Properties

Label 600.4.a.u.1.2
Level $600$
Weight $4$
Character 600.1
Self dual yes
Analytic conductor $35.401$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,4,Mod(1,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,0,0,-2,0,18,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.4011460034\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.72015\) of defining polynomial
Character \(\chi\) \(=\) 600.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +19.8806 q^{7} +9.00000 q^{9} -70.6418 q^{11} +0.761226 q^{13} -108.403 q^{17} -125.881 q^{19} +59.6418 q^{21} -40.8806 q^{23} +27.0000 q^{27} -140.881 q^{29} +296.926 q^{31} -211.926 q^{33} +26.8061 q^{37} +2.28368 q^{39} -20.6418 q^{41} -32.5969 q^{43} -11.4326 q^{47} +52.2388 q^{49} -325.209 q^{51} -159.358 q^{53} -377.642 q^{57} -374.955 q^{59} +303.478 q^{61} +178.926 q^{63} -877.583 q^{67} -122.642 q^{69} +1159.54 q^{71} -120.716 q^{73} -1404.40 q^{77} -1248.66 q^{79} +81.0000 q^{81} -654.180 q^{83} -422.642 q^{87} +795.522 q^{89} +15.1336 q^{91} +890.777 q^{93} -850.910 q^{97} -635.777 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 2 q^{7} + 18 q^{9} - 16 q^{11} - 82 q^{13} - 8 q^{17} - 210 q^{19} - 6 q^{21} - 40 q^{23} + 54 q^{27} - 240 q^{29} + 218 q^{31} - 48 q^{33} - 364 q^{37} - 246 q^{39} + 84 q^{41} - 274 q^{43}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 19.8806 1.07345 0.536726 0.843757i \(-0.319661\pi\)
0.536726 + 0.843757i \(0.319661\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −70.6418 −1.93630 −0.968151 0.250368i \(-0.919448\pi\)
−0.968151 + 0.250368i \(0.919448\pi\)
\(12\) 0 0
\(13\) 0.761226 0.0162405 0.00812024 0.999967i \(-0.497415\pi\)
0.00812024 + 0.999967i \(0.497415\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −108.403 −1.54657 −0.773283 0.634062i \(-0.781387\pi\)
−0.773283 + 0.634062i \(0.781387\pi\)
\(18\) 0 0
\(19\) −125.881 −1.51995 −0.759974 0.649954i \(-0.774788\pi\)
−0.759974 + 0.649954i \(0.774788\pi\)
\(20\) 0 0
\(21\) 59.6418 0.619758
\(22\) 0 0
\(23\) −40.8806 −0.370617 −0.185309 0.982680i \(-0.559328\pi\)
−0.185309 + 0.982680i \(0.559328\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −140.881 −0.902099 −0.451050 0.892499i \(-0.648950\pi\)
−0.451050 + 0.892499i \(0.648950\pi\)
\(30\) 0 0
\(31\) 296.926 1.72030 0.860152 0.510039i \(-0.170369\pi\)
0.860152 + 0.510039i \(0.170369\pi\)
\(32\) 0 0
\(33\) −211.926 −1.11792
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 26.8061 0.119105 0.0595527 0.998225i \(-0.481033\pi\)
0.0595527 + 0.998225i \(0.481033\pi\)
\(38\) 0 0
\(39\) 2.28368 0.00937644
\(40\) 0 0
\(41\) −20.6418 −0.0786272 −0.0393136 0.999227i \(-0.512517\pi\)
−0.0393136 + 0.999227i \(0.512517\pi\)
\(42\) 0 0
\(43\) −32.5969 −0.115604 −0.0578022 0.998328i \(-0.518409\pi\)
−0.0578022 + 0.998328i \(0.518409\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.4326 −0.0354813 −0.0177407 0.999843i \(-0.505647\pi\)
−0.0177407 + 0.999843i \(0.505647\pi\)
\(48\) 0 0
\(49\) 52.2388 0.152300
\(50\) 0 0
\(51\) −325.209 −0.892910
\(52\) 0 0
\(53\) −159.358 −0.413010 −0.206505 0.978446i \(-0.566209\pi\)
−0.206505 + 0.978446i \(0.566209\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −377.642 −0.877542
\(58\) 0 0
\(59\) −374.955 −0.827373 −0.413686 0.910419i \(-0.635759\pi\)
−0.413686 + 0.910419i \(0.635759\pi\)
\(60\) 0 0
\(61\) 303.478 0.636989 0.318494 0.947925i \(-0.396823\pi\)
0.318494 + 0.947925i \(0.396823\pi\)
\(62\) 0 0
\(63\) 178.926 0.357817
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −877.583 −1.60021 −0.800103 0.599863i \(-0.795222\pi\)
−0.800103 + 0.599863i \(0.795222\pi\)
\(68\) 0 0
\(69\) −122.642 −0.213976
\(70\) 0 0
\(71\) 1159.54 1.93819 0.969097 0.246679i \(-0.0793393\pi\)
0.969097 + 0.246679i \(0.0793393\pi\)
\(72\) 0 0
\(73\) −120.716 −0.193545 −0.0967724 0.995307i \(-0.530852\pi\)
−0.0967724 + 0.995307i \(0.530852\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1404.40 −2.07853
\(78\) 0 0
\(79\) −1248.66 −1.77829 −0.889145 0.457626i \(-0.848700\pi\)
−0.889145 + 0.457626i \(0.848700\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −654.180 −0.865127 −0.432564 0.901603i \(-0.642391\pi\)
−0.432564 + 0.901603i \(0.642391\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −422.642 −0.520827
\(88\) 0 0
\(89\) 795.522 0.947474 0.473737 0.880666i \(-0.342905\pi\)
0.473737 + 0.880666i \(0.342905\pi\)
\(90\) 0 0
\(91\) 15.1336 0.0174334
\(92\) 0 0
\(93\) 890.777 0.993217
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −850.910 −0.890689 −0.445345 0.895359i \(-0.646919\pi\)
−0.445345 + 0.895359i \(0.646919\pi\)
\(98\) 0 0
\(99\) −635.777 −0.645434
\(100\) 0 0
\(101\) −149.777 −0.147558 −0.0737788 0.997275i \(-0.523506\pi\)
−0.0737788 + 0.997275i \(0.523506\pi\)
\(102\) 0 0
\(103\) −1176.81 −1.12577 −0.562884 0.826536i \(-0.690308\pi\)
−0.562884 + 0.826536i \(0.690308\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −402.552 −0.363703 −0.181851 0.983326i \(-0.558209\pi\)
−0.181851 + 0.983326i \(0.558209\pi\)
\(108\) 0 0
\(109\) 1650.31 1.45020 0.725098 0.688645i \(-0.241794\pi\)
0.725098 + 0.688645i \(0.241794\pi\)
\(110\) 0 0
\(111\) 80.4184 0.0687655
\(112\) 0 0
\(113\) 1353.13 1.12648 0.563240 0.826293i \(-0.309555\pi\)
0.563240 + 0.826293i \(0.309555\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.85103 0.00541349
\(118\) 0 0
\(119\) −2155.12 −1.66016
\(120\) 0 0
\(121\) 3659.27 2.74926
\(122\) 0 0
\(123\) −61.9255 −0.0453954
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1836.21 1.28297 0.641485 0.767135i \(-0.278318\pi\)
0.641485 + 0.767135i \(0.278318\pi\)
\(128\) 0 0
\(129\) −97.7908 −0.0667442
\(130\) 0 0
\(131\) −1111.98 −0.741638 −0.370819 0.928705i \(-0.620923\pi\)
−0.370819 + 0.928705i \(0.620923\pi\)
\(132\) 0 0
\(133\) −2502.58 −1.63159
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −567.284 −0.353769 −0.176884 0.984232i \(-0.556602\pi\)
−0.176884 + 0.984232i \(0.556602\pi\)
\(138\) 0 0
\(139\) 1968.87 1.20142 0.600709 0.799468i \(-0.294885\pi\)
0.600709 + 0.799468i \(0.294885\pi\)
\(140\) 0 0
\(141\) −34.2979 −0.0204852
\(142\) 0 0
\(143\) −53.7744 −0.0314464
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 156.716 0.0879302
\(148\) 0 0
\(149\) −1810.87 −0.995651 −0.497826 0.867277i \(-0.665868\pi\)
−0.497826 + 0.867277i \(0.665868\pi\)
\(150\) 0 0
\(151\) 266.746 0.143758 0.0718791 0.997413i \(-0.477100\pi\)
0.0718791 + 0.997413i \(0.477100\pi\)
\(152\) 0 0
\(153\) −975.628 −0.515522
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2993.33 −1.52162 −0.760808 0.648977i \(-0.775197\pi\)
−0.760808 + 0.648977i \(0.775197\pi\)
\(158\) 0 0
\(159\) −478.074 −0.238451
\(160\) 0 0
\(161\) −812.732 −0.397840
\(162\) 0 0
\(163\) −2356.36 −1.13230 −0.566148 0.824304i \(-0.691567\pi\)
−0.566148 + 0.824304i \(0.691567\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3148.55 −1.45894 −0.729468 0.684015i \(-0.760232\pi\)
−0.729468 + 0.684015i \(0.760232\pi\)
\(168\) 0 0
\(169\) −2196.42 −0.999736
\(170\) 0 0
\(171\) −1132.93 −0.506649
\(172\) 0 0
\(173\) 3747.12 1.64675 0.823376 0.567496i \(-0.192088\pi\)
0.823376 + 0.567496i \(0.192088\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1124.87 −0.477684
\(178\) 0 0
\(179\) −2309.37 −0.964305 −0.482153 0.876087i \(-0.660145\pi\)
−0.482153 + 0.876087i \(0.660145\pi\)
\(180\) 0 0
\(181\) 257.447 0.105723 0.0528615 0.998602i \(-0.483166\pi\)
0.0528615 + 0.998602i \(0.483166\pi\)
\(182\) 0 0
\(183\) 910.433 0.367766
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7657.79 2.99462
\(188\) 0 0
\(189\) 536.777 0.206586
\(190\) 0 0
\(191\) −4184.82 −1.58536 −0.792679 0.609640i \(-0.791314\pi\)
−0.792679 + 0.609640i \(0.791314\pi\)
\(192\) 0 0
\(193\) 3636.79 1.35638 0.678192 0.734885i \(-0.262764\pi\)
0.678192 + 0.734885i \(0.262764\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3519.52 1.27287 0.636436 0.771330i \(-0.280408\pi\)
0.636436 + 0.771330i \(0.280408\pi\)
\(198\) 0 0
\(199\) −1937.28 −0.690103 −0.345051 0.938584i \(-0.612139\pi\)
−0.345051 + 0.938584i \(0.612139\pi\)
\(200\) 0 0
\(201\) −2632.75 −0.923879
\(202\) 0 0
\(203\) −2800.79 −0.968360
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −367.926 −0.123539
\(208\) 0 0
\(209\) 8892.44 2.94308
\(210\) 0 0
\(211\) 2928.63 0.955522 0.477761 0.878490i \(-0.341448\pi\)
0.477761 + 0.878490i \(0.341448\pi\)
\(212\) 0 0
\(213\) 3478.61 1.11902
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5903.06 1.84666
\(218\) 0 0
\(219\) −362.149 −0.111743
\(220\) 0 0
\(221\) −82.5192 −0.0251169
\(222\) 0 0
\(223\) −2637.07 −0.791890 −0.395945 0.918274i \(-0.629583\pi\)
−0.395945 + 0.918274i \(0.629583\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3287.27 0.961162 0.480581 0.876950i \(-0.340426\pi\)
0.480581 + 0.876950i \(0.340426\pi\)
\(228\) 0 0
\(229\) 6382.02 1.84164 0.920820 0.389988i \(-0.127521\pi\)
0.920820 + 0.389988i \(0.127521\pi\)
\(230\) 0 0
\(231\) −4213.21 −1.20004
\(232\) 0 0
\(233\) −2952.91 −0.830265 −0.415133 0.909761i \(-0.636265\pi\)
−0.415133 + 0.909761i \(0.636265\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3745.97 −1.02670
\(238\) 0 0
\(239\) −1384.34 −0.374668 −0.187334 0.982296i \(-0.559985\pi\)
−0.187334 + 0.982296i \(0.559985\pi\)
\(240\) 0 0
\(241\) 4236.82 1.13244 0.566219 0.824255i \(-0.308406\pi\)
0.566219 + 0.824255i \(0.308406\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −95.8236 −0.0246847
\(248\) 0 0
\(249\) −1962.54 −0.499481
\(250\) 0 0
\(251\) −1861.22 −0.468045 −0.234023 0.972231i \(-0.575189\pi\)
−0.234023 + 0.972231i \(0.575189\pi\)
\(252\) 0 0
\(253\) 2887.88 0.717627
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 347.251 0.0842837 0.0421419 0.999112i \(-0.486582\pi\)
0.0421419 + 0.999112i \(0.486582\pi\)
\(258\) 0 0
\(259\) 532.922 0.127854
\(260\) 0 0
\(261\) −1267.93 −0.300700
\(262\) 0 0
\(263\) 1489.39 0.349200 0.174600 0.984639i \(-0.444137\pi\)
0.174600 + 0.984639i \(0.444137\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2386.57 0.547025
\(268\) 0 0
\(269\) 1570.88 0.356053 0.178026 0.984026i \(-0.443029\pi\)
0.178026 + 0.984026i \(0.443029\pi\)
\(270\) 0 0
\(271\) 3014.42 0.675693 0.337847 0.941201i \(-0.390301\pi\)
0.337847 + 0.941201i \(0.390301\pi\)
\(272\) 0 0
\(273\) 45.4009 0.0100652
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2792.41 0.605702 0.302851 0.953038i \(-0.402062\pi\)
0.302851 + 0.953038i \(0.402062\pi\)
\(278\) 0 0
\(279\) 2672.33 0.573434
\(280\) 0 0
\(281\) −1745.81 −0.370626 −0.185313 0.982680i \(-0.559330\pi\)
−0.185313 + 0.982680i \(0.559330\pi\)
\(282\) 0 0
\(283\) 2664.33 0.559639 0.279820 0.960053i \(-0.409725\pi\)
0.279820 + 0.960053i \(0.409725\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −410.372 −0.0844025
\(288\) 0 0
\(289\) 6838.22 1.39186
\(290\) 0 0
\(291\) −2552.73 −0.514240
\(292\) 0 0
\(293\) 5927.79 1.18193 0.590965 0.806697i \(-0.298747\pi\)
0.590965 + 0.806697i \(0.298747\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1907.33 −0.372641
\(298\) 0 0
\(299\) −31.1194 −0.00601900
\(300\) 0 0
\(301\) −648.047 −0.124096
\(302\) 0 0
\(303\) −449.330 −0.0851925
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4634.48 0.861575 0.430788 0.902453i \(-0.358236\pi\)
0.430788 + 0.902453i \(0.358236\pi\)
\(308\) 0 0
\(309\) −3530.42 −0.649963
\(310\) 0 0
\(311\) 761.969 0.138930 0.0694651 0.997584i \(-0.477871\pi\)
0.0694651 + 0.997584i \(0.477871\pi\)
\(312\) 0 0
\(313\) −8734.32 −1.57729 −0.788647 0.614847i \(-0.789218\pi\)
−0.788647 + 0.614847i \(0.789218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4428.21 0.784584 0.392292 0.919841i \(-0.371682\pi\)
0.392292 + 0.919841i \(0.371682\pi\)
\(318\) 0 0
\(319\) 9952.07 1.74674
\(320\) 0 0
\(321\) −1207.66 −0.209984
\(322\) 0 0
\(323\) 13645.8 2.35070
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4950.94 0.837271
\(328\) 0 0
\(329\) −227.288 −0.0380875
\(330\) 0 0
\(331\) −2239.68 −0.371915 −0.185957 0.982558i \(-0.559539\pi\)
−0.185957 + 0.982558i \(0.559539\pi\)
\(332\) 0 0
\(333\) 241.255 0.0397018
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8459.21 1.36737 0.683683 0.729779i \(-0.260377\pi\)
0.683683 + 0.729779i \(0.260377\pi\)
\(338\) 0 0
\(339\) 4059.40 0.650373
\(340\) 0 0
\(341\) −20975.4 −3.33103
\(342\) 0 0
\(343\) −5780.51 −0.909966
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9253.53 −1.43157 −0.715786 0.698320i \(-0.753931\pi\)
−0.715786 + 0.698320i \(0.753931\pi\)
\(348\) 0 0
\(349\) −1630.53 −0.250087 −0.125044 0.992151i \(-0.539907\pi\)
−0.125044 + 0.992151i \(0.539907\pi\)
\(350\) 0 0
\(351\) 20.5531 0.00312548
\(352\) 0 0
\(353\) 8148.98 1.22869 0.614343 0.789039i \(-0.289421\pi\)
0.614343 + 0.789039i \(0.289421\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6465.36 −0.958496
\(358\) 0 0
\(359\) −5850.67 −0.860130 −0.430065 0.902798i \(-0.641509\pi\)
−0.430065 + 0.902798i \(0.641509\pi\)
\(360\) 0 0
\(361\) 8986.93 1.31024
\(362\) 0 0
\(363\) 10977.8 1.58729
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7205.40 1.02485 0.512424 0.858733i \(-0.328748\pi\)
0.512424 + 0.858733i \(0.328748\pi\)
\(368\) 0 0
\(369\) −185.777 −0.0262091
\(370\) 0 0
\(371\) −3168.14 −0.443346
\(372\) 0 0
\(373\) −8708.52 −1.20887 −0.604437 0.796653i \(-0.706602\pi\)
−0.604437 + 0.796653i \(0.706602\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −107.242 −0.0146505
\(378\) 0 0
\(379\) −4153.83 −0.562975 −0.281488 0.959565i \(-0.590828\pi\)
−0.281488 + 0.959565i \(0.590828\pi\)
\(380\) 0 0
\(381\) 5508.63 0.740724
\(382\) 0 0
\(383\) −10362.0 −1.38244 −0.691219 0.722645i \(-0.742926\pi\)
−0.691219 + 0.722645i \(0.742926\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −293.372 −0.0385348
\(388\) 0 0
\(389\) −3056.19 −0.398343 −0.199171 0.979965i \(-0.563825\pi\)
−0.199171 + 0.979965i \(0.563825\pi\)
\(390\) 0 0
\(391\) 4431.58 0.573184
\(392\) 0 0
\(393\) −3335.95 −0.428185
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −14305.4 −1.80849 −0.904243 0.427019i \(-0.859564\pi\)
−0.904243 + 0.427019i \(0.859564\pi\)
\(398\) 0 0
\(399\) −7507.75 −0.941999
\(400\) 0 0
\(401\) 11391.2 1.41858 0.709289 0.704917i \(-0.249016\pi\)
0.709289 + 0.704917i \(0.249016\pi\)
\(402\) 0 0
\(403\) 226.027 0.0279385
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1893.63 −0.230624
\(408\) 0 0
\(409\) −5689.18 −0.687804 −0.343902 0.939006i \(-0.611749\pi\)
−0.343902 + 0.939006i \(0.611749\pi\)
\(410\) 0 0
\(411\) −1701.85 −0.204248
\(412\) 0 0
\(413\) −7454.34 −0.888145
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5906.60 0.693639
\(418\) 0 0
\(419\) 2086.17 0.243236 0.121618 0.992577i \(-0.461192\pi\)
0.121618 + 0.992577i \(0.461192\pi\)
\(420\) 0 0
\(421\) 661.557 0.0765851 0.0382926 0.999267i \(-0.487808\pi\)
0.0382926 + 0.999267i \(0.487808\pi\)
\(422\) 0 0
\(423\) −102.894 −0.0118271
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6033.32 0.683777
\(428\) 0 0
\(429\) −161.323 −0.0181556
\(430\) 0 0
\(431\) 14508.1 1.62142 0.810709 0.585449i \(-0.199082\pi\)
0.810709 + 0.585449i \(0.199082\pi\)
\(432\) 0 0
\(433\) −11584.2 −1.28568 −0.642840 0.766000i \(-0.722244\pi\)
−0.642840 + 0.766000i \(0.722244\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5146.08 0.563319
\(438\) 0 0
\(439\) 10554.6 1.14748 0.573740 0.819038i \(-0.305492\pi\)
0.573740 + 0.819038i \(0.305492\pi\)
\(440\) 0 0
\(441\) 470.149 0.0507665
\(442\) 0 0
\(443\) −14791.1 −1.58634 −0.793169 0.609001i \(-0.791571\pi\)
−0.793169 + 0.609001i \(0.791571\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5432.60 −0.574840
\(448\) 0 0
\(449\) 540.276 0.0567866 0.0283933 0.999597i \(-0.490961\pi\)
0.0283933 + 0.999597i \(0.490961\pi\)
\(450\) 0 0
\(451\) 1458.18 0.152246
\(452\) 0 0
\(453\) 800.238 0.0829988
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8022.12 −0.821136 −0.410568 0.911830i \(-0.634670\pi\)
−0.410568 + 0.911830i \(0.634670\pi\)
\(458\) 0 0
\(459\) −2926.88 −0.297637
\(460\) 0 0
\(461\) −11830.8 −1.19526 −0.597632 0.801771i \(-0.703891\pi\)
−0.597632 + 0.801771i \(0.703891\pi\)
\(462\) 0 0
\(463\) 12268.5 1.23145 0.615727 0.787959i \(-0.288862\pi\)
0.615727 + 0.787959i \(0.288862\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12567.2 −1.24526 −0.622632 0.782515i \(-0.713937\pi\)
−0.622632 + 0.782515i \(0.713937\pi\)
\(468\) 0 0
\(469\) −17446.9 −1.71774
\(470\) 0 0
\(471\) −8979.99 −0.878506
\(472\) 0 0
\(473\) 2302.71 0.223845
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1434.22 −0.137670
\(478\) 0 0
\(479\) −5686.36 −0.542414 −0.271207 0.962521i \(-0.587423\pi\)
−0.271207 + 0.962521i \(0.587423\pi\)
\(480\) 0 0
\(481\) 20.4055 0.00193433
\(482\) 0 0
\(483\) −2438.19 −0.229693
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9429.19 −0.877367 −0.438683 0.898642i \(-0.644555\pi\)
−0.438683 + 0.898642i \(0.644555\pi\)
\(488\) 0 0
\(489\) −7069.07 −0.653731
\(490\) 0 0
\(491\) 19869.3 1.82625 0.913126 0.407677i \(-0.133661\pi\)
0.913126 + 0.407677i \(0.133661\pi\)
\(492\) 0 0
\(493\) 15271.9 1.39515
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23052.3 2.08056
\(498\) 0 0
\(499\) 4160.66 0.373260 0.186630 0.982430i \(-0.440243\pi\)
0.186630 + 0.982430i \(0.440243\pi\)
\(500\) 0 0
\(501\) −9445.66 −0.842318
\(502\) 0 0
\(503\) 9817.15 0.870229 0.435114 0.900375i \(-0.356708\pi\)
0.435114 + 0.900375i \(0.356708\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6589.26 −0.577198
\(508\) 0 0
\(509\) −8709.02 −0.758390 −0.379195 0.925317i \(-0.623799\pi\)
−0.379195 + 0.925317i \(0.623799\pi\)
\(510\) 0 0
\(511\) −2399.91 −0.207761
\(512\) 0 0
\(513\) −3398.78 −0.292514
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 807.623 0.0687025
\(518\) 0 0
\(519\) 11241.4 0.950753
\(520\) 0 0
\(521\) −1711.84 −0.143948 −0.0719742 0.997406i \(-0.522930\pi\)
−0.0719742 + 0.997406i \(0.522930\pi\)
\(522\) 0 0
\(523\) 1901.43 0.158975 0.0794875 0.996836i \(-0.474672\pi\)
0.0794875 + 0.996836i \(0.474672\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −32187.6 −2.66056
\(528\) 0 0
\(529\) −10495.8 −0.862643
\(530\) 0 0
\(531\) −3374.60 −0.275791
\(532\) 0 0
\(533\) −15.7131 −0.00127694
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6928.12 −0.556742
\(538\) 0 0
\(539\) −3690.24 −0.294898
\(540\) 0 0
\(541\) 10469.9 0.832043 0.416021 0.909355i \(-0.363424\pi\)
0.416021 + 0.909355i \(0.363424\pi\)
\(542\) 0 0
\(543\) 772.341 0.0610392
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −23357.6 −1.82578 −0.912889 0.408207i \(-0.866154\pi\)
−0.912889 + 0.408207i \(0.866154\pi\)
\(548\) 0 0
\(549\) 2731.30 0.212330
\(550\) 0 0
\(551\) 17734.1 1.37114
\(552\) 0 0
\(553\) −24824.1 −1.90891
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7925.47 −0.602896 −0.301448 0.953483i \(-0.597470\pi\)
−0.301448 + 0.953483i \(0.597470\pi\)
\(558\) 0 0
\(559\) −24.8136 −0.00187747
\(560\) 0 0
\(561\) 22973.4 1.72894
\(562\) 0 0
\(563\) −11846.1 −0.886770 −0.443385 0.896331i \(-0.646223\pi\)
−0.443385 + 0.896331i \(0.646223\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1610.33 0.119272
\(568\) 0 0
\(569\) 5807.33 0.427866 0.213933 0.976848i \(-0.431373\pi\)
0.213933 + 0.976848i \(0.431373\pi\)
\(570\) 0 0
\(571\) −2520.62 −0.184737 −0.0923685 0.995725i \(-0.529444\pi\)
−0.0923685 + 0.995725i \(0.529444\pi\)
\(572\) 0 0
\(573\) −12554.5 −0.915306
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8634.70 −0.622994 −0.311497 0.950247i \(-0.600830\pi\)
−0.311497 + 0.950247i \(0.600830\pi\)
\(578\) 0 0
\(579\) 10910.4 0.783109
\(580\) 0 0
\(581\) −13005.5 −0.928672
\(582\) 0 0
\(583\) 11257.4 0.799712
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22165.7 −1.55856 −0.779282 0.626674i \(-0.784416\pi\)
−0.779282 + 0.626674i \(0.784416\pi\)
\(588\) 0 0
\(589\) −37377.2 −2.61477
\(590\) 0 0
\(591\) 10558.6 0.734893
\(592\) 0 0
\(593\) −17874.0 −1.23777 −0.618883 0.785483i \(-0.712415\pi\)
−0.618883 + 0.785483i \(0.712415\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5811.85 −0.398431
\(598\) 0 0
\(599\) 11051.4 0.753839 0.376919 0.926246i \(-0.376983\pi\)
0.376919 + 0.926246i \(0.376983\pi\)
\(600\) 0 0
\(601\) 17452.3 1.18452 0.592258 0.805749i \(-0.298237\pi\)
0.592258 + 0.805749i \(0.298237\pi\)
\(602\) 0 0
\(603\) −7898.24 −0.533402
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4557.98 0.304782 0.152391 0.988320i \(-0.451303\pi\)
0.152391 + 0.988320i \(0.451303\pi\)
\(608\) 0 0
\(609\) −8402.38 −0.559083
\(610\) 0 0
\(611\) −8.70283 −0.000576233 0
\(612\) 0 0
\(613\) 26741.1 1.76193 0.880963 0.473185i \(-0.156896\pi\)
0.880963 + 0.473185i \(0.156896\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6569.62 0.428659 0.214330 0.976761i \(-0.431243\pi\)
0.214330 + 0.976761i \(0.431243\pi\)
\(618\) 0 0
\(619\) 12947.7 0.840729 0.420365 0.907355i \(-0.361902\pi\)
0.420365 + 0.907355i \(0.361902\pi\)
\(620\) 0 0
\(621\) −1103.78 −0.0713253
\(622\) 0 0
\(623\) 15815.5 1.01707
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 26677.3 1.69919
\(628\) 0 0
\(629\) −2905.87 −0.184204
\(630\) 0 0
\(631\) −15799.6 −0.996785 −0.498393 0.866951i \(-0.666076\pi\)
−0.498393 + 0.866951i \(0.666076\pi\)
\(632\) 0 0
\(633\) 8785.89 0.551671
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 39.7655 0.00247342
\(638\) 0 0
\(639\) 10435.8 0.646065
\(640\) 0 0
\(641\) 7372.39 0.454278 0.227139 0.973862i \(-0.427063\pi\)
0.227139 + 0.973862i \(0.427063\pi\)
\(642\) 0 0
\(643\) −3238.37 −0.198614 −0.0993070 0.995057i \(-0.531663\pi\)
−0.0993070 + 0.995057i \(0.531663\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23260.8 1.41341 0.706707 0.707507i \(-0.250180\pi\)
0.706707 + 0.707507i \(0.250180\pi\)
\(648\) 0 0
\(649\) 26487.5 1.60204
\(650\) 0 0
\(651\) 17709.2 1.06617
\(652\) 0 0
\(653\) 20129.6 1.20633 0.603163 0.797618i \(-0.293907\pi\)
0.603163 + 0.797618i \(0.293907\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1086.45 −0.0645150
\(658\) 0 0
\(659\) 12381.4 0.731882 0.365941 0.930638i \(-0.380747\pi\)
0.365941 + 0.930638i \(0.380747\pi\)
\(660\) 0 0
\(661\) −24627.1 −1.44914 −0.724572 0.689199i \(-0.757963\pi\)
−0.724572 + 0.689199i \(0.757963\pi\)
\(662\) 0 0
\(663\) −247.558 −0.0145013
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5759.29 0.334333
\(668\) 0 0
\(669\) −7911.22 −0.457198
\(670\) 0 0
\(671\) −21438.2 −1.23340
\(672\) 0 0
\(673\) −5211.65 −0.298506 −0.149253 0.988799i \(-0.547687\pi\)
−0.149253 + 0.988799i \(0.547687\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18402.6 −1.04471 −0.522354 0.852728i \(-0.674946\pi\)
−0.522354 + 0.852728i \(0.674946\pi\)
\(678\) 0 0
\(679\) −16916.6 −0.956112
\(680\) 0 0
\(681\) 9861.81 0.554927
\(682\) 0 0
\(683\) −30347.2 −1.70015 −0.850076 0.526659i \(-0.823444\pi\)
−0.850076 + 0.526659i \(0.823444\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 19146.0 1.06327
\(688\) 0 0
\(689\) −121.308 −0.00670748
\(690\) 0 0
\(691\) 18853.1 1.03792 0.518961 0.854798i \(-0.326319\pi\)
0.518961 + 0.854798i \(0.326319\pi\)
\(692\) 0 0
\(693\) −12639.6 −0.692842
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2237.64 0.121602
\(698\) 0 0
\(699\) −8858.74 −0.479354
\(700\) 0 0
\(701\) 11008.1 0.593109 0.296555 0.955016i \(-0.404162\pi\)
0.296555 + 0.955016i \(0.404162\pi\)
\(702\) 0 0
\(703\) −3374.37 −0.181034
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2977.65 −0.158396
\(708\) 0 0
\(709\) 18670.6 0.988981 0.494491 0.869183i \(-0.335355\pi\)
0.494491 + 0.869183i \(0.335355\pi\)
\(710\) 0 0
\(711\) −11237.9 −0.592763
\(712\) 0 0
\(713\) −12138.5 −0.637574
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4153.03 −0.216315
\(718\) 0 0
\(719\) −26208.7 −1.35941 −0.679707 0.733484i \(-0.737893\pi\)
−0.679707 + 0.733484i \(0.737893\pi\)
\(720\) 0 0
\(721\) −23395.6 −1.20846
\(722\) 0 0
\(723\) 12710.5 0.653813
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24977.6 −1.27424 −0.637118 0.770767i \(-0.719873\pi\)
−0.637118 + 0.770767i \(0.719873\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 3533.61 0.178790
\(732\) 0 0
\(733\) 1491.96 0.0751800 0.0375900 0.999293i \(-0.488032\pi\)
0.0375900 + 0.999293i \(0.488032\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 61994.1 3.09848
\(738\) 0 0
\(739\) 5276.36 0.262644 0.131322 0.991340i \(-0.458078\pi\)
0.131322 + 0.991340i \(0.458078\pi\)
\(740\) 0 0
\(741\) −287.471 −0.0142517
\(742\) 0 0
\(743\) 23611.8 1.16586 0.582930 0.812522i \(-0.301906\pi\)
0.582930 + 0.812522i \(0.301906\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5887.62 −0.288376
\(748\) 0 0
\(749\) −8002.98 −0.390417
\(750\) 0 0
\(751\) −31848.5 −1.54749 −0.773747 0.633494i \(-0.781620\pi\)
−0.773747 + 0.633494i \(0.781620\pi\)
\(752\) 0 0
\(753\) −5583.67 −0.270226
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −19974.7 −0.959041 −0.479521 0.877531i \(-0.659189\pi\)
−0.479521 + 0.877531i \(0.659189\pi\)
\(758\) 0 0
\(759\) 8663.65 0.414322
\(760\) 0 0
\(761\) 27224.0 1.29680 0.648402 0.761298i \(-0.275438\pi\)
0.648402 + 0.761298i \(0.275438\pi\)
\(762\) 0 0
\(763\) 32809.3 1.55672
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −285.426 −0.0134369
\(768\) 0 0
\(769\) −29987.8 −1.40623 −0.703113 0.711078i \(-0.748207\pi\)
−0.703113 + 0.711078i \(0.748207\pi\)
\(770\) 0 0
\(771\) 1041.75 0.0486612
\(772\) 0 0
\(773\) −2856.40 −0.132908 −0.0664538 0.997790i \(-0.521169\pi\)
−0.0664538 + 0.997790i \(0.521169\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1598.77 0.0738165
\(778\) 0 0
\(779\) 2598.41 0.119509
\(780\) 0 0
\(781\) −81911.9 −3.75293
\(782\) 0 0
\(783\) −3803.78 −0.173609
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16704.1 −0.756590 −0.378295 0.925685i \(-0.623489\pi\)
−0.378295 + 0.925685i \(0.623489\pi\)
\(788\) 0 0
\(789\) 4468.16 0.201611
\(790\) 0 0
\(791\) 26901.1 1.20922
\(792\) 0 0
\(793\) 231.015 0.0103450
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33709.4 1.49818 0.749090 0.662468i \(-0.230491\pi\)
0.749090 + 0.662468i \(0.230491\pi\)
\(798\) 0 0
\(799\) 1239.33 0.0548742
\(800\) 0 0
\(801\) 7159.70 0.315825
\(802\) 0 0
\(803\) 8527.62 0.374761
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4712.64 0.205567
\(808\) 0 0
\(809\) 21582.4 0.937944 0.468972 0.883213i \(-0.344625\pi\)
0.468972 + 0.883213i \(0.344625\pi\)
\(810\) 0 0
\(811\) −40451.0 −1.75145 −0.875726 0.482809i \(-0.839616\pi\)
−0.875726 + 0.482809i \(0.839616\pi\)
\(812\) 0 0
\(813\) 9043.26 0.390112
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4103.32 0.175712
\(818\) 0 0
\(819\) 136.203 0.00581112
\(820\) 0 0
\(821\) −2857.45 −0.121468 −0.0607342 0.998154i \(-0.519344\pi\)
−0.0607342 + 0.998154i \(0.519344\pi\)
\(822\) 0 0
\(823\) −15150.8 −0.641707 −0.320853 0.947129i \(-0.603970\pi\)
−0.320853 + 0.947129i \(0.603970\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12171.5 0.511784 0.255892 0.966705i \(-0.417631\pi\)
0.255892 + 0.966705i \(0.417631\pi\)
\(828\) 0 0
\(829\) −13543.0 −0.567392 −0.283696 0.958914i \(-0.591561\pi\)
−0.283696 + 0.958914i \(0.591561\pi\)
\(830\) 0 0
\(831\) 8377.22 0.349702
\(832\) 0 0
\(833\) −5662.84 −0.235541
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8016.99 0.331072
\(838\) 0 0
\(839\) 25376.2 1.04420 0.522101 0.852884i \(-0.325149\pi\)
0.522101 + 0.852884i \(0.325149\pi\)
\(840\) 0 0
\(841\) −4541.65 −0.186217
\(842\) 0 0
\(843\) −5237.42 −0.213981
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 72748.5 2.95120
\(848\) 0 0
\(849\) 7992.99 0.323108
\(850\) 0 0
\(851\) −1095.85 −0.0441425
\(852\) 0 0
\(853\) 10225.0 0.410431 0.205215 0.978717i \(-0.434211\pi\)
0.205215 + 0.978717i \(0.434211\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35735.9 1.42440 0.712202 0.701975i \(-0.247698\pi\)
0.712202 + 0.701975i \(0.247698\pi\)
\(858\) 0 0
\(859\) −3972.20 −0.157776 −0.0788881 0.996883i \(-0.525137\pi\)
−0.0788881 + 0.996883i \(0.525137\pi\)
\(860\) 0 0
\(861\) −1231.12 −0.0487298
\(862\) 0 0
\(863\) −22682.0 −0.894673 −0.447337 0.894366i \(-0.647627\pi\)
−0.447337 + 0.894366i \(0.647627\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 20514.7 0.803593
\(868\) 0 0
\(869\) 88207.4 3.44331
\(870\) 0 0
\(871\) −668.039 −0.0259881
\(872\) 0 0
\(873\) −7658.19 −0.296896
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −12622.0 −0.485993 −0.242997 0.970027i \(-0.578130\pi\)
−0.242997 + 0.970027i \(0.578130\pi\)
\(878\) 0 0
\(879\) 17783.4 0.682387
\(880\) 0 0
\(881\) −5343.08 −0.204328 −0.102164 0.994768i \(-0.532577\pi\)
−0.102164 + 0.994768i \(0.532577\pi\)
\(882\) 0 0
\(883\) 21649.7 0.825110 0.412555 0.910933i \(-0.364637\pi\)
0.412555 + 0.910933i \(0.364637\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30808.6 1.16624 0.583118 0.812388i \(-0.301833\pi\)
0.583118 + 0.812388i \(0.301833\pi\)
\(888\) 0 0
\(889\) 36505.0 1.37721
\(890\) 0 0
\(891\) −5721.99 −0.215145
\(892\) 0 0
\(893\) 1439.15 0.0539297
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −93.3582 −0.00347507
\(898\) 0 0
\(899\) −41831.0 −1.55188
\(900\) 0 0
\(901\) 17274.9 0.638747
\(902\) 0 0
\(903\) −1944.14 −0.0716467
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26499.7 0.970131 0.485065 0.874478i \(-0.338796\pi\)
0.485065 + 0.874478i \(0.338796\pi\)
\(908\) 0 0
\(909\) −1347.99 −0.0491859
\(910\) 0 0
\(911\) 25861.3 0.940532 0.470266 0.882525i \(-0.344158\pi\)
0.470266 + 0.882525i \(0.344158\pi\)
\(912\) 0 0
\(913\) 46212.5 1.67515
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −22106.9 −0.796113
\(918\) 0 0
\(919\) 10296.7 0.369595 0.184798 0.982777i \(-0.440837\pi\)
0.184798 + 0.982777i \(0.440837\pi\)
\(920\) 0 0
\(921\) 13903.4 0.497431
\(922\) 0 0
\(923\) 882.670 0.0314772
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10591.3 −0.375256
\(928\) 0 0
\(929\) 271.470 0.00958734 0.00479367 0.999989i \(-0.498474\pi\)
0.00479367 + 0.999989i \(0.498474\pi\)
\(930\) 0 0
\(931\) −6575.85 −0.231487
\(932\) 0 0
\(933\) 2285.91 0.0802114
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −8739.10 −0.304689 −0.152345 0.988327i \(-0.548682\pi\)
−0.152345 + 0.988327i \(0.548682\pi\)
\(938\) 0 0
\(939\) −26202.9 −0.910651
\(940\) 0 0
\(941\) −55104.2 −1.90897 −0.954487 0.298252i \(-0.903597\pi\)
−0.954487 + 0.298252i \(0.903597\pi\)
\(942\) 0 0
\(943\) 843.851 0.0291406
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20552.8 −0.705256 −0.352628 0.935764i \(-0.614712\pi\)
−0.352628 + 0.935764i \(0.614712\pi\)
\(948\) 0 0
\(949\) −91.8924 −0.00314326
\(950\) 0 0
\(951\) 13284.6 0.452980
\(952\) 0 0
\(953\) −5642.08 −0.191778 −0.0958892 0.995392i \(-0.530569\pi\)
−0.0958892 + 0.995392i \(0.530569\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 29856.2 1.00848
\(958\) 0 0
\(959\) −11277.9 −0.379754
\(960\) 0 0
\(961\) 58373.8 1.95944
\(962\) 0 0
\(963\) −3622.97 −0.121234
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −21996.2 −0.731489 −0.365745 0.930715i \(-0.619186\pi\)
−0.365745 + 0.930715i \(0.619186\pi\)
\(968\) 0 0
\(969\) 40937.5 1.35718
\(970\) 0 0
\(971\) −43179.9 −1.42710 −0.713548 0.700606i \(-0.752913\pi\)
−0.713548 + 0.700606i \(0.752913\pi\)
\(972\) 0 0
\(973\) 39142.3 1.28967
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50887.5 −1.66636 −0.833181 0.553001i \(-0.813483\pi\)
−0.833181 + 0.553001i \(0.813483\pi\)
\(978\) 0 0
\(979\) −56197.2 −1.83460
\(980\) 0 0
\(981\) 14852.8 0.483399
\(982\) 0 0
\(983\) −13150.8 −0.426700 −0.213350 0.976976i \(-0.568438\pi\)
−0.213350 + 0.976976i \(0.568438\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −681.864 −0.0219898
\(988\) 0 0
\(989\) 1332.58 0.0428450
\(990\) 0 0
\(991\) −49196.4 −1.57697 −0.788483 0.615056i \(-0.789133\pi\)
−0.788483 + 0.615056i \(0.789133\pi\)
\(992\) 0 0
\(993\) −6719.03 −0.214725
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39419.0 −1.25217 −0.626085 0.779755i \(-0.715344\pi\)
−0.626085 + 0.779755i \(0.715344\pi\)
\(998\) 0 0
\(999\) 723.766 0.0229218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.4.a.u.1.2 yes 2
3.2 odd 2 1800.4.a.bm.1.2 2
4.3 odd 2 1200.4.a.bp.1.1 2
5.2 odd 4 600.4.f.j.49.2 4
5.3 odd 4 600.4.f.j.49.3 4
5.4 even 2 600.4.a.s.1.1 2
15.2 even 4 1800.4.f.z.649.3 4
15.8 even 4 1800.4.f.z.649.2 4
15.14 odd 2 1800.4.a.bo.1.1 2
20.3 even 4 1200.4.f.x.49.2 4
20.7 even 4 1200.4.f.x.49.3 4
20.19 odd 2 1200.4.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.4.a.s.1.1 2 5.4 even 2
600.4.a.u.1.2 yes 2 1.1 even 1 trivial
600.4.f.j.49.2 4 5.2 odd 4
600.4.f.j.49.3 4 5.3 odd 4
1200.4.a.bp.1.1 2 4.3 odd 2
1200.4.a.br.1.2 2 20.19 odd 2
1200.4.f.x.49.2 4 20.3 even 4
1200.4.f.x.49.3 4 20.7 even 4
1800.4.a.bm.1.2 2 3.2 odd 2
1800.4.a.bo.1.1 2 15.14 odd 2
1800.4.f.z.649.2 4 15.8 even 4
1800.4.f.z.649.3 4 15.2 even 4