Defining parameters
Level: | \( N \) | \(=\) | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 600.bl (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 75 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Sturm bound: | \(360\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(600, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 992 | 240 | 752 |
Cusp forms | 928 | 240 | 688 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(600, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(600, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)