Properties

Label 600.4.a.h.1.1
Level $600$
Weight $4$
Character 600.1
Self dual yes
Analytic conductor $35.401$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,4,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.4011460034\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +24.0000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +24.0000 q^{7} +9.00000 q^{9} -28.0000 q^{11} +74.0000 q^{13} -82.0000 q^{17} +92.0000 q^{19} -72.0000 q^{21} -8.00000 q^{23} -27.0000 q^{27} -138.000 q^{29} +80.0000 q^{31} +84.0000 q^{33} -30.0000 q^{37} -222.000 q^{39} +282.000 q^{41} -4.00000 q^{43} -240.000 q^{47} +233.000 q^{49} +246.000 q^{51} +130.000 q^{53} -276.000 q^{57} +596.000 q^{59} -218.000 q^{61} +216.000 q^{63} +436.000 q^{67} +24.0000 q^{69} +856.000 q^{71} +998.000 q^{73} -672.000 q^{77} -32.0000 q^{79} +81.0000 q^{81} +1508.00 q^{83} +414.000 q^{87} -246.000 q^{89} +1776.00 q^{91} -240.000 q^{93} -866.000 q^{97} -252.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 24.0000 1.29588 0.647939 0.761692i \(-0.275631\pi\)
0.647939 + 0.761692i \(0.275631\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) 0 0
\(13\) 74.0000 1.57876 0.789381 0.613904i \(-0.210402\pi\)
0.789381 + 0.613904i \(0.210402\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −82.0000 −1.16988 −0.584939 0.811077i \(-0.698882\pi\)
−0.584939 + 0.811077i \(0.698882\pi\)
\(18\) 0 0
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) 0 0
\(21\) −72.0000 −0.748176
\(22\) 0 0
\(23\) −8.00000 −0.0725268 −0.0362634 0.999342i \(-0.511546\pi\)
−0.0362634 + 0.999342i \(0.511546\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −138.000 −0.883654 −0.441827 0.897100i \(-0.645669\pi\)
−0.441827 + 0.897100i \(0.645669\pi\)
\(30\) 0 0
\(31\) 80.0000 0.463498 0.231749 0.972776i \(-0.425555\pi\)
0.231749 + 0.972776i \(0.425555\pi\)
\(32\) 0 0
\(33\) 84.0000 0.443107
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −30.0000 −0.133296 −0.0666482 0.997777i \(-0.521231\pi\)
−0.0666482 + 0.997777i \(0.521231\pi\)
\(38\) 0 0
\(39\) −222.000 −0.911499
\(40\) 0 0
\(41\) 282.000 1.07417 0.537085 0.843528i \(-0.319525\pi\)
0.537085 + 0.843528i \(0.319525\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.0141859 −0.00709296 0.999975i \(-0.502258\pi\)
−0.00709296 + 0.999975i \(0.502258\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −240.000 −0.744843 −0.372421 0.928064i \(-0.621472\pi\)
−0.372421 + 0.928064i \(0.621472\pi\)
\(48\) 0 0
\(49\) 233.000 0.679300
\(50\) 0 0
\(51\) 246.000 0.675429
\(52\) 0 0
\(53\) 130.000 0.336922 0.168461 0.985708i \(-0.446120\pi\)
0.168461 + 0.985708i \(0.446120\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −276.000 −0.641353
\(58\) 0 0
\(59\) 596.000 1.31513 0.657564 0.753398i \(-0.271587\pi\)
0.657564 + 0.753398i \(0.271587\pi\)
\(60\) 0 0
\(61\) −218.000 −0.457574 −0.228787 0.973476i \(-0.573476\pi\)
−0.228787 + 0.973476i \(0.573476\pi\)
\(62\) 0 0
\(63\) 216.000 0.431959
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 436.000 0.795013 0.397507 0.917599i \(-0.369876\pi\)
0.397507 + 0.917599i \(0.369876\pi\)
\(68\) 0 0
\(69\) 24.0000 0.0418733
\(70\) 0 0
\(71\) 856.000 1.43082 0.715412 0.698703i \(-0.246239\pi\)
0.715412 + 0.698703i \(0.246239\pi\)
\(72\) 0 0
\(73\) 998.000 1.60010 0.800048 0.599935i \(-0.204807\pi\)
0.800048 + 0.599935i \(0.204807\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −672.000 −0.994565
\(78\) 0 0
\(79\) −32.0000 −0.0455732 −0.0227866 0.999740i \(-0.507254\pi\)
−0.0227866 + 0.999740i \(0.507254\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1508.00 1.99427 0.997136 0.0756351i \(-0.0240984\pi\)
0.997136 + 0.0756351i \(0.0240984\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 414.000 0.510178
\(88\) 0 0
\(89\) −246.000 −0.292988 −0.146494 0.989212i \(-0.546799\pi\)
−0.146494 + 0.989212i \(0.546799\pi\)
\(90\) 0 0
\(91\) 1776.00 2.04588
\(92\) 0 0
\(93\) −240.000 −0.267600
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −866.000 −0.906484 −0.453242 0.891387i \(-0.649733\pi\)
−0.453242 + 0.891387i \(0.649733\pi\)
\(98\) 0 0
\(99\) −252.000 −0.255828
\(100\) 0 0
\(101\) 270.000 0.266000 0.133000 0.991116i \(-0.457539\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(102\) 0 0
\(103\) 1496.00 1.43112 0.715560 0.698552i \(-0.246172\pi\)
0.715560 + 0.698552i \(0.246172\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1692.00 1.52871 0.764354 0.644797i \(-0.223058\pi\)
0.764354 + 0.644797i \(0.223058\pi\)
\(108\) 0 0
\(109\) 406.000 0.356768 0.178384 0.983961i \(-0.442913\pi\)
0.178384 + 0.983961i \(0.442913\pi\)
\(110\) 0 0
\(111\) 90.0000 0.0769588
\(112\) 0 0
\(113\) −786.000 −0.654342 −0.327171 0.944965i \(-0.606095\pi\)
−0.327171 + 0.944965i \(0.606095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 666.000 0.526254
\(118\) 0 0
\(119\) −1968.00 −1.51602
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) −846.000 −0.620173
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1744.00 −1.21854 −0.609272 0.792962i \(-0.708538\pi\)
−0.609272 + 0.792962i \(0.708538\pi\)
\(128\) 0 0
\(129\) 12.0000 0.00819024
\(130\) 0 0
\(131\) 652.000 0.434851 0.217426 0.976077i \(-0.430234\pi\)
0.217426 + 0.976077i \(0.430234\pi\)
\(132\) 0 0
\(133\) 2208.00 1.43953
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1530.00 −0.954137 −0.477068 0.878866i \(-0.658301\pi\)
−0.477068 + 0.878866i \(0.658301\pi\)
\(138\) 0 0
\(139\) 516.000 0.314867 0.157434 0.987530i \(-0.449678\pi\)
0.157434 + 0.987530i \(0.449678\pi\)
\(140\) 0 0
\(141\) 720.000 0.430035
\(142\) 0 0
\(143\) −2072.00 −1.21167
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −699.000 −0.392194
\(148\) 0 0
\(149\) 1342.00 0.737859 0.368929 0.929457i \(-0.379724\pi\)
0.368929 + 0.929457i \(0.379724\pi\)
\(150\) 0 0
\(151\) −424.000 −0.228507 −0.114254 0.993452i \(-0.536448\pi\)
−0.114254 + 0.993452i \(0.536448\pi\)
\(152\) 0 0
\(153\) −738.000 −0.389959
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −262.000 −0.133184 −0.0665920 0.997780i \(-0.521213\pi\)
−0.0665920 + 0.997780i \(0.521213\pi\)
\(158\) 0 0
\(159\) −390.000 −0.194522
\(160\) 0 0
\(161\) −192.000 −0.0939858
\(162\) 0 0
\(163\) 2292.00 1.10137 0.550685 0.834713i \(-0.314367\pi\)
0.550685 + 0.834713i \(0.314367\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1896.00 0.878544 0.439272 0.898354i \(-0.355236\pi\)
0.439272 + 0.898354i \(0.355236\pi\)
\(168\) 0 0
\(169\) 3279.00 1.49249
\(170\) 0 0
\(171\) 828.000 0.370285
\(172\) 0 0
\(173\) 2874.00 1.26304 0.631521 0.775359i \(-0.282431\pi\)
0.631521 + 0.775359i \(0.282431\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1788.00 −0.759290
\(178\) 0 0
\(179\) −1188.00 −0.496063 −0.248032 0.968752i \(-0.579784\pi\)
−0.248032 + 0.968752i \(0.579784\pi\)
\(180\) 0 0
\(181\) −3474.00 −1.42663 −0.713316 0.700843i \(-0.752808\pi\)
−0.713316 + 0.700843i \(0.752808\pi\)
\(182\) 0 0
\(183\) 654.000 0.264181
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2296.00 0.897862
\(188\) 0 0
\(189\) −648.000 −0.249392
\(190\) 0 0
\(191\) 192.000 0.0727363 0.0363681 0.999338i \(-0.488421\pi\)
0.0363681 + 0.999338i \(0.488421\pi\)
\(192\) 0 0
\(193\) −4802.00 −1.79096 −0.895481 0.445100i \(-0.853168\pi\)
−0.895481 + 0.445100i \(0.853168\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1518.00 −0.549000 −0.274500 0.961587i \(-0.588512\pi\)
−0.274500 + 0.961587i \(0.588512\pi\)
\(198\) 0 0
\(199\) 5128.00 1.82670 0.913352 0.407170i \(-0.133484\pi\)
0.913352 + 0.407170i \(0.133484\pi\)
\(200\) 0 0
\(201\) −1308.00 −0.459001
\(202\) 0 0
\(203\) −3312.00 −1.14511
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −72.0000 −0.0241756
\(208\) 0 0
\(209\) −2576.00 −0.852563
\(210\) 0 0
\(211\) 1084.00 0.353676 0.176838 0.984240i \(-0.443413\pi\)
0.176838 + 0.984240i \(0.443413\pi\)
\(212\) 0 0
\(213\) −2568.00 −0.826087
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1920.00 0.600636
\(218\) 0 0
\(219\) −2994.00 −0.923816
\(220\) 0 0
\(221\) −6068.00 −1.84696
\(222\) 0 0
\(223\) −688.000 −0.206600 −0.103300 0.994650i \(-0.532940\pi\)
−0.103300 + 0.994650i \(0.532940\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4812.00 −1.40698 −0.703488 0.710707i \(-0.748375\pi\)
−0.703488 + 0.710707i \(0.748375\pi\)
\(228\) 0 0
\(229\) 2494.00 0.719686 0.359843 0.933013i \(-0.382830\pi\)
0.359843 + 0.933013i \(0.382830\pi\)
\(230\) 0 0
\(231\) 2016.00 0.574212
\(232\) 0 0
\(233\) −698.000 −0.196255 −0.0981277 0.995174i \(-0.531285\pi\)
−0.0981277 + 0.995174i \(0.531285\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 96.0000 0.0263117
\(238\) 0 0
\(239\) −6320.00 −1.71049 −0.855244 0.518225i \(-0.826593\pi\)
−0.855244 + 0.518225i \(0.826593\pi\)
\(240\) 0 0
\(241\) −6510.00 −1.74002 −0.870012 0.493030i \(-0.835889\pi\)
−0.870012 + 0.493030i \(0.835889\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6808.00 1.75378
\(248\) 0 0
\(249\) −4524.00 −1.15139
\(250\) 0 0
\(251\) 628.000 0.157924 0.0789622 0.996878i \(-0.474839\pi\)
0.0789622 + 0.996878i \(0.474839\pi\)
\(252\) 0 0
\(253\) 224.000 0.0556631
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4862.00 1.18009 0.590045 0.807370i \(-0.299110\pi\)
0.590045 + 0.807370i \(0.299110\pi\)
\(258\) 0 0
\(259\) −720.000 −0.172736
\(260\) 0 0
\(261\) −1242.00 −0.294551
\(262\) 0 0
\(263\) −5816.00 −1.36361 −0.681806 0.731533i \(-0.738805\pi\)
−0.681806 + 0.731533i \(0.738805\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 738.000 0.169157
\(268\) 0 0
\(269\) 3526.00 0.799197 0.399599 0.916690i \(-0.369150\pi\)
0.399599 + 0.916690i \(0.369150\pi\)
\(270\) 0 0
\(271\) −256.000 −0.0573834 −0.0286917 0.999588i \(-0.509134\pi\)
−0.0286917 + 0.999588i \(0.509134\pi\)
\(272\) 0 0
\(273\) −5328.00 −1.18119
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −142.000 −0.0308013 −0.0154006 0.999881i \(-0.504902\pi\)
−0.0154006 + 0.999881i \(0.504902\pi\)
\(278\) 0 0
\(279\) 720.000 0.154499
\(280\) 0 0
\(281\) 8842.00 1.87712 0.938558 0.345122i \(-0.112162\pi\)
0.938558 + 0.345122i \(0.112162\pi\)
\(282\) 0 0
\(283\) 7180.00 1.50815 0.754075 0.656788i \(-0.228085\pi\)
0.754075 + 0.656788i \(0.228085\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6768.00 1.39199
\(288\) 0 0
\(289\) 1811.00 0.368614
\(290\) 0 0
\(291\) 2598.00 0.523359
\(292\) 0 0
\(293\) −7374.00 −1.47029 −0.735143 0.677912i \(-0.762885\pi\)
−0.735143 + 0.677912i \(0.762885\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 756.000 0.147702
\(298\) 0 0
\(299\) −592.000 −0.114502
\(300\) 0 0
\(301\) −96.0000 −0.0183832
\(302\) 0 0
\(303\) −810.000 −0.153575
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1500.00 −0.278858 −0.139429 0.990232i \(-0.544527\pi\)
−0.139429 + 0.990232i \(0.544527\pi\)
\(308\) 0 0
\(309\) −4488.00 −0.826257
\(310\) 0 0
\(311\) −7608.00 −1.38717 −0.693585 0.720374i \(-0.743970\pi\)
−0.693585 + 0.720374i \(0.743970\pi\)
\(312\) 0 0
\(313\) 4758.00 0.859227 0.429614 0.903013i \(-0.358650\pi\)
0.429614 + 0.903013i \(0.358650\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4374.00 −0.774979 −0.387489 0.921874i \(-0.626658\pi\)
−0.387489 + 0.921874i \(0.626658\pi\)
\(318\) 0 0
\(319\) 3864.00 0.678190
\(320\) 0 0
\(321\) −5076.00 −0.882600
\(322\) 0 0
\(323\) −7544.00 −1.29956
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1218.00 −0.205980
\(328\) 0 0
\(329\) −5760.00 −0.965225
\(330\) 0 0
\(331\) −7804.00 −1.29591 −0.647956 0.761678i \(-0.724376\pi\)
−0.647956 + 0.761678i \(0.724376\pi\)
\(332\) 0 0
\(333\) −270.000 −0.0444322
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5106.00 −0.825346 −0.412673 0.910879i \(-0.635405\pi\)
−0.412673 + 0.910879i \(0.635405\pi\)
\(338\) 0 0
\(339\) 2358.00 0.377785
\(340\) 0 0
\(341\) −2240.00 −0.355727
\(342\) 0 0
\(343\) −2640.00 −0.415588
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4716.00 0.729591 0.364796 0.931088i \(-0.381139\pi\)
0.364796 + 0.931088i \(0.381139\pi\)
\(348\) 0 0
\(349\) 7302.00 1.11996 0.559982 0.828505i \(-0.310808\pi\)
0.559982 + 0.828505i \(0.310808\pi\)
\(350\) 0 0
\(351\) −1998.00 −0.303833
\(352\) 0 0
\(353\) 4382.00 0.660709 0.330355 0.943857i \(-0.392832\pi\)
0.330355 + 0.943857i \(0.392832\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5904.00 0.875274
\(358\) 0 0
\(359\) 7224.00 1.06203 0.531014 0.847363i \(-0.321811\pi\)
0.531014 + 0.847363i \(0.321811\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) 1641.00 0.237273
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1408.00 −0.200264 −0.100132 0.994974i \(-0.531927\pi\)
−0.100132 + 0.994974i \(0.531927\pi\)
\(368\) 0 0
\(369\) 2538.00 0.358057
\(370\) 0 0
\(371\) 3120.00 0.436610
\(372\) 0 0
\(373\) 1714.00 0.237929 0.118965 0.992899i \(-0.462043\pi\)
0.118965 + 0.992899i \(0.462043\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10212.0 −1.39508
\(378\) 0 0
\(379\) 884.000 0.119810 0.0599051 0.998204i \(-0.480920\pi\)
0.0599051 + 0.998204i \(0.480920\pi\)
\(380\) 0 0
\(381\) 5232.00 0.703526
\(382\) 0 0
\(383\) −10368.0 −1.38324 −0.691619 0.722263i \(-0.743102\pi\)
−0.691619 + 0.722263i \(0.743102\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36.0000 −0.00472864
\(388\) 0 0
\(389\) 398.000 0.0518751 0.0259375 0.999664i \(-0.491743\pi\)
0.0259375 + 0.999664i \(0.491743\pi\)
\(390\) 0 0
\(391\) 656.000 0.0848474
\(392\) 0 0
\(393\) −1956.00 −0.251061
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5098.00 0.644487 0.322243 0.946657i \(-0.395563\pi\)
0.322243 + 0.946657i \(0.395563\pi\)
\(398\) 0 0
\(399\) −6624.00 −0.831115
\(400\) 0 0
\(401\) 10002.0 1.24558 0.622788 0.782391i \(-0.286000\pi\)
0.622788 + 0.782391i \(0.286000\pi\)
\(402\) 0 0
\(403\) 5920.00 0.731752
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 840.000 0.102303
\(408\) 0 0
\(409\) −9270.00 −1.12071 −0.560357 0.828251i \(-0.689336\pi\)
−0.560357 + 0.828251i \(0.689336\pi\)
\(410\) 0 0
\(411\) 4590.00 0.550871
\(412\) 0 0
\(413\) 14304.0 1.70425
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1548.00 −0.181789
\(418\) 0 0
\(419\) −6516.00 −0.759731 −0.379866 0.925042i \(-0.624030\pi\)
−0.379866 + 0.925042i \(0.624030\pi\)
\(420\) 0 0
\(421\) −2626.00 −0.303999 −0.151999 0.988381i \(-0.548571\pi\)
−0.151999 + 0.988381i \(0.548571\pi\)
\(422\) 0 0
\(423\) −2160.00 −0.248281
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5232.00 −0.592961
\(428\) 0 0
\(429\) 6216.00 0.699560
\(430\) 0 0
\(431\) −4304.00 −0.481012 −0.240506 0.970648i \(-0.577313\pi\)
−0.240506 + 0.970648i \(0.577313\pi\)
\(432\) 0 0
\(433\) −11794.0 −1.30897 −0.654484 0.756076i \(-0.727114\pi\)
−0.654484 + 0.756076i \(0.727114\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −736.000 −0.0805667
\(438\) 0 0
\(439\) −5544.00 −0.602735 −0.301368 0.953508i \(-0.597443\pi\)
−0.301368 + 0.953508i \(0.597443\pi\)
\(440\) 0 0
\(441\) 2097.00 0.226433
\(442\) 0 0
\(443\) 3788.00 0.406260 0.203130 0.979152i \(-0.434889\pi\)
0.203130 + 0.979152i \(0.434889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4026.00 −0.426003
\(448\) 0 0
\(449\) −13342.0 −1.40233 −0.701167 0.712997i \(-0.747337\pi\)
−0.701167 + 0.712997i \(0.747337\pi\)
\(450\) 0 0
\(451\) −7896.00 −0.824408
\(452\) 0 0
\(453\) 1272.00 0.131929
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4390.00 0.449356 0.224678 0.974433i \(-0.427867\pi\)
0.224678 + 0.974433i \(0.427867\pi\)
\(458\) 0 0
\(459\) 2214.00 0.225143
\(460\) 0 0
\(461\) 5798.00 0.585770 0.292885 0.956148i \(-0.405385\pi\)
0.292885 + 0.956148i \(0.405385\pi\)
\(462\) 0 0
\(463\) 14656.0 1.47111 0.735553 0.677467i \(-0.236922\pi\)
0.735553 + 0.677467i \(0.236922\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8412.00 −0.833535 −0.416768 0.909013i \(-0.636837\pi\)
−0.416768 + 0.909013i \(0.636837\pi\)
\(468\) 0 0
\(469\) 10464.0 1.03024
\(470\) 0 0
\(471\) 786.000 0.0768938
\(472\) 0 0
\(473\) 112.000 0.0108875
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1170.00 0.112307
\(478\) 0 0
\(479\) 14848.0 1.41633 0.708165 0.706047i \(-0.249523\pi\)
0.708165 + 0.706047i \(0.249523\pi\)
\(480\) 0 0
\(481\) −2220.00 −0.210443
\(482\) 0 0
\(483\) 576.000 0.0542627
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18568.0 −1.72771 −0.863857 0.503738i \(-0.831958\pi\)
−0.863857 + 0.503738i \(0.831958\pi\)
\(488\) 0 0
\(489\) −6876.00 −0.635876
\(490\) 0 0
\(491\) −14364.0 −1.32024 −0.660120 0.751160i \(-0.729495\pi\)
−0.660120 + 0.751160i \(0.729495\pi\)
\(492\) 0 0
\(493\) 11316.0 1.03377
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20544.0 1.85417
\(498\) 0 0
\(499\) 21660.0 1.94316 0.971578 0.236720i \(-0.0760724\pi\)
0.971578 + 0.236720i \(0.0760724\pi\)
\(500\) 0 0
\(501\) −5688.00 −0.507228
\(502\) 0 0
\(503\) 17112.0 1.51687 0.758436 0.651748i \(-0.225964\pi\)
0.758436 + 0.651748i \(0.225964\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9837.00 −0.861689
\(508\) 0 0
\(509\) 11478.0 0.999516 0.499758 0.866165i \(-0.333422\pi\)
0.499758 + 0.866165i \(0.333422\pi\)
\(510\) 0 0
\(511\) 23952.0 2.07353
\(512\) 0 0
\(513\) −2484.00 −0.213784
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6720.00 0.571654
\(518\) 0 0
\(519\) −8622.00 −0.729217
\(520\) 0 0
\(521\) 13114.0 1.10275 0.551377 0.834256i \(-0.314103\pi\)
0.551377 + 0.834256i \(0.314103\pi\)
\(522\) 0 0
\(523\) 4508.00 0.376905 0.188452 0.982082i \(-0.439653\pi\)
0.188452 + 0.982082i \(0.439653\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6560.00 −0.542235
\(528\) 0 0
\(529\) −12103.0 −0.994740
\(530\) 0 0
\(531\) 5364.00 0.438376
\(532\) 0 0
\(533\) 20868.0 1.69586
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3564.00 0.286402
\(538\) 0 0
\(539\) −6524.00 −0.521352
\(540\) 0 0
\(541\) 22950.0 1.82384 0.911920 0.410368i \(-0.134600\pi\)
0.911920 + 0.410368i \(0.134600\pi\)
\(542\) 0 0
\(543\) 10422.0 0.823666
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6580.00 0.514334 0.257167 0.966367i \(-0.417211\pi\)
0.257167 + 0.966367i \(0.417211\pi\)
\(548\) 0 0
\(549\) −1962.00 −0.152525
\(550\) 0 0
\(551\) −12696.0 −0.981611
\(552\) 0 0
\(553\) −768.000 −0.0590573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7046.00 −0.535994 −0.267997 0.963420i \(-0.586362\pi\)
−0.267997 + 0.963420i \(0.586362\pi\)
\(558\) 0 0
\(559\) −296.000 −0.0223962
\(560\) 0 0
\(561\) −6888.00 −0.518381
\(562\) 0 0
\(563\) −8252.00 −0.617727 −0.308864 0.951106i \(-0.599949\pi\)
−0.308864 + 0.951106i \(0.599949\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1944.00 0.143986
\(568\) 0 0
\(569\) −6838.00 −0.503803 −0.251901 0.967753i \(-0.581056\pi\)
−0.251901 + 0.967753i \(0.581056\pi\)
\(570\) 0 0
\(571\) 23316.0 1.70883 0.854417 0.519588i \(-0.173915\pi\)
0.854417 + 0.519588i \(0.173915\pi\)
\(572\) 0 0
\(573\) −576.000 −0.0419943
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10558.0 0.761760 0.380880 0.924625i \(-0.375621\pi\)
0.380880 + 0.924625i \(0.375621\pi\)
\(578\) 0 0
\(579\) 14406.0 1.03401
\(580\) 0 0
\(581\) 36192.0 2.58433
\(582\) 0 0
\(583\) −3640.00 −0.258582
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1028.00 −0.0722830 −0.0361415 0.999347i \(-0.511507\pi\)
−0.0361415 + 0.999347i \(0.511507\pi\)
\(588\) 0 0
\(589\) 7360.00 0.514879
\(590\) 0 0
\(591\) 4554.00 0.316965
\(592\) 0 0
\(593\) −1202.00 −0.0832382 −0.0416191 0.999134i \(-0.513252\pi\)
−0.0416191 + 0.999134i \(0.513252\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15384.0 −1.05465
\(598\) 0 0
\(599\) −3576.00 −0.243926 −0.121963 0.992535i \(-0.538919\pi\)
−0.121963 + 0.992535i \(0.538919\pi\)
\(600\) 0 0
\(601\) 8650.00 0.587090 0.293545 0.955945i \(-0.405165\pi\)
0.293545 + 0.955945i \(0.405165\pi\)
\(602\) 0 0
\(603\) 3924.00 0.265004
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12656.0 −0.846279 −0.423139 0.906065i \(-0.639072\pi\)
−0.423139 + 0.906065i \(0.639072\pi\)
\(608\) 0 0
\(609\) 9936.00 0.661128
\(610\) 0 0
\(611\) −17760.0 −1.17593
\(612\) 0 0
\(613\) 3298.00 0.217300 0.108650 0.994080i \(-0.465347\pi\)
0.108650 + 0.994080i \(0.465347\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5370.00 −0.350386 −0.175193 0.984534i \(-0.556055\pi\)
−0.175193 + 0.984534i \(0.556055\pi\)
\(618\) 0 0
\(619\) −16220.0 −1.05321 −0.526605 0.850110i \(-0.676535\pi\)
−0.526605 + 0.850110i \(0.676535\pi\)
\(620\) 0 0
\(621\) 216.000 0.0139578
\(622\) 0 0
\(623\) −5904.00 −0.379677
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7728.00 0.492227
\(628\) 0 0
\(629\) 2460.00 0.155941
\(630\) 0 0
\(631\) −20360.0 −1.28450 −0.642249 0.766496i \(-0.721999\pi\)
−0.642249 + 0.766496i \(0.721999\pi\)
\(632\) 0 0
\(633\) −3252.00 −0.204195
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 17242.0 1.07245
\(638\) 0 0
\(639\) 7704.00 0.476941
\(640\) 0 0
\(641\) 14498.0 0.893349 0.446674 0.894697i \(-0.352608\pi\)
0.446674 + 0.894697i \(0.352608\pi\)
\(642\) 0 0
\(643\) −21612.0 −1.32550 −0.662748 0.748842i \(-0.730610\pi\)
−0.662748 + 0.748842i \(0.730610\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12184.0 −0.740344 −0.370172 0.928963i \(-0.620701\pi\)
−0.370172 + 0.928963i \(0.620701\pi\)
\(648\) 0 0
\(649\) −16688.0 −1.00934
\(650\) 0 0
\(651\) −5760.00 −0.346778
\(652\) 0 0
\(653\) 28122.0 1.68530 0.842648 0.538464i \(-0.180995\pi\)
0.842648 + 0.538464i \(0.180995\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8982.00 0.533366
\(658\) 0 0
\(659\) −5700.00 −0.336935 −0.168468 0.985707i \(-0.553882\pi\)
−0.168468 + 0.985707i \(0.553882\pi\)
\(660\) 0 0
\(661\) −29458.0 −1.73341 −0.866705 0.498822i \(-0.833766\pi\)
−0.866705 + 0.498822i \(0.833766\pi\)
\(662\) 0 0
\(663\) 18204.0 1.06634
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1104.00 0.0640885
\(668\) 0 0
\(669\) 2064.00 0.119281
\(670\) 0 0
\(671\) 6104.00 0.351181
\(672\) 0 0
\(673\) −19810.0 −1.13465 −0.567325 0.823494i \(-0.692022\pi\)
−0.567325 + 0.823494i \(0.692022\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10450.0 0.593244 0.296622 0.954995i \(-0.404140\pi\)
0.296622 + 0.954995i \(0.404140\pi\)
\(678\) 0 0
\(679\) −20784.0 −1.17469
\(680\) 0 0
\(681\) 14436.0 0.812318
\(682\) 0 0
\(683\) −23300.0 −1.30534 −0.652672 0.757641i \(-0.726352\pi\)
−0.652672 + 0.757641i \(0.726352\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7482.00 −0.415511
\(688\) 0 0
\(689\) 9620.00 0.531920
\(690\) 0 0
\(691\) −14212.0 −0.782417 −0.391208 0.920302i \(-0.627943\pi\)
−0.391208 + 0.920302i \(0.627943\pi\)
\(692\) 0 0
\(693\) −6048.00 −0.331522
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −23124.0 −1.25665
\(698\) 0 0
\(699\) 2094.00 0.113308
\(700\) 0 0
\(701\) −15978.0 −0.860885 −0.430443 0.902618i \(-0.641643\pi\)
−0.430443 + 0.902618i \(0.641643\pi\)
\(702\) 0 0
\(703\) −2760.00 −0.148073
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6480.00 0.344704
\(708\) 0 0
\(709\) −8866.00 −0.469633 −0.234816 0.972040i \(-0.575449\pi\)
−0.234816 + 0.972040i \(0.575449\pi\)
\(710\) 0 0
\(711\) −288.000 −0.0151911
\(712\) 0 0
\(713\) −640.000 −0.0336160
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 18960.0 0.987551
\(718\) 0 0
\(719\) 7760.00 0.402502 0.201251 0.979540i \(-0.435499\pi\)
0.201251 + 0.979540i \(0.435499\pi\)
\(720\) 0 0
\(721\) 35904.0 1.85456
\(722\) 0 0
\(723\) 19530.0 1.00460
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −13080.0 −0.667277 −0.333638 0.942701i \(-0.608276\pi\)
−0.333638 + 0.942701i \(0.608276\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 328.000 0.0165958
\(732\) 0 0
\(733\) −16934.0 −0.853304 −0.426652 0.904416i \(-0.640307\pi\)
−0.426652 + 0.904416i \(0.640307\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12208.0 −0.610159
\(738\) 0 0
\(739\) −7060.00 −0.351429 −0.175715 0.984441i \(-0.556224\pi\)
−0.175715 + 0.984441i \(0.556224\pi\)
\(740\) 0 0
\(741\) −20424.0 −1.01254
\(742\) 0 0
\(743\) 12520.0 0.618189 0.309094 0.951031i \(-0.399974\pi\)
0.309094 + 0.951031i \(0.399974\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 13572.0 0.664757
\(748\) 0 0
\(749\) 40608.0 1.98102
\(750\) 0 0
\(751\) −9792.00 −0.475786 −0.237893 0.971291i \(-0.576457\pi\)
−0.237893 + 0.971291i \(0.576457\pi\)
\(752\) 0 0
\(753\) −1884.00 −0.0911777
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −13166.0 −0.632135 −0.316068 0.948737i \(-0.602363\pi\)
−0.316068 + 0.948737i \(0.602363\pi\)
\(758\) 0 0
\(759\) −672.000 −0.0321371
\(760\) 0 0
\(761\) −23222.0 −1.10617 −0.553086 0.833124i \(-0.686550\pi\)
−0.553086 + 0.833124i \(0.686550\pi\)
\(762\) 0 0
\(763\) 9744.00 0.462328
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44104.0 2.07628
\(768\) 0 0
\(769\) −39934.0 −1.87264 −0.936318 0.351154i \(-0.885789\pi\)
−0.936318 + 0.351154i \(0.885789\pi\)
\(770\) 0 0
\(771\) −14586.0 −0.681325
\(772\) 0 0
\(773\) 17106.0 0.795938 0.397969 0.917399i \(-0.369715\pi\)
0.397969 + 0.917399i \(0.369715\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2160.00 0.0997292
\(778\) 0 0
\(779\) 25944.0 1.19325
\(780\) 0 0
\(781\) −23968.0 −1.09813
\(782\) 0 0
\(783\) 3726.00 0.170059
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9956.00 0.450944 0.225472 0.974250i \(-0.427608\pi\)
0.225472 + 0.974250i \(0.427608\pi\)
\(788\) 0 0
\(789\) 17448.0 0.787282
\(790\) 0 0
\(791\) −18864.0 −0.847948
\(792\) 0 0
\(793\) −16132.0 −0.722401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9130.00 0.405773 0.202887 0.979202i \(-0.434968\pi\)
0.202887 + 0.979202i \(0.434968\pi\)
\(798\) 0 0
\(799\) 19680.0 0.871375
\(800\) 0 0
\(801\) −2214.00 −0.0976627
\(802\) 0 0
\(803\) −27944.0 −1.22805
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10578.0 −0.461417
\(808\) 0 0
\(809\) 11482.0 0.498993 0.249497 0.968376i \(-0.419735\pi\)
0.249497 + 0.968376i \(0.419735\pi\)
\(810\) 0 0
\(811\) 4612.00 0.199691 0.0998454 0.995003i \(-0.468165\pi\)
0.0998454 + 0.995003i \(0.468165\pi\)
\(812\) 0 0
\(813\) 768.000 0.0331303
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −368.000 −0.0157585
\(818\) 0 0
\(819\) 15984.0 0.681961
\(820\) 0 0
\(821\) −35010.0 −1.48826 −0.744128 0.668038i \(-0.767135\pi\)
−0.744128 + 0.668038i \(0.767135\pi\)
\(822\) 0 0
\(823\) −13688.0 −0.579749 −0.289875 0.957065i \(-0.593614\pi\)
−0.289875 + 0.957065i \(0.593614\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11668.0 −0.490612 −0.245306 0.969446i \(-0.578888\pi\)
−0.245306 + 0.969446i \(0.578888\pi\)
\(828\) 0 0
\(829\) −29306.0 −1.22779 −0.613896 0.789387i \(-0.710399\pi\)
−0.613896 + 0.789387i \(0.710399\pi\)
\(830\) 0 0
\(831\) 426.000 0.0177831
\(832\) 0 0
\(833\) −19106.0 −0.794698
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2160.00 −0.0892001
\(838\) 0 0
\(839\) −2664.00 −0.109620 −0.0548102 0.998497i \(-0.517455\pi\)
−0.0548102 + 0.998497i \(0.517455\pi\)
\(840\) 0 0
\(841\) −5345.00 −0.219156
\(842\) 0 0
\(843\) −26526.0 −1.08375
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13128.0 −0.532566
\(848\) 0 0
\(849\) −21540.0 −0.870731
\(850\) 0 0
\(851\) 240.000 0.00966756
\(852\) 0 0
\(853\) −26030.0 −1.04484 −0.522421 0.852688i \(-0.674971\pi\)
−0.522421 + 0.852688i \(0.674971\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −44202.0 −1.76186 −0.880929 0.473249i \(-0.843081\pi\)
−0.880929 + 0.473249i \(0.843081\pi\)
\(858\) 0 0
\(859\) −32748.0 −1.30075 −0.650377 0.759612i \(-0.725389\pi\)
−0.650377 + 0.759612i \(0.725389\pi\)
\(860\) 0 0
\(861\) −20304.0 −0.803668
\(862\) 0 0
\(863\) −45344.0 −1.78856 −0.894280 0.447507i \(-0.852312\pi\)
−0.894280 + 0.447507i \(0.852312\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5433.00 −0.212819
\(868\) 0 0
\(869\) 896.000 0.0349767
\(870\) 0 0
\(871\) 32264.0 1.25514
\(872\) 0 0
\(873\) −7794.00 −0.302161
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8778.00 0.337984 0.168992 0.985617i \(-0.445949\pi\)
0.168992 + 0.985617i \(0.445949\pi\)
\(878\) 0 0
\(879\) 22122.0 0.848870
\(880\) 0 0
\(881\) −4142.00 −0.158397 −0.0791984 0.996859i \(-0.525236\pi\)
−0.0791984 + 0.996859i \(0.525236\pi\)
\(882\) 0 0
\(883\) −22076.0 −0.841355 −0.420678 0.907210i \(-0.638208\pi\)
−0.420678 + 0.907210i \(0.638208\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40376.0 1.52840 0.764201 0.644978i \(-0.223133\pi\)
0.764201 + 0.644978i \(0.223133\pi\)
\(888\) 0 0
\(889\) −41856.0 −1.57908
\(890\) 0 0
\(891\) −2268.00 −0.0852759
\(892\) 0 0
\(893\) −22080.0 −0.827412
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1776.00 0.0661080
\(898\) 0 0
\(899\) −11040.0 −0.409571
\(900\) 0 0
\(901\) −10660.0 −0.394158
\(902\) 0 0
\(903\) 288.000 0.0106136
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26396.0 0.966334 0.483167 0.875528i \(-0.339486\pi\)
0.483167 + 0.875528i \(0.339486\pi\)
\(908\) 0 0
\(909\) 2430.00 0.0886667
\(910\) 0 0
\(911\) 24368.0 0.886222 0.443111 0.896467i \(-0.353875\pi\)
0.443111 + 0.896467i \(0.353875\pi\)
\(912\) 0 0
\(913\) −42224.0 −1.53057
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15648.0 0.563514
\(918\) 0 0
\(919\) −5096.00 −0.182918 −0.0914589 0.995809i \(-0.529153\pi\)
−0.0914589 + 0.995809i \(0.529153\pi\)
\(920\) 0 0
\(921\) 4500.00 0.160999
\(922\) 0 0
\(923\) 63344.0 2.25893
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13464.0 0.477040
\(928\) 0 0
\(929\) −18494.0 −0.653142 −0.326571 0.945173i \(-0.605893\pi\)
−0.326571 + 0.945173i \(0.605893\pi\)
\(930\) 0 0
\(931\) 21436.0 0.754604
\(932\) 0 0
\(933\) 22824.0 0.800883
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 33222.0 1.15829 0.579144 0.815225i \(-0.303387\pi\)
0.579144 + 0.815225i \(0.303387\pi\)
\(938\) 0 0
\(939\) −14274.0 −0.496075
\(940\) 0 0
\(941\) 27846.0 0.964669 0.482335 0.875987i \(-0.339789\pi\)
0.482335 + 0.875987i \(0.339789\pi\)
\(942\) 0 0
\(943\) −2256.00 −0.0779061
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −41052.0 −1.40867 −0.704335 0.709868i \(-0.748755\pi\)
−0.704335 + 0.709868i \(0.748755\pi\)
\(948\) 0 0
\(949\) 73852.0 2.52617
\(950\) 0 0
\(951\) 13122.0 0.447434
\(952\) 0 0
\(953\) −5706.00 −0.193951 −0.0969756 0.995287i \(-0.530917\pi\)
−0.0969756 + 0.995287i \(0.530917\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −11592.0 −0.391553
\(958\) 0 0
\(959\) −36720.0 −1.23644
\(960\) 0 0
\(961\) −23391.0 −0.785170
\(962\) 0 0
\(963\) 15228.0 0.509570
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 39352.0 1.30866 0.654330 0.756209i \(-0.272951\pi\)
0.654330 + 0.756209i \(0.272951\pi\)
\(968\) 0 0
\(969\) 22632.0 0.750304
\(970\) 0 0
\(971\) −33180.0 −1.09660 −0.548299 0.836282i \(-0.684724\pi\)
−0.548299 + 0.836282i \(0.684724\pi\)
\(972\) 0 0
\(973\) 12384.0 0.408030
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4014.00 0.131442 0.0657212 0.997838i \(-0.479065\pi\)
0.0657212 + 0.997838i \(0.479065\pi\)
\(978\) 0 0
\(979\) 6888.00 0.224864
\(980\) 0 0
\(981\) 3654.00 0.118923
\(982\) 0 0
\(983\) −20328.0 −0.659575 −0.329788 0.944055i \(-0.606977\pi\)
−0.329788 + 0.944055i \(0.606977\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 17280.0 0.557273
\(988\) 0 0
\(989\) 32.0000 0.00102886
\(990\) 0 0
\(991\) 11728.0 0.375936 0.187968 0.982175i \(-0.439810\pi\)
0.187968 + 0.982175i \(0.439810\pi\)
\(992\) 0 0
\(993\) 23412.0 0.748195
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −50974.0 −1.61922 −0.809610 0.586968i \(-0.800321\pi\)
−0.809610 + 0.586968i \(0.800321\pi\)
\(998\) 0 0
\(999\) 810.000 0.0256529
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.4.a.h.1.1 1
3.2 odd 2 1800.4.a.bg.1.1 1
4.3 odd 2 1200.4.a.u.1.1 1
5.2 odd 4 600.4.f.b.49.2 2
5.3 odd 4 600.4.f.b.49.1 2
5.4 even 2 24.4.a.a.1.1 1
15.2 even 4 1800.4.f.q.649.2 2
15.8 even 4 1800.4.f.q.649.1 2
15.14 odd 2 72.4.a.b.1.1 1
20.3 even 4 1200.4.f.p.49.2 2
20.7 even 4 1200.4.f.p.49.1 2
20.19 odd 2 48.4.a.b.1.1 1
35.34 odd 2 1176.4.a.a.1.1 1
40.19 odd 2 192.4.a.g.1.1 1
40.29 even 2 192.4.a.a.1.1 1
45.4 even 6 648.4.i.b.217.1 2
45.14 odd 6 648.4.i.k.217.1 2
45.29 odd 6 648.4.i.k.433.1 2
45.34 even 6 648.4.i.b.433.1 2
60.59 even 2 144.4.a.b.1.1 1
80.19 odd 4 768.4.d.b.385.1 2
80.29 even 4 768.4.d.o.385.2 2
80.59 odd 4 768.4.d.b.385.2 2
80.69 even 4 768.4.d.o.385.1 2
120.29 odd 2 576.4.a.u.1.1 1
120.59 even 2 576.4.a.v.1.1 1
140.139 even 2 2352.4.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.4.a.a.1.1 1 5.4 even 2
48.4.a.b.1.1 1 20.19 odd 2
72.4.a.b.1.1 1 15.14 odd 2
144.4.a.b.1.1 1 60.59 even 2
192.4.a.a.1.1 1 40.29 even 2
192.4.a.g.1.1 1 40.19 odd 2
576.4.a.u.1.1 1 120.29 odd 2
576.4.a.v.1.1 1 120.59 even 2
600.4.a.h.1.1 1 1.1 even 1 trivial
600.4.f.b.49.1 2 5.3 odd 4
600.4.f.b.49.2 2 5.2 odd 4
648.4.i.b.217.1 2 45.4 even 6
648.4.i.b.433.1 2 45.34 even 6
648.4.i.k.217.1 2 45.14 odd 6
648.4.i.k.433.1 2 45.29 odd 6
768.4.d.b.385.1 2 80.19 odd 4
768.4.d.b.385.2 2 80.59 odd 4
768.4.d.o.385.1 2 80.69 even 4
768.4.d.o.385.2 2 80.29 even 4
1176.4.a.a.1.1 1 35.34 odd 2
1200.4.a.u.1.1 1 4.3 odd 2
1200.4.f.p.49.1 2 20.7 even 4
1200.4.f.p.49.2 2 20.3 even 4
1800.4.a.bg.1.1 1 3.2 odd 2
1800.4.f.q.649.1 2 15.8 even 4
1800.4.f.q.649.2 2 15.2 even 4
2352.4.a.w.1.1 1 140.139 even 2