Properties

Label 600.4.a.q.1.1
Level $600$
Weight $4$
Character 600.1
Self dual yes
Analytic conductor $35.401$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,4,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.4011460034\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +16.0000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +16.0000 q^{7} +9.00000 q^{9} -28.0000 q^{11} +26.0000 q^{13} +62.0000 q^{17} -68.0000 q^{19} +48.0000 q^{21} +208.000 q^{23} +27.0000 q^{27} -58.0000 q^{29} +160.000 q^{31} -84.0000 q^{33} -270.000 q^{37} +78.0000 q^{39} +282.000 q^{41} -76.0000 q^{43} +280.000 q^{47} -87.0000 q^{49} +186.000 q^{51} +210.000 q^{53} -204.000 q^{57} +196.000 q^{59} +742.000 q^{61} +144.000 q^{63} -836.000 q^{67} +624.000 q^{69} -504.000 q^{71} +1062.00 q^{73} -448.000 q^{77} +768.000 q^{79} +81.0000 q^{81} +1052.00 q^{83} -174.000 q^{87} -726.000 q^{89} +416.000 q^{91} +480.000 q^{93} +1406.00 q^{97} -252.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 16.0000 0.863919 0.431959 0.901893i \(-0.357822\pi\)
0.431959 + 0.901893i \(0.357822\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 62.0000 0.884542 0.442271 0.896882i \(-0.354173\pi\)
0.442271 + 0.896882i \(0.354173\pi\)
\(18\) 0 0
\(19\) −68.0000 −0.821067 −0.410533 0.911846i \(-0.634657\pi\)
−0.410533 + 0.911846i \(0.634657\pi\)
\(20\) 0 0
\(21\) 48.0000 0.498784
\(22\) 0 0
\(23\) 208.000 1.88570 0.942848 0.333224i \(-0.108136\pi\)
0.942848 + 0.333224i \(0.108136\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −58.0000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 160.000 0.926995 0.463498 0.886098i \(-0.346594\pi\)
0.463498 + 0.886098i \(0.346594\pi\)
\(32\) 0 0
\(33\) −84.0000 −0.443107
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −270.000 −1.19967 −0.599834 0.800124i \(-0.704767\pi\)
−0.599834 + 0.800124i \(0.704767\pi\)
\(38\) 0 0
\(39\) 78.0000 0.320256
\(40\) 0 0
\(41\) 282.000 1.07417 0.537085 0.843528i \(-0.319525\pi\)
0.537085 + 0.843528i \(0.319525\pi\)
\(42\) 0 0
\(43\) −76.0000 −0.269532 −0.134766 0.990877i \(-0.543028\pi\)
−0.134766 + 0.990877i \(0.543028\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 280.000 0.868983 0.434491 0.900676i \(-0.356928\pi\)
0.434491 + 0.900676i \(0.356928\pi\)
\(48\) 0 0
\(49\) −87.0000 −0.253644
\(50\) 0 0
\(51\) 186.000 0.510690
\(52\) 0 0
\(53\) 210.000 0.544259 0.272129 0.962261i \(-0.412272\pi\)
0.272129 + 0.962261i \(0.412272\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −204.000 −0.474043
\(58\) 0 0
\(59\) 196.000 0.432492 0.216246 0.976339i \(-0.430619\pi\)
0.216246 + 0.976339i \(0.430619\pi\)
\(60\) 0 0
\(61\) 742.000 1.55743 0.778716 0.627376i \(-0.215871\pi\)
0.778716 + 0.627376i \(0.215871\pi\)
\(62\) 0 0
\(63\) 144.000 0.287973
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −836.000 −1.52438 −0.762191 0.647352i \(-0.775877\pi\)
−0.762191 + 0.647352i \(0.775877\pi\)
\(68\) 0 0
\(69\) 624.000 1.08871
\(70\) 0 0
\(71\) −504.000 −0.842448 −0.421224 0.906957i \(-0.638399\pi\)
−0.421224 + 0.906957i \(0.638399\pi\)
\(72\) 0 0
\(73\) 1062.00 1.70271 0.851354 0.524591i \(-0.175782\pi\)
0.851354 + 0.524591i \(0.175782\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −448.000 −0.663043
\(78\) 0 0
\(79\) 768.000 1.09376 0.546878 0.837212i \(-0.315816\pi\)
0.546878 + 0.837212i \(0.315816\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1052.00 1.39123 0.695614 0.718415i \(-0.255132\pi\)
0.695614 + 0.718415i \(0.255132\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −174.000 −0.214423
\(88\) 0 0
\(89\) −726.000 −0.864672 −0.432336 0.901712i \(-0.642311\pi\)
−0.432336 + 0.901712i \(0.642311\pi\)
\(90\) 0 0
\(91\) 416.000 0.479216
\(92\) 0 0
\(93\) 480.000 0.535201
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1406.00 1.47173 0.735864 0.677129i \(-0.236776\pi\)
0.735864 + 0.677129i \(0.236776\pi\)
\(98\) 0 0
\(99\) −252.000 −0.255828
\(100\) 0 0
\(101\) 990.000 0.975333 0.487667 0.873030i \(-0.337848\pi\)
0.487667 + 0.873030i \(0.337848\pi\)
\(102\) 0 0
\(103\) −736.000 −0.704080 −0.352040 0.935985i \(-0.614512\pi\)
−0.352040 + 0.935985i \(0.614512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1212.00 −1.09503 −0.547516 0.836795i \(-0.684427\pi\)
−0.547516 + 0.836795i \(0.684427\pi\)
\(108\) 0 0
\(109\) −1834.00 −1.61161 −0.805804 0.592182i \(-0.798267\pi\)
−0.805804 + 0.592182i \(0.798267\pi\)
\(110\) 0 0
\(111\) −810.000 −0.692629
\(112\) 0 0
\(113\) 2046.00 1.70329 0.851644 0.524121i \(-0.175606\pi\)
0.851644 + 0.524121i \(0.175606\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 234.000 0.184900
\(118\) 0 0
\(119\) 992.000 0.764172
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) 846.000 0.620173
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1176.00 −0.821678 −0.410839 0.911708i \(-0.634764\pi\)
−0.410839 + 0.911708i \(0.634764\pi\)
\(128\) 0 0
\(129\) −228.000 −0.155615
\(130\) 0 0
\(131\) 12.0000 0.00800340 0.00400170 0.999992i \(-0.498726\pi\)
0.00400170 + 0.999992i \(0.498726\pi\)
\(132\) 0 0
\(133\) −1088.00 −0.709335
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 790.000 0.492659 0.246329 0.969186i \(-0.420775\pi\)
0.246329 + 0.969186i \(0.420775\pi\)
\(138\) 0 0
\(139\) −924.000 −0.563832 −0.281916 0.959439i \(-0.590970\pi\)
−0.281916 + 0.959439i \(0.590970\pi\)
\(140\) 0 0
\(141\) 840.000 0.501708
\(142\) 0 0
\(143\) −728.000 −0.425723
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −261.000 −0.146442
\(148\) 0 0
\(149\) 3022.00 1.66156 0.830778 0.556604i \(-0.187896\pi\)
0.830778 + 0.556604i \(0.187896\pi\)
\(150\) 0 0
\(151\) 1736.00 0.935587 0.467794 0.883838i \(-0.345049\pi\)
0.467794 + 0.883838i \(0.345049\pi\)
\(152\) 0 0
\(153\) 558.000 0.294847
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1322.00 0.672020 0.336010 0.941858i \(-0.390922\pi\)
0.336010 + 0.941858i \(0.390922\pi\)
\(158\) 0 0
\(159\) 630.000 0.314228
\(160\) 0 0
\(161\) 3328.00 1.62909
\(162\) 0 0
\(163\) 908.000 0.436319 0.218160 0.975913i \(-0.429995\pi\)
0.218160 + 0.975913i \(0.429995\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1296.00 −0.600524 −0.300262 0.953857i \(-0.597074\pi\)
−0.300262 + 0.953857i \(0.597074\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 0 0
\(171\) −612.000 −0.273689
\(172\) 0 0
\(173\) −2134.00 −0.937832 −0.468916 0.883243i \(-0.655355\pi\)
−0.468916 + 0.883243i \(0.655355\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 588.000 0.249699
\(178\) 0 0
\(179\) 1612.00 0.673109 0.336555 0.941664i \(-0.390738\pi\)
0.336555 + 0.941664i \(0.390738\pi\)
\(180\) 0 0
\(181\) 3086.00 1.26730 0.633648 0.773621i \(-0.281557\pi\)
0.633648 + 0.773621i \(0.281557\pi\)
\(182\) 0 0
\(183\) 2226.00 0.899184
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1736.00 −0.678871
\(188\) 0 0
\(189\) 432.000 0.166261
\(190\) 0 0
\(191\) −4208.00 −1.59414 −0.797069 0.603889i \(-0.793617\pi\)
−0.797069 + 0.603889i \(0.793617\pi\)
\(192\) 0 0
\(193\) −2818.00 −1.05101 −0.525503 0.850792i \(-0.676123\pi\)
−0.525503 + 0.850792i \(0.676123\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 418.000 0.151174 0.0755870 0.997139i \(-0.475917\pi\)
0.0755870 + 0.997139i \(0.475917\pi\)
\(198\) 0 0
\(199\) −3352.00 −1.19406 −0.597028 0.802221i \(-0.703652\pi\)
−0.597028 + 0.802221i \(0.703652\pi\)
\(200\) 0 0
\(201\) −2508.00 −0.880103
\(202\) 0 0
\(203\) −928.000 −0.320851
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1872.00 0.628565
\(208\) 0 0
\(209\) 1904.00 0.630155
\(210\) 0 0
\(211\) −4276.00 −1.39513 −0.697564 0.716523i \(-0.745733\pi\)
−0.697564 + 0.716523i \(0.745733\pi\)
\(212\) 0 0
\(213\) −1512.00 −0.486387
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2560.00 0.800848
\(218\) 0 0
\(219\) 3186.00 0.983059
\(220\) 0 0
\(221\) 1612.00 0.490655
\(222\) 0 0
\(223\) −4712.00 −1.41497 −0.707486 0.706727i \(-0.750171\pi\)
−0.707486 + 0.706727i \(0.750171\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 732.000 0.214029 0.107014 0.994257i \(-0.465871\pi\)
0.107014 + 0.994257i \(0.465871\pi\)
\(228\) 0 0
\(229\) −5186.00 −1.49651 −0.748254 0.663412i \(-0.769108\pi\)
−0.748254 + 0.663412i \(0.769108\pi\)
\(230\) 0 0
\(231\) −1344.00 −0.382808
\(232\) 0 0
\(233\) 3798.00 1.06788 0.533938 0.845523i \(-0.320711\pi\)
0.533938 + 0.845523i \(0.320711\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2304.00 0.631481
\(238\) 0 0
\(239\) −3120.00 −0.844419 −0.422209 0.906498i \(-0.638745\pi\)
−0.422209 + 0.906498i \(0.638745\pi\)
\(240\) 0 0
\(241\) 1490.00 0.398255 0.199127 0.979974i \(-0.436189\pi\)
0.199127 + 0.979974i \(0.436189\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1768.00 −0.455446
\(248\) 0 0
\(249\) 3156.00 0.803226
\(250\) 0 0
\(251\) −5292.00 −1.33079 −0.665395 0.746492i \(-0.731737\pi\)
−0.665395 + 0.746492i \(0.731737\pi\)
\(252\) 0 0
\(253\) −5824.00 −1.44724
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3918.00 0.950965 0.475483 0.879725i \(-0.342273\pi\)
0.475483 + 0.879725i \(0.342273\pi\)
\(258\) 0 0
\(259\) −4320.00 −1.03642
\(260\) 0 0
\(261\) −522.000 −0.123797
\(262\) 0 0
\(263\) −6624.00 −1.55305 −0.776527 0.630084i \(-0.783021\pi\)
−0.776527 + 0.630084i \(0.783021\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2178.00 −0.499219
\(268\) 0 0
\(269\) −2954.00 −0.669549 −0.334774 0.942298i \(-0.608660\pi\)
−0.334774 + 0.942298i \(0.608660\pi\)
\(270\) 0 0
\(271\) −6576.00 −1.47404 −0.737018 0.675874i \(-0.763767\pi\)
−0.737018 + 0.675874i \(0.763767\pi\)
\(272\) 0 0
\(273\) 1248.00 0.276675
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4478.00 −0.971325 −0.485662 0.874146i \(-0.661422\pi\)
−0.485662 + 0.874146i \(0.661422\pi\)
\(278\) 0 0
\(279\) 1440.00 0.308998
\(280\) 0 0
\(281\) −6358.00 −1.34977 −0.674887 0.737921i \(-0.735808\pi\)
−0.674887 + 0.737921i \(0.735808\pi\)
\(282\) 0 0
\(283\) −860.000 −0.180642 −0.0903210 0.995913i \(-0.528789\pi\)
−0.0903210 + 0.995913i \(0.528789\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4512.00 0.927996
\(288\) 0 0
\(289\) −1069.00 −0.217586
\(290\) 0 0
\(291\) 4218.00 0.849703
\(292\) 0 0
\(293\) 5794.00 1.15525 0.577626 0.816301i \(-0.303979\pi\)
0.577626 + 0.816301i \(0.303979\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −756.000 −0.147702
\(298\) 0 0
\(299\) 5408.00 1.04600
\(300\) 0 0
\(301\) −1216.00 −0.232854
\(302\) 0 0
\(303\) 2970.00 0.563109
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6860.00 1.27531 0.637656 0.770321i \(-0.279904\pi\)
0.637656 + 0.770321i \(0.279904\pi\)
\(308\) 0 0
\(309\) −2208.00 −0.406501
\(310\) 0 0
\(311\) −6248.00 −1.13920 −0.569601 0.821922i \(-0.692902\pi\)
−0.569601 + 0.821922i \(0.692902\pi\)
\(312\) 0 0
\(313\) −11018.0 −1.98969 −0.994847 0.101388i \(-0.967672\pi\)
−0.994847 + 0.101388i \(0.967672\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 954.000 0.169028 0.0845142 0.996422i \(-0.473066\pi\)
0.0845142 + 0.996422i \(0.473066\pi\)
\(318\) 0 0
\(319\) 1624.00 0.285036
\(320\) 0 0
\(321\) −3636.00 −0.632217
\(322\) 0 0
\(323\) −4216.00 −0.726268
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5502.00 −0.930463
\(328\) 0 0
\(329\) 4480.00 0.750731
\(330\) 0 0
\(331\) 9396.00 1.56027 0.780137 0.625608i \(-0.215149\pi\)
0.780137 + 0.625608i \(0.215149\pi\)
\(332\) 0 0
\(333\) −2430.00 −0.399889
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5074.00 −0.820173 −0.410087 0.912047i \(-0.634502\pi\)
−0.410087 + 0.912047i \(0.634502\pi\)
\(338\) 0 0
\(339\) 6138.00 0.983394
\(340\) 0 0
\(341\) −4480.00 −0.711453
\(342\) 0 0
\(343\) −6880.00 −1.08305
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3916.00 −0.605827 −0.302913 0.953018i \(-0.597959\pi\)
−0.302913 + 0.953018i \(0.597959\pi\)
\(348\) 0 0
\(349\) −1818.00 −0.278840 −0.139420 0.990233i \(-0.544524\pi\)
−0.139420 + 0.990233i \(0.544524\pi\)
\(350\) 0 0
\(351\) 702.000 0.106752
\(352\) 0 0
\(353\) 7118.00 1.07324 0.536619 0.843825i \(-0.319701\pi\)
0.536619 + 0.843825i \(0.319701\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2976.00 0.441195
\(358\) 0 0
\(359\) 5304.00 0.779762 0.389881 0.920865i \(-0.372516\pi\)
0.389881 + 0.920865i \(0.372516\pi\)
\(360\) 0 0
\(361\) −2235.00 −0.325849
\(362\) 0 0
\(363\) −1641.00 −0.237273
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5672.00 −0.806747 −0.403373 0.915036i \(-0.632162\pi\)
−0.403373 + 0.915036i \(0.632162\pi\)
\(368\) 0 0
\(369\) 2538.00 0.358057
\(370\) 0 0
\(371\) 3360.00 0.470195
\(372\) 0 0
\(373\) −7774.00 −1.07915 −0.539574 0.841938i \(-0.681415\pi\)
−0.539574 + 0.841938i \(0.681415\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1508.00 −0.206010
\(378\) 0 0
\(379\) −5516.00 −0.747593 −0.373797 0.927511i \(-0.621944\pi\)
−0.373797 + 0.927511i \(0.621944\pi\)
\(380\) 0 0
\(381\) −3528.00 −0.474396
\(382\) 0 0
\(383\) 7128.00 0.950976 0.475488 0.879722i \(-0.342272\pi\)
0.475488 + 0.879722i \(0.342272\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −684.000 −0.0898441
\(388\) 0 0
\(389\) −10722.0 −1.39750 −0.698749 0.715367i \(-0.746260\pi\)
−0.698749 + 0.715367i \(0.746260\pi\)
\(390\) 0 0
\(391\) 12896.0 1.66798
\(392\) 0 0
\(393\) 36.0000 0.00462076
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 12122.0 1.53246 0.766229 0.642568i \(-0.222131\pi\)
0.766229 + 0.642568i \(0.222131\pi\)
\(398\) 0 0
\(399\) −3264.00 −0.409535
\(400\) 0 0
\(401\) 10482.0 1.30535 0.652676 0.757637i \(-0.273646\pi\)
0.652676 + 0.757637i \(0.273646\pi\)
\(402\) 0 0
\(403\) 4160.00 0.514204
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7560.00 0.920726
\(408\) 0 0
\(409\) 3850.00 0.465453 0.232726 0.972542i \(-0.425235\pi\)
0.232726 + 0.972542i \(0.425235\pi\)
\(410\) 0 0
\(411\) 2370.00 0.284437
\(412\) 0 0
\(413\) 3136.00 0.373638
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2772.00 −0.325529
\(418\) 0 0
\(419\) −5796.00 −0.675783 −0.337892 0.941185i \(-0.609714\pi\)
−0.337892 + 0.941185i \(0.609714\pi\)
\(420\) 0 0
\(421\) 3294.00 0.381330 0.190665 0.981655i \(-0.438936\pi\)
0.190665 + 0.981655i \(0.438936\pi\)
\(422\) 0 0
\(423\) 2520.00 0.289661
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11872.0 1.34549
\(428\) 0 0
\(429\) −2184.00 −0.245791
\(430\) 0 0
\(431\) 1696.00 0.189544 0.0947720 0.995499i \(-0.469788\pi\)
0.0947720 + 0.995499i \(0.469788\pi\)
\(432\) 0 0
\(433\) 12334.0 1.36890 0.684451 0.729059i \(-0.260042\pi\)
0.684451 + 0.729059i \(0.260042\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14144.0 −1.54828
\(438\) 0 0
\(439\) 376.000 0.0408781 0.0204391 0.999791i \(-0.493494\pi\)
0.0204391 + 0.999791i \(0.493494\pi\)
\(440\) 0 0
\(441\) −783.000 −0.0845481
\(442\) 0 0
\(443\) −8028.00 −0.860997 −0.430499 0.902591i \(-0.641662\pi\)
−0.430499 + 0.902591i \(0.641662\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9066.00 0.959300
\(448\) 0 0
\(449\) 8898.00 0.935240 0.467620 0.883930i \(-0.345112\pi\)
0.467620 + 0.883930i \(0.345112\pi\)
\(450\) 0 0
\(451\) −7896.00 −0.824408
\(452\) 0 0
\(453\) 5208.00 0.540162
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10330.0 −1.05737 −0.528684 0.848819i \(-0.677314\pi\)
−0.528684 + 0.848819i \(0.677314\pi\)
\(458\) 0 0
\(459\) 1674.00 0.170230
\(460\) 0 0
\(461\) 1878.00 0.189734 0.0948668 0.995490i \(-0.469757\pi\)
0.0948668 + 0.995490i \(0.469757\pi\)
\(462\) 0 0
\(463\) 13224.0 1.32737 0.663684 0.748013i \(-0.268992\pi\)
0.663684 + 0.748013i \(0.268992\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8012.00 0.793900 0.396950 0.917840i \(-0.370069\pi\)
0.396950 + 0.917840i \(0.370069\pi\)
\(468\) 0 0
\(469\) −13376.0 −1.31694
\(470\) 0 0
\(471\) 3966.00 0.387991
\(472\) 0 0
\(473\) 2128.00 0.206862
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1890.00 0.181420
\(478\) 0 0
\(479\) −1792.00 −0.170936 −0.0854682 0.996341i \(-0.527239\pi\)
−0.0854682 + 0.996341i \(0.527239\pi\)
\(480\) 0 0
\(481\) −7020.00 −0.665456
\(482\) 0 0
\(483\) 9984.00 0.940554
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8272.00 −0.769692 −0.384846 0.922981i \(-0.625745\pi\)
−0.384846 + 0.922981i \(0.625745\pi\)
\(488\) 0 0
\(489\) 2724.00 0.251909
\(490\) 0 0
\(491\) 516.000 0.0474272 0.0237136 0.999719i \(-0.492451\pi\)
0.0237136 + 0.999719i \(0.492451\pi\)
\(492\) 0 0
\(493\) −3596.00 −0.328511
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8064.00 −0.727807
\(498\) 0 0
\(499\) −14020.0 −1.25776 −0.628879 0.777503i \(-0.716486\pi\)
−0.628879 + 0.777503i \(0.716486\pi\)
\(500\) 0 0
\(501\) −3888.00 −0.346713
\(502\) 0 0
\(503\) −1872.00 −0.165941 −0.0829705 0.996552i \(-0.526441\pi\)
−0.0829705 + 0.996552i \(0.526441\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4563.00 −0.399704
\(508\) 0 0
\(509\) 8678.00 0.755689 0.377844 0.925869i \(-0.376665\pi\)
0.377844 + 0.925869i \(0.376665\pi\)
\(510\) 0 0
\(511\) 16992.0 1.47100
\(512\) 0 0
\(513\) −1836.00 −0.158014
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7840.00 −0.666930
\(518\) 0 0
\(519\) −6402.00 −0.541458
\(520\) 0 0
\(521\) 18074.0 1.51984 0.759920 0.650017i \(-0.225238\pi\)
0.759920 + 0.650017i \(0.225238\pi\)
\(522\) 0 0
\(523\) 20852.0 1.74339 0.871696 0.490047i \(-0.163020\pi\)
0.871696 + 0.490047i \(0.163020\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9920.00 0.819966
\(528\) 0 0
\(529\) 31097.0 2.55585
\(530\) 0 0
\(531\) 1764.00 0.144164
\(532\) 0 0
\(533\) 7332.00 0.595843
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4836.00 0.388620
\(538\) 0 0
\(539\) 2436.00 0.194668
\(540\) 0 0
\(541\) −12410.0 −0.986225 −0.493112 0.869966i \(-0.664141\pi\)
−0.493112 + 0.869966i \(0.664141\pi\)
\(542\) 0 0
\(543\) 9258.00 0.731674
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3620.00 −0.282962 −0.141481 0.989941i \(-0.545186\pi\)
−0.141481 + 0.989941i \(0.545186\pi\)
\(548\) 0 0
\(549\) 6678.00 0.519144
\(550\) 0 0
\(551\) 3944.00 0.304937
\(552\) 0 0
\(553\) 12288.0 0.944917
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11734.0 −0.892613 −0.446307 0.894880i \(-0.647261\pi\)
−0.446307 + 0.894880i \(0.647261\pi\)
\(558\) 0 0
\(559\) −1976.00 −0.149510
\(560\) 0 0
\(561\) −5208.00 −0.391946
\(562\) 0 0
\(563\) 1372.00 0.102705 0.0513525 0.998681i \(-0.483647\pi\)
0.0513525 + 0.998681i \(0.483647\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1296.00 0.0959910
\(568\) 0 0
\(569\) 18922.0 1.39412 0.697058 0.717015i \(-0.254492\pi\)
0.697058 + 0.717015i \(0.254492\pi\)
\(570\) 0 0
\(571\) 14596.0 1.06974 0.534872 0.844933i \(-0.320360\pi\)
0.534872 + 0.844933i \(0.320360\pi\)
\(572\) 0 0
\(573\) −12624.0 −0.920376
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2302.00 0.166089 0.0830446 0.996546i \(-0.473536\pi\)
0.0830446 + 0.996546i \(0.473536\pi\)
\(578\) 0 0
\(579\) −8454.00 −0.606798
\(580\) 0 0
\(581\) 16832.0 1.20191
\(582\) 0 0
\(583\) −5880.00 −0.417710
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23292.0 −1.63776 −0.818879 0.573966i \(-0.805404\pi\)
−0.818879 + 0.573966i \(0.805404\pi\)
\(588\) 0 0
\(589\) −10880.0 −0.761125
\(590\) 0 0
\(591\) 1254.00 0.0872803
\(592\) 0 0
\(593\) 16542.0 1.14553 0.572764 0.819720i \(-0.305871\pi\)
0.572764 + 0.819720i \(0.305871\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10056.0 −0.689388
\(598\) 0 0
\(599\) 7464.00 0.509133 0.254567 0.967055i \(-0.418067\pi\)
0.254567 + 0.967055i \(0.418067\pi\)
\(600\) 0 0
\(601\) −17270.0 −1.17214 −0.586072 0.810259i \(-0.699326\pi\)
−0.586072 + 0.810259i \(0.699326\pi\)
\(602\) 0 0
\(603\) −7524.00 −0.508128
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −984.000 −0.0657979 −0.0328990 0.999459i \(-0.510474\pi\)
−0.0328990 + 0.999459i \(0.510474\pi\)
\(608\) 0 0
\(609\) −2784.00 −0.185244
\(610\) 0 0
\(611\) 7280.00 0.482025
\(612\) 0 0
\(613\) −7278.00 −0.479536 −0.239768 0.970830i \(-0.577071\pi\)
−0.239768 + 0.970830i \(0.577071\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18090.0 −1.18035 −0.590175 0.807275i \(-0.700941\pi\)
−0.590175 + 0.807275i \(0.700941\pi\)
\(618\) 0 0
\(619\) 24740.0 1.60644 0.803219 0.595684i \(-0.203119\pi\)
0.803219 + 0.595684i \(0.203119\pi\)
\(620\) 0 0
\(621\) 5616.00 0.362902
\(622\) 0 0
\(623\) −11616.0 −0.747007
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5712.00 0.363820
\(628\) 0 0
\(629\) −16740.0 −1.06116
\(630\) 0 0
\(631\) 19720.0 1.24412 0.622061 0.782969i \(-0.286296\pi\)
0.622061 + 0.782969i \(0.286296\pi\)
\(632\) 0 0
\(633\) −12828.0 −0.805477
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2262.00 −0.140697
\(638\) 0 0
\(639\) −4536.00 −0.280816
\(640\) 0 0
\(641\) −16542.0 −1.01930 −0.509649 0.860383i \(-0.670225\pi\)
−0.509649 + 0.860383i \(0.670225\pi\)
\(642\) 0 0
\(643\) 10092.0 0.618957 0.309479 0.950906i \(-0.399845\pi\)
0.309479 + 0.950906i \(0.399845\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14544.0 0.883746 0.441873 0.897078i \(-0.354314\pi\)
0.441873 + 0.897078i \(0.354314\pi\)
\(648\) 0 0
\(649\) −5488.00 −0.331930
\(650\) 0 0
\(651\) 7680.00 0.462370
\(652\) 0 0
\(653\) −23062.0 −1.38206 −0.691030 0.722826i \(-0.742843\pi\)
−0.691030 + 0.722826i \(0.742843\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9558.00 0.567569
\(658\) 0 0
\(659\) −28020.0 −1.65630 −0.828152 0.560504i \(-0.810608\pi\)
−0.828152 + 0.560504i \(0.810608\pi\)
\(660\) 0 0
\(661\) −6738.00 −0.396487 −0.198243 0.980153i \(-0.563524\pi\)
−0.198243 + 0.980153i \(0.563524\pi\)
\(662\) 0 0
\(663\) 4836.00 0.283280
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12064.0 −0.700330
\(668\) 0 0
\(669\) −14136.0 −0.816935
\(670\) 0 0
\(671\) −20776.0 −1.19530
\(672\) 0 0
\(673\) 14430.0 0.826502 0.413251 0.910617i \(-0.364393\pi\)
0.413251 + 0.910617i \(0.364393\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17890.0 1.01561 0.507805 0.861472i \(-0.330457\pi\)
0.507805 + 0.861472i \(0.330457\pi\)
\(678\) 0 0
\(679\) 22496.0 1.27145
\(680\) 0 0
\(681\) 2196.00 0.123570
\(682\) 0 0
\(683\) −10860.0 −0.608413 −0.304207 0.952606i \(-0.598391\pi\)
−0.304207 + 0.952606i \(0.598391\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15558.0 −0.864010
\(688\) 0 0
\(689\) 5460.00 0.301900
\(690\) 0 0
\(691\) −8692.00 −0.478523 −0.239261 0.970955i \(-0.576905\pi\)
−0.239261 + 0.970955i \(0.576905\pi\)
\(692\) 0 0
\(693\) −4032.00 −0.221014
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17484.0 0.950149
\(698\) 0 0
\(699\) 11394.0 0.616539
\(700\) 0 0
\(701\) −698.000 −0.0376078 −0.0188039 0.999823i \(-0.505986\pi\)
−0.0188039 + 0.999823i \(0.505986\pi\)
\(702\) 0 0
\(703\) 18360.0 0.985008
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15840.0 0.842609
\(708\) 0 0
\(709\) 2654.00 0.140583 0.0702913 0.997527i \(-0.477607\pi\)
0.0702913 + 0.997527i \(0.477607\pi\)
\(710\) 0 0
\(711\) 6912.00 0.364585
\(712\) 0 0
\(713\) 33280.0 1.74803
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9360.00 −0.487525
\(718\) 0 0
\(719\) −28240.0 −1.46478 −0.732388 0.680887i \(-0.761594\pi\)
−0.732388 + 0.680887i \(0.761594\pi\)
\(720\) 0 0
\(721\) −11776.0 −0.608268
\(722\) 0 0
\(723\) 4470.00 0.229932
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 8320.00 0.424445 0.212223 0.977221i \(-0.431930\pi\)
0.212223 + 0.977221i \(0.431930\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −4712.00 −0.238413
\(732\) 0 0
\(733\) 2154.00 0.108540 0.0542700 0.998526i \(-0.482717\pi\)
0.0542700 + 0.998526i \(0.482717\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23408.0 1.16994
\(738\) 0 0
\(739\) 22380.0 1.11402 0.557011 0.830505i \(-0.311948\pi\)
0.557011 + 0.830505i \(0.311948\pi\)
\(740\) 0 0
\(741\) −5304.00 −0.262952
\(742\) 0 0
\(743\) 5760.00 0.284406 0.142203 0.989837i \(-0.454581\pi\)
0.142203 + 0.989837i \(0.454581\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 9468.00 0.463743
\(748\) 0 0
\(749\) −19392.0 −0.946019
\(750\) 0 0
\(751\) −6192.00 −0.300865 −0.150432 0.988620i \(-0.548067\pi\)
−0.150432 + 0.988620i \(0.548067\pi\)
\(752\) 0 0
\(753\) −15876.0 −0.768331
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13666.0 0.656142 0.328071 0.944653i \(-0.393602\pi\)
0.328071 + 0.944653i \(0.393602\pi\)
\(758\) 0 0
\(759\) −17472.0 −0.835564
\(760\) 0 0
\(761\) −32022.0 −1.52536 −0.762678 0.646778i \(-0.776116\pi\)
−0.762678 + 0.646778i \(0.776116\pi\)
\(762\) 0 0
\(763\) −29344.0 −1.39230
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5096.00 0.239903
\(768\) 0 0
\(769\) 22786.0 1.06851 0.534255 0.845323i \(-0.320592\pi\)
0.534255 + 0.845323i \(0.320592\pi\)
\(770\) 0 0
\(771\) 11754.0 0.549040
\(772\) 0 0
\(773\) −8286.00 −0.385546 −0.192773 0.981243i \(-0.561748\pi\)
−0.192773 + 0.981243i \(0.561748\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12960.0 −0.598375
\(778\) 0 0
\(779\) −19176.0 −0.881966
\(780\) 0 0
\(781\) 14112.0 0.646565
\(782\) 0 0
\(783\) −1566.00 −0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25804.0 1.16876 0.584379 0.811481i \(-0.301338\pi\)
0.584379 + 0.811481i \(0.301338\pi\)
\(788\) 0 0
\(789\) −19872.0 −0.896656
\(790\) 0 0
\(791\) 32736.0 1.47150
\(792\) 0 0
\(793\) 19292.0 0.863908
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17670.0 −0.785324 −0.392662 0.919683i \(-0.628446\pi\)
−0.392662 + 0.919683i \(0.628446\pi\)
\(798\) 0 0
\(799\) 17360.0 0.768652
\(800\) 0 0
\(801\) −6534.00 −0.288224
\(802\) 0 0
\(803\) −29736.0 −1.30680
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8862.00 −0.386564
\(808\) 0 0
\(809\) −7398.00 −0.321508 −0.160754 0.986995i \(-0.551393\pi\)
−0.160754 + 0.986995i \(0.551393\pi\)
\(810\) 0 0
\(811\) −28108.0 −1.21702 −0.608511 0.793545i \(-0.708233\pi\)
−0.608511 + 0.793545i \(0.708233\pi\)
\(812\) 0 0
\(813\) −19728.0 −0.851035
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5168.00 0.221304
\(818\) 0 0
\(819\) 3744.00 0.159739
\(820\) 0 0
\(821\) 30830.0 1.31057 0.655283 0.755384i \(-0.272549\pi\)
0.655283 + 0.755384i \(0.272549\pi\)
\(822\) 0 0
\(823\) −5872.00 −0.248706 −0.124353 0.992238i \(-0.539686\pi\)
−0.124353 + 0.992238i \(0.539686\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16308.0 0.685713 0.342857 0.939388i \(-0.388606\pi\)
0.342857 + 0.939388i \(0.388606\pi\)
\(828\) 0 0
\(829\) 28294.0 1.18539 0.592697 0.805426i \(-0.298063\pi\)
0.592697 + 0.805426i \(0.298063\pi\)
\(830\) 0 0
\(831\) −13434.0 −0.560795
\(832\) 0 0
\(833\) −5394.00 −0.224359
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4320.00 0.178400
\(838\) 0 0
\(839\) 20536.0 0.845032 0.422516 0.906356i \(-0.361147\pi\)
0.422516 + 0.906356i \(0.361147\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) 0 0
\(843\) −19074.0 −0.779292
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8752.00 −0.355044
\(848\) 0 0
\(849\) −2580.00 −0.104294
\(850\) 0 0
\(851\) −56160.0 −2.26221
\(852\) 0 0
\(853\) −27710.0 −1.11228 −0.556139 0.831090i \(-0.687718\pi\)
−0.556139 + 0.831090i \(0.687718\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12858.0 −0.512510 −0.256255 0.966609i \(-0.582489\pi\)
−0.256255 + 0.966609i \(0.582489\pi\)
\(858\) 0 0
\(859\) −3148.00 −0.125039 −0.0625194 0.998044i \(-0.519914\pi\)
−0.0625194 + 0.998044i \(0.519914\pi\)
\(860\) 0 0
\(861\) 13536.0 0.535779
\(862\) 0 0
\(863\) −48456.0 −1.91131 −0.955656 0.294487i \(-0.904851\pi\)
−0.955656 + 0.294487i \(0.904851\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3207.00 −0.125623
\(868\) 0 0
\(869\) −21504.0 −0.839440
\(870\) 0 0
\(871\) −21736.0 −0.845576
\(872\) 0 0
\(873\) 12654.0 0.490576
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9478.00 −0.364937 −0.182468 0.983212i \(-0.558409\pi\)
−0.182468 + 0.983212i \(0.558409\pi\)
\(878\) 0 0
\(879\) 17382.0 0.666986
\(880\) 0 0
\(881\) 8178.00 0.312740 0.156370 0.987699i \(-0.450021\pi\)
0.156370 + 0.987699i \(0.450021\pi\)
\(882\) 0 0
\(883\) 316.000 0.0120433 0.00602166 0.999982i \(-0.498083\pi\)
0.00602166 + 0.999982i \(0.498083\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6304.00 0.238633 0.119317 0.992856i \(-0.461930\pi\)
0.119317 + 0.992856i \(0.461930\pi\)
\(888\) 0 0
\(889\) −18816.0 −0.709863
\(890\) 0 0
\(891\) −2268.00 −0.0852759
\(892\) 0 0
\(893\) −19040.0 −0.713493
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 16224.0 0.603906
\(898\) 0 0
\(899\) −9280.00 −0.344277
\(900\) 0 0
\(901\) 13020.0 0.481420
\(902\) 0 0
\(903\) −3648.00 −0.134438
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1596.00 −0.0584281 −0.0292141 0.999573i \(-0.509300\pi\)
−0.0292141 + 0.999573i \(0.509300\pi\)
\(908\) 0 0
\(909\) 8910.00 0.325111
\(910\) 0 0
\(911\) −25792.0 −0.938010 −0.469005 0.883196i \(-0.655387\pi\)
−0.469005 + 0.883196i \(0.655387\pi\)
\(912\) 0 0
\(913\) −29456.0 −1.06775
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 192.000 0.00691428
\(918\) 0 0
\(919\) −9736.00 −0.349468 −0.174734 0.984616i \(-0.555907\pi\)
−0.174734 + 0.984616i \(0.555907\pi\)
\(920\) 0 0
\(921\) 20580.0 0.736302
\(922\) 0 0
\(923\) −13104.0 −0.467306
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6624.00 −0.234693
\(928\) 0 0
\(929\) −94.0000 −0.00331974 −0.00165987 0.999999i \(-0.500528\pi\)
−0.00165987 + 0.999999i \(0.500528\pi\)
\(930\) 0 0
\(931\) 5916.00 0.208259
\(932\) 0 0
\(933\) −18744.0 −0.657718
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8678.00 0.302559 0.151280 0.988491i \(-0.451661\pi\)
0.151280 + 0.988491i \(0.451661\pi\)
\(938\) 0 0
\(939\) −33054.0 −1.14875
\(940\) 0 0
\(941\) 28406.0 0.984069 0.492035 0.870576i \(-0.336253\pi\)
0.492035 + 0.870576i \(0.336253\pi\)
\(942\) 0 0
\(943\) 58656.0 2.02556
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31988.0 −1.09765 −0.548823 0.835939i \(-0.684924\pi\)
−0.548823 + 0.835939i \(0.684924\pi\)
\(948\) 0 0
\(949\) 27612.0 0.944493
\(950\) 0 0
\(951\) 2862.00 0.0975885
\(952\) 0 0
\(953\) −6714.00 −0.228214 −0.114107 0.993468i \(-0.536401\pi\)
−0.114107 + 0.993468i \(0.536401\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4872.00 0.164566
\(958\) 0 0
\(959\) 12640.0 0.425617
\(960\) 0 0
\(961\) −4191.00 −0.140680
\(962\) 0 0
\(963\) −10908.0 −0.365011
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −15312.0 −0.509204 −0.254602 0.967046i \(-0.581945\pi\)
−0.254602 + 0.967046i \(0.581945\pi\)
\(968\) 0 0
\(969\) −12648.0 −0.419311
\(970\) 0 0
\(971\) −8540.00 −0.282247 −0.141123 0.989992i \(-0.545071\pi\)
−0.141123 + 0.989992i \(0.545071\pi\)
\(972\) 0 0
\(973\) −14784.0 −0.487105
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8126.00 0.266094 0.133047 0.991110i \(-0.457524\pi\)
0.133047 + 0.991110i \(0.457524\pi\)
\(978\) 0 0
\(979\) 20328.0 0.663622
\(980\) 0 0
\(981\) −16506.0 −0.537203
\(982\) 0 0
\(983\) −1392.00 −0.0451657 −0.0225829 0.999745i \(-0.507189\pi\)
−0.0225829 + 0.999745i \(0.507189\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13440.0 0.433435
\(988\) 0 0
\(989\) −15808.0 −0.508256
\(990\) 0 0
\(991\) −48832.0 −1.56529 −0.782644 0.622470i \(-0.786129\pi\)
−0.782644 + 0.622470i \(0.786129\pi\)
\(992\) 0 0
\(993\) 28188.0 0.900825
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −46926.0 −1.49063 −0.745317 0.666711i \(-0.767702\pi\)
−0.745317 + 0.666711i \(0.767702\pi\)
\(998\) 0 0
\(999\) −7290.00 −0.230876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.4.a.q.1.1 1
3.2 odd 2 1800.4.a.bb.1.1 1
4.3 odd 2 1200.4.a.c.1.1 1
5.2 odd 4 600.4.f.c.49.1 2
5.3 odd 4 600.4.f.c.49.2 2
5.4 even 2 120.4.a.c.1.1 1
15.2 even 4 1800.4.f.r.649.2 2
15.8 even 4 1800.4.f.r.649.1 2
15.14 odd 2 360.4.a.b.1.1 1
20.3 even 4 1200.4.f.o.49.1 2
20.7 even 4 1200.4.f.o.49.2 2
20.19 odd 2 240.4.a.l.1.1 1
40.19 odd 2 960.4.a.h.1.1 1
40.29 even 2 960.4.a.u.1.1 1
60.59 even 2 720.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.c.1.1 1 5.4 even 2
240.4.a.l.1.1 1 20.19 odd 2
360.4.a.b.1.1 1 15.14 odd 2
600.4.a.q.1.1 1 1.1 even 1 trivial
600.4.f.c.49.1 2 5.2 odd 4
600.4.f.c.49.2 2 5.3 odd 4
720.4.a.l.1.1 1 60.59 even 2
960.4.a.h.1.1 1 40.19 odd 2
960.4.a.u.1.1 1 40.29 even 2
1200.4.a.c.1.1 1 4.3 odd 2
1200.4.f.o.49.1 2 20.3 even 4
1200.4.f.o.49.2 2 20.7 even 4
1800.4.a.bb.1.1 1 3.2 odd 2
1800.4.f.r.649.1 2 15.8 even 4
1800.4.f.r.649.2 2 15.2 even 4