790 + 0.0664538i \(0.978831\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1598.77i 0.0738165i
\(778\) 0 0
\(779\) −2598.41 −0.119509
\(780\) 0 0
\(781\) −81911.9 −3.75293
\(782\) 0 0
\(783\) 3803.78i 0.173609i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 16704.1i − 0.756590i −0.925685 0.378295i \(-0.876511\pi\)
0.925685 0.378295i \(-0.123489\pi\)
\(788\) 0 0
\(789\) −4468.16 −0.201611
\(790\) 0 0
\(791\) 26901.1 1.20922
\(792\) 0 0
\(793\) − 231.015i − 0.0103450i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33709.4i 1.49818i 0.662468 + 0.749090i \(0.269509\pi\)
−0.662468 + 0.749090i \(0.730491\pi\)
\(798\) 0 0
\(799\) −1239.33 −0.0548742
\(800\) 0 0
\(801\) 7159.70 0.315825
\(802\) 0 0
\(803\) − 8527.62i − 0.374761i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4712.64i 0.205567i
\(808\) 0 0
\(809\) −21582.4 −0.937944 −0.468972 0.883213i \(-0.655375\pi\)
−0.468972 + 0.883213i \(0.655375\pi\)
\(810\) 0 0
\(811\) −40451.0 −1.75145 −0.875726 0.482809i \(-0.839616\pi\)
−0.875726 + 0.482809i \(0.839616\pi\)
\(812\) 0 0
\(813\) − 9043.26i − 0.390112i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4103.32i 0.175712i
\(818\) 0 0
\(819\) −136.203 −0.00581112
\(820\) 0 0
\(821\) −2857.45 −0.121468 −0.0607342 0.998154i \(-0.519344\pi\)
−0.0607342 + 0.998154i \(0.519344\pi\)
\(822\) 0 0
\(823\) 15150.8i 0.641707i 0.947129 + 0.320853i \(0.103970\pi\)
−0.947129 + 0.320853i \(0.896030\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12171.5i 0.511784i 0.966705 + 0.255892i \(0.0823692\pi\)
−0.966705 + 0.255892i \(0.917631\pi\)
\(828\) 0 0
\(829\) 13543.0 0.567392 0.283696 0.958914i \(-0.408439\pi\)
0.283696 + 0.958914i \(0.408439\pi\)
\(830\) 0 0
\(831\) 8377.22 0.349702
\(832\) 0 0
\(833\) 5662.84i 0.235541i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8016.99i 0.331072i
\(838\) 0 0
\(839\) −25376.2 −1.04420 −0.522101 0.852884i \(-0.674851\pi\)
−0.522101 + 0.852884i \(0.674851\pi\)
\(840\) 0 0
\(841\) −4541.65 −0.186217
\(842\) 0 0
\(843\) 5237.42i 0.213981i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 72748.5i 2.95120i
\(848\) 0 0
\(849\) −7992.99 −0.323108
\(850\) 0 0
\(851\) −1095.85 −0.0441425
\(852\) 0 0
\(853\) − 10225.0i − 0.410431i −0.978717 0.205215i \(-0.934211\pi\)
0.978717 0.205215i \(-0.0657895\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35735.9i 1.42440i 0.701975 + 0.712202i \(0.252302\pi\)
−0.701975 + 0.712202i \(0.747698\pi\)
\(858\) 0 0
\(859\) 3972.20 0.157776 0.0788881 0.996883i \(-0.474863\pi\)
0.0788881 + 0.996883i \(0.474863\pi\)
\(860\) 0 0
\(861\) −1231.12 −0.0487298
\(862\) 0 0
\(863\) 22682.0i 0.894673i 0.894366 + 0.447337i \(0.147627\pi\)
−0.894366 + 0.447337i \(0.852373\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 20514.7i 0.803593i
\(868\) 0 0
\(869\) −88207.4 −3.44331
\(870\) 0 0
\(871\) −668.039 −0.0259881
\(872\) 0 0
\(873\) 7658.19i 0.296896i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 12622.0i − 0.485993i −0.970027 0.242997i \(-0.921870\pi\)
0.970027 0.242997i \(-0.0781304\pi\)
\(878\) 0 0
\(879\) −17783.4 −0.682387
\(880\) 0 0
\(881\) −5343.08 −0.204328 −0.102164 0.994768i \(-0.532577\pi\)
−0.102164 + 0.994768i \(0.532577\pi\)
\(882\) 0 0
\(883\) − 21649.7i − 0.825110i −0.910933 0.412555i \(-0.864637\pi\)
0.910933 0.412555i \(-0.135363\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30808.6i 1.16624i 0.812388 + 0.583118i \(0.198167\pi\)
−0.812388 + 0.583118i \(0.801833\pi\)
\(888\) 0 0
\(889\) −36505.0 −1.37721
\(890\) 0 0
\(891\) −5721.99 −0.215145
\(892\) 0 0
\(893\) − 1439.15i − 0.0539297i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 93.3582i − 0.00347507i
\(898\) 0 0
\(899\) 41831.0 1.55188
\(900\) 0 0
\(901\) 17274.9 0.638747
\(902\) 0 0
\(903\) 1944.14i 0.0716467i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26499.7i 0.970131i 0.874478 + 0.485065i \(0.161204\pi\)
−0.874478 + 0.485065i \(0.838796\pi\)
\(908\) 0 0
\(909\) 1347.99 0.0491859
\(910\) 0 0
\(911\) 25861.3 0.940532 0.470266 0.882525i \(-0.344158\pi\)
0.470266 + 0.882525i \(0.344158\pi\)
\(912\) 0 0
\(913\) − 46212.5i − 1.67515i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 22106.9i − 0.796113i
\(918\) 0 0
\(919\) −10296.7 −0.369595 −0.184798 0.982777i \(-0.559163\pi\)
−0.184798 + 0.982777i \(0.559163\pi\)
\(920\) 0 0
\(921\) 13903.4 0.497431
\(922\) 0 0
\(923\) − 882.670i − 0.0314772i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 10591.3i − 0.375256i
\(928\) 0 0
\(929\) −271.470 −0.00958734 −0.00479367 0.999989i \(-0.501526\pi\)
−0.00479367 + 0.999989i \(0.501526\pi\)
\(930\) 0 0
\(931\) −6575.85 −0.231487
\(932\) 0 0
\(933\) − 2285.91i − 0.0802114i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 8739.10i − 0.304689i −0.988327 0.152345i \(-0.951318\pi\)
0.988327 0.152345i \(-0.0486824\pi\)
\(938\) 0 0
\(939\) 26202.9 0.910651
\(940\) 0 0
\(941\) −55104.2 −1.90897 −0.954487 0.298252i \(-0.903597\pi\)
−0.954487 + 0.298252i \(0.903597\pi\)
\(942\) 0 0
\(943\) − 843.851i − 0.0291406i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 20552.8i − 0.705256i −0.935764 0.352628i \(-0.885288\pi\)
0.935764 0.352628i \(-0.114712\pi\)
\(948\) 0 0
\(949\) 91.8924 0.00314326
\(950\) 0 0
\(951\) 13284.6 0.452980
\(952\) 0 0
\(953\) 5642.08i 0.191778i 0.995392 + 0.0958892i \(0.0305694\pi\)
−0.995392 + 0.0958892i \(0.969431\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 29856.2i 1.00848i
\(958\) 0 0
\(959\) 11277.9 0.379754
\(960\) 0 0
\(961\) 58373.8 1.95944
\(962\) 0 0
\(963\) 3622.97i 0.121234i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 21996.2i − 0.731489i −0.930715 0.365745i \(-0.880814\pi\)
0.930715 0.365745i \(-0.119186\pi\)
\(968\) 0 0
\(969\) −40937.5 −1.35718
\(970\) 0 0
\(971\) −43179.9 −1.42710 −0.713548 0.700606i \(-0.752913\pi\)
−0.713548 + 0.700606i \(0.752913\pi\)
\(972\) 0 0
\(973\) − 39142.3i − 1.28967i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 50887.5i − 1.66636i −0.553001 0.833181i \(-0.686517\pi\)
0.553001 0.833181i \(-0.313483\pi\)
\(978\) 0 0
\(979\) 56197.2 1.83460
\(980\) 0 0
\(981\) 14852.8 0.483399
\(982\) 0 0
\(983\) 13150.8i 0.426700i 0.976976 + 0.213350i \(0.0684375\pi\)
−0.976976 + 0.213350i \(0.931562\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 681.864i − 0.0219898i
\(988\) 0 0
\(989\) −1332.58 −0.0428450
\(990\) 0 0
\(991\) −49196.4 −1.57697 −0.788483 0.615056i \(-0.789133\pi\)
−0.788483 + 0.615056i \(0.789133\pi\)
\(992\) 0 0
\(993\) 6719.03i 0.214725i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 39419.0i − 1.25217i −0.779755 0.626085i \(-0.784656\pi\)
0.779755 0.626085i \(-0.215344\pi\)
\(998\) 0 0
\(999\) −723.766 −0.0229218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.4.f.j.49.2 4
3.2 odd 2 1800.4.f.z.649.3 4
4.3 odd 2 1200.4.f.x.49.3 4
5.2 odd 4 600.4.a.s.1.1 2
5.3 odd 4 600.4.a.u.1.2 yes 2
5.4 even 2 inner 600.4.f.j.49.3 4
15.2 even 4 1800.4.a.bo.1.1 2
15.8 even 4 1800.4.a.bm.1.2 2
15.14 odd 2 1800.4.f.z.649.2 4
20.3 even 4 1200.4.a.bp.1.1 2
20.7 even 4 1200.4.a.br.1.2 2
20.19 odd 2 1200.4.f.x.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.4.a.s.1.1 2 5.2 odd 4
600.4.a.u.1.2 yes 2 5.3 odd 4
600.4.f.j.49.2 4 1.1 even 1 trivial
600.4.f.j.49.3 4 5.4 even 2 inner
1200.4.a.bp.1.1 2 20.3 even 4
1200.4.a.br.1.2 2 20.7 even 4
1200.4.f.x.49.2 4 20.19 odd 2
1200.4.f.x.49.3 4 4.3 odd 2
1800.4.a.bm.1.2 2 15.8 even 4
1800.4.a.bo.1.1 2 15.2 even 4
1800.4.f.z.649.2 4 15.14 odd 2
1800.4.f.z.649.3 4 3.2 odd 2