Properties

Label 600.4.f
Level $600$
Weight $4$
Character orbit 600.f
Rep. character $\chi_{600}(49,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $11$
Sturm bound $480$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(480\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(600, [\chi])\).

Total New Old
Modular forms 384 26 358
Cusp forms 336 26 310
Eisenstein series 48 0 48

Trace form

\( 26 q - 234 q^{9} + O(q^{10}) \) \( 26 q - 234 q^{9} + 56 q^{11} - 92 q^{19} - 84 q^{21} + 556 q^{29} + 492 q^{31} - 24 q^{39} - 1012 q^{41} + 42 q^{49} + 612 q^{51} + 440 q^{59} - 136 q^{61} + 552 q^{69} + 1536 q^{71} - 592 q^{79} + 2106 q^{81} - 5340 q^{89} + 1484 q^{91} - 504 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
600.4.f.a 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+20iq^{7}-9q^{9}-56q^{11}+\cdots\)
600.4.f.b 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 24.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+24iq^{7}-9q^{9}-28q^{11}+\cdots\)
600.4.f.c 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3iq^{3}+2^{4}iq^{7}-9q^{9}-28q^{11}+\cdots\)
600.4.f.d 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}-9q^{9}+4q^{11}-54iq^{13}+\cdots\)
600.4.f.e 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 600.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3iq^{3}+5iq^{7}-9q^{9}+14q^{11}+\cdots\)
600.4.f.f 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3iq^{3}+20iq^{7}-9q^{9}+2^{4}q^{11}+\cdots\)
600.4.f.g 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3iq^{3}+8iq^{7}-9q^{9}+20q^{11}+\cdots\)
600.4.f.h 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 600.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+19iq^{7}-9q^{9}+22q^{11}+\cdots\)
600.4.f.i 600.f 5.b $2$ $35.401$ \(\Q(\sqrt{-1}) \) None 120.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+4iq^{7}-9q^{9}+72q^{11}+\cdots\)
600.4.f.j 600.f 5.b $4$ $35.401$ \(\Q(i, \sqrt{109})\) None 600.4.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{7}-9q^{9}+(-8+\cdots)q^{11}+\cdots\)
600.4.f.k 600.f 5.b $4$ $35.401$ \(\Q(i, \sqrt{181})\) None 600.4.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(-3\beta _{1}+\beta _{2})q^{7}-9q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(600, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)