Properties

Label 600.3.l.e
Level $600$
Weight $3$
Character orbit 600.l
Analytic conductor $16.349$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(401,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.574198272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} - 34x^{3} + 81x^{2} + 156x + 198 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + ( - \beta_{5} - \beta_{4} + \beta_{3} + \cdots - 2) q^{7} + ( - \beta_{5} + \beta_{2} - \beta_1 + 3) q^{9} + (2 \beta_{2} - \beta_1 + 1) q^{11} + (\beta_{5} + \beta_{4} - \beta_{3} + \cdots - 4) q^{13}+ \cdots + (\beta_{5} + 3 \beta_{3} - 7 \beta_{2} + \cdots - 42) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 10 q^{7} + 16 q^{9} - 26 q^{13} + 50 q^{19} - 18 q^{21} - 26 q^{27} - 114 q^{31} - 82 q^{33} - 76 q^{37} - 6 q^{39} - 2 q^{43} + 76 q^{49} - 6 q^{51} - 172 q^{57} + 62 q^{61} + 150 q^{63}+ \cdots - 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} - 34x^{3} + 81x^{2} + 156x + 198 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -8\nu^{5} + 5\nu^{4} + 26\nu^{3} + 529\nu^{2} - 2760\nu + 267 ) / 885 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 32\nu^{5} - 20\nu^{4} - 104\nu^{3} - 1231\nu^{2} + 420\nu + 702 ) / 885 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -46\nu^{5} + 250\nu^{4} + 592\nu^{3} + 608\nu^{2} - 10560\nu - 11961 ) / 885 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -64\nu^{5} + 40\nu^{4} + 208\nu^{3} + 1577\nu^{2} - 840\nu + 366 ) / 885 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 72\nu^{5} + 250\nu^{4} - 234\nu^{3} - 3286\nu^{2} - 7020\nu - 2403 ) / 885 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} - 3\beta_{2} - 4\beta _1 + 4 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} - 2\beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{5} - 5\beta_{4} + 4\beta_{3} + \beta_{2} - 6\beta _1 + 49 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{5} - 4\beta_{4} - 17\beta_{2} - 9\beta _1 + 26 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -6\beta_{5} - 96\beta_{4} + 13\beta_{3} - 110\beta_{2} - 22\beta _1 + 293 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
3.56627 0.139571i
3.56627 + 0.139571i
−0.788754 0.994180i
−0.788754 + 0.994180i
−1.77752 2.54797i
−1.77752 + 2.54797i
0 −2.56627 1.55378i 0 0 0 1.34301 0 4.17150 + 7.97487i 0
401.2 0 −2.56627 + 1.55378i 0 0 0 1.34301 0 4.17150 7.97487i 0
401.3 0 1.78875 2.40839i 0 0 0 −12.2014 0 −2.60072 8.61605i 0
401.4 0 1.78875 + 2.40839i 0 0 0 −12.2014 0 −2.60072 + 8.61605i 0
401.5 0 2.77752 1.13375i 0 0 0 5.85843 0 6.42922 6.29803i 0
401.6 0 2.77752 + 1.13375i 0 0 0 5.85843 0 6.42922 + 6.29803i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 401.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.3.l.e yes 6
3.b odd 2 1 inner 600.3.l.e yes 6
4.b odd 2 1 1200.3.l.v 6
5.b even 2 1 600.3.l.d 6
5.c odd 4 2 600.3.c.c 12
12.b even 2 1 1200.3.l.v 6
15.d odd 2 1 600.3.l.d 6
15.e even 4 2 600.3.c.c 12
20.d odd 2 1 1200.3.l.w 6
20.e even 4 2 1200.3.c.l 12
60.h even 2 1 1200.3.l.w 6
60.l odd 4 2 1200.3.c.l 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.3.c.c 12 5.c odd 4 2
600.3.c.c 12 15.e even 4 2
600.3.l.d 6 5.b even 2 1
600.3.l.d 6 15.d odd 2 1
600.3.l.e yes 6 1.a even 1 1 trivial
600.3.l.e yes 6 3.b odd 2 1 inner
1200.3.c.l 12 20.e even 4 2
1200.3.c.l 12 60.l odd 4 2
1200.3.l.v 6 4.b odd 2 1
1200.3.l.v 6 12.b even 2 1
1200.3.l.w 6 20.d odd 2 1
1200.3.l.w 6 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} + 5T_{7}^{2} - 80T_{7} + 96 \) acting on \(S_{3}^{\mathrm{new}}(600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 4 T^{5} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} + 5 T^{2} - 80 T + 96)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 246 T^{4} + \cdots + 161312 \) Copy content Toggle raw display
$13$ \( (T^{3} + 13 T^{2} + \cdots - 540)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 1174 T^{4} + \cdots + 9435168 \) Copy content Toggle raw display
$19$ \( (T^{3} - 25 T^{2} + \cdots + 877)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 2680 T^{4} + \cdots + 423055872 \) Copy content Toggle raw display
$29$ \( T^{6} + 2616 T^{4} + \cdots + 37601792 \) Copy content Toggle raw display
$31$ \( (T^{3} + 57 T^{2} + \cdots - 1804)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 38 T^{2} + \cdots - 69696)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 4806 T^{4} + \cdots + 22418208 \) Copy content Toggle raw display
$43$ \( (T^{3} + T^{2} + \cdots - 59628)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 187644280832 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 24652657152 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 91824979968 \) Copy content Toggle raw display
$61$ \( (T^{3} - 31 T^{2} + \cdots + 117664)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 211 T^{2} + \cdots + 324893)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 15890452992 \) Copy content Toggle raw display
$73$ \( (T^{3} + 36 T^{2} + \cdots - 210978)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 38 T^{2} + \cdots + 370080)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 5206 T^{4} + \cdots + 1152 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 5739061248 \) Copy content Toggle raw display
$97$ \( (T^{3} - 235 T^{2} + \cdots + 613636)^{2} \) Copy content Toggle raw display
show more
show less