Properties

Label 600.2.w.k.293.3
Level $600$
Weight $2$
Character 600.293
Analytic conductor $4.791$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 293.3
Character \(\chi\) \(=\) 600.293
Dual form 600.2.w.k.557.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30189 - 0.552337i) q^{2} +(-1.65680 + 0.504984i) q^{3} +(1.38985 + 1.43817i) q^{4} +(2.43590 + 0.257678i) q^{6} +(-2.83719 + 2.83719i) q^{7} +(-1.01508 - 2.64000i) q^{8} +(2.48998 - 1.67332i) q^{9} -4.74897 q^{11} +(-3.02895 - 1.68091i) q^{12} +(0.867956 - 0.867956i) q^{13} +(5.26080 - 2.12663i) q^{14} +(-0.136650 + 3.99767i) q^{16} +(1.73117 + 1.73117i) q^{17} +(-4.16592 + 0.803169i) q^{18} -3.35370 q^{19} +(3.26792 - 6.13340i) q^{21} +(6.18265 + 2.62303i) q^{22} +(4.82662 - 4.82662i) q^{23} +(3.01494 + 3.86136i) q^{24} +(-1.60939 + 0.650581i) q^{26} +(-3.28041 + 4.02976i) q^{27} +(-8.02362 - 0.137093i) q^{28} -0.936190i q^{29} +5.49627 q^{31} +(2.38596 - 5.12905i) q^{32} +(7.86810 - 2.39815i) q^{33} +(-1.29761 - 3.20999i) q^{34} +(5.86720 + 1.25535i) q^{36} +(-0.749350 - 0.749350i) q^{37} +(4.36616 + 1.85238i) q^{38} +(-0.999726 + 1.87633i) q^{39} +2.24103i q^{41} +(-7.64219 + 6.18003i) q^{42} +(8.75448 - 8.75448i) q^{43} +(-6.60034 - 6.82981i) q^{44} +(-8.94967 + 3.61782i) q^{46} +(-6.71219 - 6.71219i) q^{47} +(-1.79236 - 6.69234i) q^{48} -9.09930i q^{49} +(-3.74242 - 1.99399i) q^{51} +(2.45459 + 0.0419396i) q^{52} +(-8.46720 - 8.46720i) q^{53} +(6.49652 - 3.43442i) q^{54} +(10.3702 + 4.61022i) q^{56} +(5.55642 - 1.69357i) q^{57} +(-0.517093 + 1.21882i) q^{58} -6.53585i q^{59} -5.10959i q^{61} +(-7.15555 - 3.03579i) q^{62} +(-2.31703 + 11.8121i) q^{63} +(-5.93923 + 5.35962i) q^{64} +(-11.5680 - 1.22370i) q^{66} +(4.85678 + 4.85678i) q^{67} +(-0.0836501 + 4.89577i) q^{68} +(-5.55939 + 10.4341i) q^{69} -8.34435i q^{71} +(-6.94509 - 4.87501i) q^{72} +(-1.57561 - 1.57561i) q^{73} +(0.561679 + 1.38947i) q^{74} +(-4.66114 - 4.82319i) q^{76} +(13.4737 - 13.4737i) q^{77} +(2.33791 - 1.89060i) q^{78} -7.75267i q^{79} +(3.40002 - 8.33306i) q^{81} +(1.23780 - 2.91758i) q^{82} +(9.15657 + 9.15657i) q^{83} +(13.3628 - 3.82466i) q^{84} +(-16.2328 + 6.56196i) q^{86} +(0.472761 + 1.55108i) q^{87} +(4.82057 + 12.5373i) q^{88} -4.97996 q^{89} +4.92511i q^{91} +(13.6498 + 0.233222i) q^{92} +(-9.10622 + 2.77553i) q^{93} +(5.03116 + 12.4459i) q^{94} +(-1.36297 + 9.70270i) q^{96} +(1.42918 - 1.42918i) q^{97} +(-5.02588 + 11.8463i) q^{98} +(-11.8248 + 7.94653i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 12 q^{6} - 40 q^{16} + 32 q^{31} - 84 q^{36} - 128 q^{46} - 180 q^{66} + 168 q^{76} + 48 q^{81} + 228 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30189 0.552337i −0.920577 0.390561i
\(3\) −1.65680 + 0.504984i −0.956555 + 0.291553i
\(4\) 1.38985 + 1.43817i 0.694924 + 0.719084i
\(5\) 0 0
\(6\) 2.43590 + 0.257678i 0.994451 + 0.105197i
\(7\) −2.83719 + 2.83719i −1.07236 + 1.07236i −0.0751879 + 0.997169i \(0.523956\pi\)
−0.997169 + 0.0751879i \(0.976044\pi\)
\(8\) −1.01508 2.64000i −0.358884 0.933382i
\(9\) 2.48998 1.67332i 0.829994 0.557772i
\(10\) 0 0
\(11\) −4.74897 −1.43187 −0.715934 0.698168i \(-0.753999\pi\)
−0.715934 + 0.698168i \(0.753999\pi\)
\(12\) −3.02895 1.68091i −0.874383 0.485236i
\(13\) 0.867956 0.867956i 0.240728 0.240728i −0.576424 0.817151i \(-0.695552\pi\)
0.817151 + 0.576424i \(0.195552\pi\)
\(14\) 5.26080 2.12663i 1.40601 0.568366i
\(15\) 0 0
\(16\) −0.136650 + 3.99767i −0.0341624 + 0.999416i
\(17\) 1.73117 + 1.73117i 0.419870 + 0.419870i 0.885159 0.465289i \(-0.154050\pi\)
−0.465289 + 0.885159i \(0.654050\pi\)
\(18\) −4.16592 + 0.803169i −0.981918 + 0.189309i
\(19\) −3.35370 −0.769392 −0.384696 0.923043i \(-0.625694\pi\)
−0.384696 + 0.923043i \(0.625694\pi\)
\(20\) 0 0
\(21\) 3.26792 6.13340i 0.713120 1.33842i
\(22\) 6.18265 + 2.62303i 1.31814 + 0.559232i
\(23\) 4.82662 4.82662i 1.00642 1.00642i 0.00644154 0.999979i \(-0.497950\pi\)
0.999979 0.00644154i \(-0.00205042\pi\)
\(24\) 3.01494 + 3.86136i 0.615423 + 0.788197i
\(25\) 0 0
\(26\) −1.60939 + 0.650581i −0.315627 + 0.127589i
\(27\) −3.28041 + 4.02976i −0.631314 + 0.775527i
\(28\) −8.02362 0.137093i −1.51632 0.0259081i
\(29\) 0.936190i 0.173846i −0.996215 0.0869231i \(-0.972297\pi\)
0.996215 0.0869231i \(-0.0277034\pi\)
\(30\) 0 0
\(31\) 5.49627 0.987159 0.493579 0.869701i \(-0.335688\pi\)
0.493579 + 0.869701i \(0.335688\pi\)
\(32\) 2.38596 5.12905i 0.421783 0.906697i
\(33\) 7.86810 2.39815i 1.36966 0.417465i
\(34\) −1.29761 3.20999i −0.222538 0.550508i
\(35\) 0 0
\(36\) 5.86720 + 1.25535i 0.977867 + 0.209226i
\(37\) −0.749350 0.749350i −0.123192 0.123192i 0.642823 0.766015i \(-0.277763\pi\)
−0.766015 + 0.642823i \(0.777763\pi\)
\(38\) 4.36616 + 1.85238i 0.708285 + 0.300495i
\(39\) −0.999726 + 1.87633i −0.160084 + 0.300454i
\(40\) 0 0
\(41\) 2.24103i 0.349990i 0.984569 + 0.174995i \(0.0559909\pi\)
−0.984569 + 0.174995i \(0.944009\pi\)
\(42\) −7.64219 + 6.18003i −1.17922 + 0.953599i
\(43\) 8.75448 8.75448i 1.33505 1.33505i 0.434256 0.900789i \(-0.357011\pi\)
0.900789 0.434256i \(-0.142989\pi\)
\(44\) −6.60034 6.82981i −0.995039 1.02963i
\(45\) 0 0
\(46\) −8.94967 + 3.61782i −1.31956 + 0.533419i
\(47\) −6.71219 6.71219i −0.979073 0.979073i 0.0207122 0.999785i \(-0.493407\pi\)
−0.999785 + 0.0207122i \(0.993407\pi\)
\(48\) −1.79236 6.69234i −0.258704 0.965957i
\(49\) 9.09930i 1.29990i
\(50\) 0 0
\(51\) −3.74242 1.99399i −0.524043 0.279214i
\(52\) 2.45459 + 0.0419396i 0.340391 + 0.00581598i
\(53\) −8.46720 8.46720i −1.16306 1.16306i −0.983802 0.179258i \(-0.942630\pi\)
−0.179258 0.983802i \(-0.557370\pi\)
\(54\) 6.49652 3.43442i 0.884064 0.467365i
\(55\) 0 0
\(56\) 10.3702 + 4.61022i 1.38577 + 0.616067i
\(57\) 5.55642 1.69357i 0.735966 0.224319i
\(58\) −0.517093 + 1.21882i −0.0678976 + 0.160039i
\(59\) 6.53585i 0.850895i −0.904983 0.425448i \(-0.860117\pi\)
0.904983 0.425448i \(-0.139883\pi\)
\(60\) 0 0
\(61\) 5.10959i 0.654216i −0.944987 0.327108i \(-0.893926\pi\)
0.944987 0.327108i \(-0.106074\pi\)
\(62\) −7.15555 3.03579i −0.908756 0.385546i
\(63\) −2.31703 + 11.8121i −0.291919 + 1.48818i
\(64\) −5.93923 + 5.35962i −0.742404 + 0.669952i
\(65\) 0 0
\(66\) −11.5680 1.22370i −1.42392 0.150628i
\(67\) 4.85678 + 4.85678i 0.593350 + 0.593350i 0.938535 0.345185i \(-0.112184\pi\)
−0.345185 + 0.938535i \(0.612184\pi\)
\(68\) −0.0836501 + 4.89577i −0.0101441 + 0.593699i
\(69\) −5.55939 + 10.4341i −0.669272 + 1.25612i
\(70\) 0 0
\(71\) 8.34435i 0.990292i −0.868810 0.495146i \(-0.835115\pi\)
0.868810 0.495146i \(-0.164885\pi\)
\(72\) −6.94509 4.87501i −0.818487 0.574526i
\(73\) −1.57561 1.57561i −0.184411 0.184411i 0.608864 0.793275i \(-0.291626\pi\)
−0.793275 + 0.608864i \(0.791626\pi\)
\(74\) 0.561679 + 1.38947i 0.0652939 + 0.161522i
\(75\) 0 0
\(76\) −4.66114 4.82319i −0.534669 0.553258i
\(77\) 13.4737 13.4737i 1.53547 1.53547i
\(78\) 2.33791 1.89060i 0.264716 0.214068i
\(79\) 7.75267i 0.872243i −0.899888 0.436122i \(-0.856352\pi\)
0.899888 0.436122i \(-0.143648\pi\)
\(80\) 0 0
\(81\) 3.40002 8.33306i 0.377780 0.925895i
\(82\) 1.23780 2.91758i 0.136693 0.322193i
\(83\) 9.15657 + 9.15657i 1.00506 + 1.00506i 0.999987 + 0.00507654i \(0.00161592\pi\)
0.00507654 + 0.999987i \(0.498384\pi\)
\(84\) 13.3628 3.82466i 1.45800 0.417305i
\(85\) 0 0
\(86\) −16.2328 + 6.56196i −1.75043 + 0.707595i
\(87\) 0.472761 + 1.55108i 0.0506853 + 0.166293i
\(88\) 4.82057 + 12.5373i 0.513875 + 1.33648i
\(89\) −4.97996 −0.527875 −0.263938 0.964540i \(-0.585021\pi\)
−0.263938 + 0.964540i \(0.585021\pi\)
\(90\) 0 0
\(91\) 4.92511i 0.516292i
\(92\) 13.6498 + 0.233222i 1.42309 + 0.0243151i
\(93\) −9.10622 + 2.77553i −0.944272 + 0.287809i
\(94\) 5.03116 + 12.4459i 0.518924 + 1.28370i
\(95\) 0 0
\(96\) −1.36297 + 9.70270i −0.139108 + 0.990277i
\(97\) 1.42918 1.42918i 0.145112 0.145112i −0.630819 0.775930i \(-0.717281\pi\)
0.775930 + 0.630819i \(0.217281\pi\)
\(98\) −5.02588 + 11.8463i −0.507691 + 1.19666i
\(99\) −11.8248 + 7.94653i −1.18844 + 0.798657i
\(100\) 0 0
\(101\) 4.79140 0.476762 0.238381 0.971172i \(-0.423383\pi\)
0.238381 + 0.971172i \(0.423383\pi\)
\(102\) 3.77087 + 4.66304i 0.373372 + 0.461709i
\(103\) 1.07832 + 1.07832i 0.106250 + 0.106250i 0.758233 0.651983i \(-0.226063\pi\)
−0.651983 + 0.758233i \(0.726063\pi\)
\(104\) −3.17245 1.41036i −0.311084 0.138297i
\(105\) 0 0
\(106\) 6.34663 + 15.7001i 0.616440 + 1.52493i
\(107\) −6.51086 + 6.51086i −0.629429 + 0.629429i −0.947924 0.318496i \(-0.896822\pi\)
0.318496 + 0.947924i \(0.396822\pi\)
\(108\) −10.3547 + 0.882973i −0.996384 + 0.0849641i
\(109\) 8.99273 0.861347 0.430674 0.902508i \(-0.358276\pi\)
0.430674 + 0.902508i \(0.358276\pi\)
\(110\) 0 0
\(111\) 1.61993 + 0.863114i 0.153757 + 0.0819232i
\(112\) −10.9544 11.7298i −1.03510 1.10837i
\(113\) −6.80391 + 6.80391i −0.640058 + 0.640058i −0.950570 0.310511i \(-0.899500\pi\)
0.310511 + 0.950570i \(0.399500\pi\)
\(114\) −8.16928 0.864176i −0.765123 0.0809375i
\(115\) 0 0
\(116\) 1.34640 1.30116i 0.125010 0.120810i
\(117\) 0.708829 3.61356i 0.0655312 0.334074i
\(118\) −3.60999 + 8.50897i −0.332327 + 0.783314i
\(119\) −9.82331 −0.900502
\(120\) 0 0
\(121\) 11.5527 1.05025
\(122\) −2.82222 + 6.65214i −0.255512 + 0.602256i
\(123\) −1.13168 3.71294i −0.102041 0.334784i
\(124\) 7.63897 + 7.90455i 0.686000 + 0.709850i
\(125\) 0 0
\(126\) 9.54078 14.0983i 0.849960 1.25597i
\(127\) 0.0736760 0.0736760i 0.00653769 0.00653769i −0.703830 0.710368i \(-0.748528\pi\)
0.710368 + 0.703830i \(0.248528\pi\)
\(128\) 10.6926 3.69719i 0.945098 0.326788i
\(129\) −10.0836 + 18.9253i −0.887808 + 1.66628i
\(130\) 0 0
\(131\) −13.2979 −1.16184 −0.580922 0.813959i \(-0.697308\pi\)
−0.580922 + 0.813959i \(0.697308\pi\)
\(132\) 14.3844 + 7.98257i 1.25200 + 0.694794i
\(133\) 9.51510 9.51510i 0.825064 0.825064i
\(134\) −3.64043 9.00559i −0.314485 0.777964i
\(135\) 0 0
\(136\) 2.81302 6.32756i 0.241214 0.542584i
\(137\) 0.613004 + 0.613004i 0.0523724 + 0.0523724i 0.732808 0.680436i \(-0.238209\pi\)
−0.680436 + 0.732808i \(0.738209\pi\)
\(138\) 13.0009 10.5135i 1.10671 0.894965i
\(139\) 17.5621 1.48960 0.744798 0.667290i \(-0.232546\pi\)
0.744798 + 0.667290i \(0.232546\pi\)
\(140\) 0 0
\(141\) 14.5103 + 7.73121i 1.22199 + 0.651086i
\(142\) −4.60890 + 10.8634i −0.386770 + 0.911640i
\(143\) −4.12189 + 4.12189i −0.344690 + 0.344690i
\(144\) 6.34911 + 10.1828i 0.529092 + 0.848564i
\(145\) 0 0
\(146\) 1.18100 + 2.92154i 0.0977407 + 0.241788i
\(147\) 4.59501 + 15.0757i 0.378990 + 1.24343i
\(148\) 0.0362086 2.11917i 0.00297633 0.174195i
\(149\) 2.68064i 0.219607i 0.993953 + 0.109803i \(0.0350221\pi\)
−0.993953 + 0.109803i \(0.964978\pi\)
\(150\) 0 0
\(151\) −15.6429 −1.27300 −0.636502 0.771275i \(-0.719619\pi\)
−0.636502 + 0.771275i \(0.719619\pi\)
\(152\) 3.40427 + 8.85379i 0.276123 + 0.718137i
\(153\) 7.20738 + 1.41378i 0.582682 + 0.114298i
\(154\) −24.9834 + 10.0993i −2.01322 + 0.813825i
\(155\) 0 0
\(156\) −4.08795 + 1.17004i −0.327298 + 0.0936785i
\(157\) −14.1557 14.1557i −1.12975 1.12975i −0.990217 0.139534i \(-0.955440\pi\)
−0.139534 0.990217i \(-0.544560\pi\)
\(158\) −4.28209 + 10.0931i −0.340665 + 0.802967i
\(159\) 18.3043 + 9.75267i 1.45162 + 0.773437i
\(160\) 0 0
\(161\) 27.3881i 2.15849i
\(162\) −9.02912 + 8.97079i −0.709394 + 0.704812i
\(163\) −5.09399 + 5.09399i −0.398992 + 0.398992i −0.877878 0.478885i \(-0.841041\pi\)
0.478885 + 0.877878i \(0.341041\pi\)
\(164\) −3.22297 + 3.11469i −0.251672 + 0.243216i
\(165\) 0 0
\(166\) −6.86335 16.9784i −0.532699 1.31778i
\(167\) 13.7751 + 13.7751i 1.06595 + 1.06595i 0.997666 + 0.0682869i \(0.0217533\pi\)
0.0682869 + 0.997666i \(0.478247\pi\)
\(168\) −19.5094 2.40145i −1.50518 0.185276i
\(169\) 11.4933i 0.884100i
\(170\) 0 0
\(171\) −8.35066 + 5.61181i −0.638591 + 0.429146i
\(172\) 24.7578 + 0.423016i 1.88776 + 0.0322547i
\(173\) 7.07803 + 7.07803i 0.538133 + 0.538133i 0.922980 0.384848i \(-0.125746\pi\)
−0.384848 + 0.922980i \(0.625746\pi\)
\(174\) 0.241236 2.28046i 0.0182880 0.172882i
\(175\) 0 0
\(176\) 0.648945 18.9848i 0.0489161 1.43103i
\(177\) 3.30050 + 10.8286i 0.248081 + 0.813928i
\(178\) 6.48338 + 2.75062i 0.485950 + 0.206168i
\(179\) 2.82136i 0.210879i −0.994426 0.105439i \(-0.966375\pi\)
0.994426 0.105439i \(-0.0336249\pi\)
\(180\) 0 0
\(181\) 14.0239i 1.04239i −0.853439 0.521194i \(-0.825487\pi\)
0.853439 0.521194i \(-0.174513\pi\)
\(182\) 2.72032 6.41197i 0.201644 0.475287i
\(183\) 2.58026 + 8.46558i 0.190739 + 0.625794i
\(184\) −17.6417 7.84290i −1.30056 0.578186i
\(185\) 0 0
\(186\) 13.3884 + 1.41627i 0.981682 + 0.103846i
\(187\) −8.22127 8.22127i −0.601199 0.601199i
\(188\) 0.324333 18.9822i 0.0236544 1.38442i
\(189\) −2.12605 20.7403i −0.154647 1.50864i
\(190\) 0 0
\(191\) 26.2648i 1.90045i −0.311563 0.950225i \(-0.600853\pi\)
0.311563 0.950225i \(-0.399147\pi\)
\(192\) 7.13361 11.8790i 0.514824 0.857296i
\(193\) −8.27030 8.27030i −0.595309 0.595309i 0.343752 0.939061i \(-0.388302\pi\)
−0.939061 + 0.343752i \(0.888302\pi\)
\(194\) −2.65003 + 1.07125i −0.190261 + 0.0769114i
\(195\) 0 0
\(196\) 13.0863 12.6466i 0.934737 0.903332i
\(197\) 2.99822 2.99822i 0.213614 0.213614i −0.592187 0.805801i \(-0.701735\pi\)
0.805801 + 0.592187i \(0.201735\pi\)
\(198\) 19.7838 3.81423i 1.40598 0.271065i
\(199\) 6.70234i 0.475116i −0.971373 0.237558i \(-0.923653\pi\)
0.971373 0.237558i \(-0.0763470\pi\)
\(200\) 0 0
\(201\) −10.4993 5.59412i −0.740565 0.394579i
\(202\) −6.23789 2.64647i −0.438896 0.186205i
\(203\) 2.65615 + 2.65615i 0.186425 + 0.186425i
\(204\) −2.33370 8.15356i −0.163391 0.570864i
\(205\) 0 0
\(206\) −0.808260 1.99945i −0.0563142 0.139308i
\(207\) 3.94173 20.0947i 0.273969 1.39668i
\(208\) 3.35119 + 3.58840i 0.232363 + 0.248811i
\(209\) 15.9266 1.10167
\(210\) 0 0
\(211\) 9.44133i 0.649968i 0.945720 + 0.324984i \(0.105359\pi\)
−0.945720 + 0.324984i \(0.894641\pi\)
\(212\) 0.409135 23.9454i 0.0280995 1.64457i
\(213\) 4.21377 + 13.8249i 0.288722 + 0.947269i
\(214\) 12.0726 4.88025i 0.825268 0.333607i
\(215\) 0 0
\(216\) 13.9684 + 4.56977i 0.950432 + 0.310933i
\(217\) −15.5940 + 15.5940i −1.05859 + 1.05859i
\(218\) −11.7076 4.96702i −0.792936 0.336409i
\(219\) 3.40613 + 1.81481i 0.230165 + 0.122634i
\(220\) 0 0
\(221\) 3.00516 0.202149
\(222\) −1.63225 2.01843i −0.109549 0.135468i
\(223\) −17.3049 17.3049i −1.15882 1.15882i −0.984729 0.174091i \(-0.944301\pi\)
−0.174091 0.984729i \(-0.555699\pi\)
\(224\) 7.78267 + 21.3215i 0.520002 + 1.42460i
\(225\) 0 0
\(226\) 12.6160 5.09991i 0.839205 0.339241i
\(227\) −6.96809 + 6.96809i −0.462489 + 0.462489i −0.899470 0.436982i \(-0.856047\pi\)
0.436982 + 0.899470i \(0.356047\pi\)
\(228\) 10.1582 + 5.63726i 0.672744 + 0.373337i
\(229\) −2.90511 −0.191975 −0.0959874 0.995383i \(-0.530601\pi\)
−0.0959874 + 0.995383i \(0.530601\pi\)
\(230\) 0 0
\(231\) −15.5193 + 29.1273i −1.02109 + 1.91644i
\(232\) −2.47155 + 0.950306i −0.162265 + 0.0623907i
\(233\) 0.413436 0.413436i 0.0270851 0.0270851i −0.693435 0.720520i \(-0.743903\pi\)
0.720520 + 0.693435i \(0.243903\pi\)
\(234\) −2.91872 + 4.31295i −0.190803 + 0.281947i
\(235\) 0 0
\(236\) 9.39964 9.08383i 0.611865 0.591307i
\(237\) 3.91498 + 12.8446i 0.254305 + 0.834349i
\(238\) 12.7889 + 5.42578i 0.828981 + 0.351701i
\(239\) −8.34435 −0.539751 −0.269876 0.962895i \(-0.586983\pi\)
−0.269876 + 0.962895i \(0.586983\pi\)
\(240\) 0 0
\(241\) −15.4459 −0.994960 −0.497480 0.867475i \(-0.665741\pi\)
−0.497480 + 0.867475i \(0.665741\pi\)
\(242\) −15.0404 6.38099i −0.966832 0.410186i
\(243\) −1.42509 + 15.5232i −0.0914196 + 0.995812i
\(244\) 7.34845 7.10155i 0.470436 0.454630i
\(245\) 0 0
\(246\) −0.577464 + 5.45892i −0.0368177 + 0.348048i
\(247\) −2.91087 + 2.91087i −0.185214 + 0.185214i
\(248\) −5.57914 14.5102i −0.354276 0.921396i
\(249\) −19.7945 10.5467i −1.25443 0.668369i
\(250\) 0 0
\(251\) 19.6634 1.24114 0.620572 0.784150i \(-0.286901\pi\)
0.620572 + 0.784150i \(0.286901\pi\)
\(252\) −20.2081 + 13.0847i −1.27299 + 0.824258i
\(253\) −22.9215 + 22.9215i −1.44106 + 1.44106i
\(254\) −0.136612 + 0.0552242i −0.00857181 + 0.00346508i
\(255\) 0 0
\(256\) −15.9627 1.09256i −0.997666 0.0682849i
\(257\) −13.1156 13.1156i −0.818128 0.818128i 0.167709 0.985837i \(-0.446363\pi\)
−0.985837 + 0.167709i \(0.946363\pi\)
\(258\) 23.5809 19.0692i 1.46808 1.18720i
\(259\) 4.25210 0.264212
\(260\) 0 0
\(261\) −1.56654 2.33110i −0.0969666 0.144291i
\(262\) 17.3125 + 7.34494i 1.06957 + 0.453772i
\(263\) 9.08999 9.08999i 0.560513 0.560513i −0.368940 0.929453i \(-0.620279\pi\)
0.929453 + 0.368940i \(0.120279\pi\)
\(264\) −14.3179 18.3375i −0.881204 1.12859i
\(265\) 0 0
\(266\) −17.6432 + 7.13209i −1.08177 + 0.437297i
\(267\) 8.25081 2.51480i 0.504941 0.153903i
\(268\) −0.234680 + 13.7350i −0.0143353 + 0.839002i
\(269\) 11.3272i 0.690635i 0.938486 + 0.345317i \(0.112229\pi\)
−0.938486 + 0.345317i \(0.887771\pi\)
\(270\) 0 0
\(271\) 2.39400 0.145425 0.0727126 0.997353i \(-0.476834\pi\)
0.0727126 + 0.997353i \(0.476834\pi\)
\(272\) −7.15720 + 6.68407i −0.433969 + 0.405281i
\(273\) −2.48710 8.15993i −0.150526 0.493862i
\(274\) −0.459480 1.13665i −0.0277582 0.0686675i
\(275\) 0 0
\(276\) −22.7327 + 6.50651i −1.36835 + 0.391646i
\(277\) −2.60387 2.60387i −0.156451 0.156451i 0.624541 0.780992i \(-0.285286\pi\)
−0.780992 + 0.624541i \(0.785286\pi\)
\(278\) −22.8639 9.70018i −1.37129 0.581778i
\(279\) 13.6856 9.19700i 0.819336 0.550610i
\(280\) 0 0
\(281\) 12.9461i 0.772301i 0.922436 + 0.386151i \(0.126195\pi\)
−0.922436 + 0.386151i \(0.873805\pi\)
\(282\) −14.6206 18.0798i −0.870646 1.07664i
\(283\) 1.95205 1.95205i 0.116037 0.116037i −0.646704 0.762741i \(-0.723853\pi\)
0.762741 + 0.646704i \(0.223853\pi\)
\(284\) 12.0006 11.5974i 0.712103 0.688177i
\(285\) 0 0
\(286\) 7.64294 3.08959i 0.451936 0.182691i
\(287\) −6.35823 6.35823i −0.375314 0.375314i
\(288\) −2.64153 16.7637i −0.155654 0.987812i
\(289\) 11.0061i 0.647418i
\(290\) 0 0
\(291\) −1.64616 + 3.08959i −0.0964995 + 0.181115i
\(292\) 0.0761334 4.45584i 0.00445537 0.260758i
\(293\) −17.2193 17.2193i −1.00596 1.00596i −0.999982 0.00597927i \(-0.998097\pi\)
−0.00597927 0.999982i \(-0.501903\pi\)
\(294\) 2.34469 22.1650i 0.136745 1.29269i
\(295\) 0 0
\(296\) −1.21764 + 2.73893i −0.0707737 + 0.159197i
\(297\) 15.5785 19.1372i 0.903959 1.11045i
\(298\) 1.48062 3.48991i 0.0857699 0.202165i
\(299\) 8.37859i 0.484547i
\(300\) 0 0
\(301\) 49.6763i 2.86329i
\(302\) 20.3654 + 8.64018i 1.17190 + 0.497186i
\(303\) −7.93840 + 2.41958i −0.456049 + 0.139001i
\(304\) 0.458282 13.4070i 0.0262843 0.768943i
\(305\) 0 0
\(306\) −8.60234 5.82150i −0.491763 0.332793i
\(307\) −7.34204 7.34204i −0.419033 0.419033i 0.465838 0.884870i \(-0.345753\pi\)
−0.884870 + 0.465838i \(0.845753\pi\)
\(308\) 38.1039 + 0.651051i 2.17117 + 0.0370970i
\(309\) −2.33110 1.24203i −0.132611 0.0706565i
\(310\) 0 0
\(311\) 21.9193i 1.24293i 0.783442 + 0.621465i \(0.213462\pi\)
−0.783442 + 0.621465i \(0.786538\pi\)
\(312\) 5.96833 + 0.734655i 0.337890 + 0.0415916i
\(313\) −14.8922 14.8922i −0.841759 0.841759i 0.147329 0.989088i \(-0.452933\pi\)
−0.989088 + 0.147329i \(0.952933\pi\)
\(314\) 10.6105 + 26.2480i 0.598786 + 1.48126i
\(315\) 0 0
\(316\) 11.1496 10.7750i 0.627216 0.606142i
\(317\) −17.6185 + 17.6185i −0.989556 + 0.989556i −0.999946 0.0103899i \(-0.996693\pi\)
0.0103899 + 0.999946i \(0.496693\pi\)
\(318\) −18.4434 22.8071i −1.03426 1.27896i
\(319\) 4.44594i 0.248925i
\(320\) 0 0
\(321\) 7.49932 14.0751i 0.418571 0.785595i
\(322\) 15.1275 35.6564i 0.843021 1.98705i
\(323\) −5.80583 5.80583i −0.323045 0.323045i
\(324\) 16.7098 6.69188i 0.928324 0.371771i
\(325\) 0 0
\(326\) 9.44543 3.81823i 0.523134 0.211472i
\(327\) −14.8992 + 4.54119i −0.823926 + 0.251128i
\(328\) 5.91632 2.27482i 0.326674 0.125606i
\(329\) 38.0875 2.09983
\(330\) 0 0
\(331\) 7.13080i 0.391944i −0.980609 0.195972i \(-0.937214\pi\)
0.980609 0.195972i \(-0.0627862\pi\)
\(332\) −0.442445 + 25.8949i −0.0242823 + 1.42117i
\(333\) −3.11977 0.611967i −0.170962 0.0335356i
\(334\) −10.3252 25.5423i −0.564971 1.39761i
\(335\) 0 0
\(336\) 24.0727 + 13.9022i 1.31327 + 0.758427i
\(337\) 18.6144 18.6144i 1.01399 1.01399i 0.0140911 0.999901i \(-0.495515\pi\)
0.999901 0.0140911i \(-0.00448549\pi\)
\(338\) 6.34818 14.9630i 0.345295 0.813882i
\(339\) 7.83687 14.7086i 0.425640 0.798862i
\(340\) 0 0
\(341\) −26.1016 −1.41348
\(342\) 13.9713 2.69359i 0.755480 0.145653i
\(343\) 5.95612 + 5.95612i 0.321600 + 0.321600i
\(344\) −31.9983 14.2254i −1.72523 0.766981i
\(345\) 0 0
\(346\) −5.30537 13.1243i −0.285219 0.705566i
\(347\) 1.56152 1.56152i 0.0838269 0.0838269i −0.663950 0.747777i \(-0.731121\pi\)
0.747777 + 0.663950i \(0.231121\pi\)
\(348\) −1.57365 + 2.83568i −0.0843564 + 0.152008i
\(349\) 26.5812 1.42286 0.711430 0.702757i \(-0.248048\pi\)
0.711430 + 0.702757i \(0.248048\pi\)
\(350\) 0 0
\(351\) 0.650403 + 6.34490i 0.0347159 + 0.338666i
\(352\) −11.3309 + 24.3577i −0.603937 + 1.29827i
\(353\) −6.51124 + 6.51124i −0.346558 + 0.346558i −0.858826 0.512268i \(-0.828806\pi\)
0.512268 + 0.858826i \(0.328806\pi\)
\(354\) 1.68414 15.9207i 0.0895113 0.846174i
\(355\) 0 0
\(356\) −6.92139 7.16202i −0.366833 0.379586i
\(357\) 16.2753 4.96062i 0.861379 0.262544i
\(358\) −1.55834 + 3.67311i −0.0823611 + 0.194130i
\(359\) 9.82331 0.518455 0.259227 0.965816i \(-0.416532\pi\)
0.259227 + 0.965816i \(0.416532\pi\)
\(360\) 0 0
\(361\) −7.75267 −0.408035
\(362\) −7.74591 + 18.2576i −0.407116 + 0.959597i
\(363\) −19.1405 + 5.83393i −1.00462 + 0.306202i
\(364\) −7.08313 + 6.84515i −0.371257 + 0.358784i
\(365\) 0 0
\(366\) 1.31663 12.4465i 0.0688213 0.650586i
\(367\) −0.983469 + 0.983469i −0.0513367 + 0.0513367i −0.732309 0.680972i \(-0.761557\pi\)
0.680972 + 0.732309i \(0.261557\pi\)
\(368\) 18.6357 + 19.9548i 0.971452 + 1.04022i
\(369\) 3.74995 + 5.58012i 0.195215 + 0.290489i
\(370\) 0 0
\(371\) 48.0461 2.49443
\(372\) −16.6479 9.23871i −0.863155 0.479005i
\(373\) 18.9116 18.9116i 0.979205 0.979205i −0.0205831 0.999788i \(-0.506552\pi\)
0.999788 + 0.0205831i \(0.00655226\pi\)
\(374\) 6.16229 + 15.2441i 0.318645 + 0.788255i
\(375\) 0 0
\(376\) −10.9068 + 24.5336i −0.562475 + 1.26522i
\(377\) −0.812572 0.812572i −0.0418496 0.0418496i
\(378\) −8.68777 + 28.1760i −0.446851 + 1.44922i
\(379\) −24.3755 −1.25209 −0.626043 0.779788i \(-0.715327\pi\)
−0.626043 + 0.779788i \(0.715327\pi\)
\(380\) 0 0
\(381\) −0.0848613 + 0.159272i −0.00434758 + 0.00815974i
\(382\) −14.5070 + 34.1939i −0.742243 + 1.74951i
\(383\) 15.0463 15.0463i 0.768831 0.768831i −0.209070 0.977901i \(-0.567043\pi\)
0.977901 + 0.209070i \(0.0670435\pi\)
\(384\) −15.8484 + 11.5251i −0.808762 + 0.588137i
\(385\) 0 0
\(386\) 6.19904 + 15.3350i 0.315523 + 0.780532i
\(387\) 7.14947 36.4475i 0.363428 1.85273i
\(388\) 4.04175 + 0.0690581i 0.205189 + 0.00350589i
\(389\) 3.98314i 0.201953i −0.994889 0.100977i \(-0.967803\pi\)
0.994889 0.100977i \(-0.0321967\pi\)
\(390\) 0 0
\(391\) 16.7114 0.845132
\(392\) −24.0222 + 9.23650i −1.21330 + 0.466514i
\(393\) 22.0320 6.71524i 1.11137 0.338739i
\(394\) −5.55939 + 2.24733i −0.280078 + 0.113219i
\(395\) 0 0
\(396\) −27.8632 5.96164i −1.40018 0.299584i
\(397\) 18.0470 + 18.0470i 0.905755 + 0.905755i 0.995926 0.0901716i \(-0.0287416\pi\)
−0.0901716 + 0.995926i \(0.528742\pi\)
\(398\) −3.70195 + 8.72572i −0.185562 + 0.437381i
\(399\) −10.9597 + 20.5696i −0.548669 + 1.02977i
\(400\) 0 0
\(401\) 22.6814i 1.13265i −0.824181 0.566327i \(-0.808364\pi\)
0.824181 0.566327i \(-0.191636\pi\)
\(402\) 10.5791 + 13.0821i 0.527640 + 0.652477i
\(403\) 4.77052 4.77052i 0.237636 0.237636i
\(404\) 6.65931 + 6.89083i 0.331313 + 0.342832i
\(405\) 0 0
\(406\) −1.99093 4.92511i −0.0988082 0.244429i
\(407\) 3.55864 + 3.55864i 0.176395 + 0.176395i
\(408\) −1.46530 + 11.9040i −0.0725429 + 0.589338i
\(409\) 1.51280i 0.0748032i 0.999300 + 0.0374016i \(0.0119081\pi\)
−0.999300 + 0.0374016i \(0.988092\pi\)
\(410\) 0 0
\(411\) −1.32518 0.706068i −0.0653664 0.0348278i
\(412\) −0.0521044 + 3.04950i −0.00256700 + 0.150238i
\(413\) 18.5435 + 18.5435i 0.912464 + 0.912464i
\(414\) −16.2308 + 23.9839i −0.797698 + 1.17875i
\(415\) 0 0
\(416\) −2.38088 6.52270i −0.116732 0.319802i
\(417\) −29.0969 + 8.86857i −1.42488 + 0.434296i
\(418\) −20.7348 8.79687i −1.01417 0.430269i
\(419\) 11.4558i 0.559653i 0.960051 + 0.279827i \(0.0902770\pi\)
−0.960051 + 0.279827i \(0.909723\pi\)
\(420\) 0 0
\(421\) 18.1975i 0.886894i −0.896301 0.443447i \(-0.853755\pi\)
0.896301 0.443447i \(-0.146245\pi\)
\(422\) 5.21480 12.2916i 0.253852 0.598345i
\(423\) −27.9448 5.48161i −1.35873 0.266525i
\(424\) −13.7586 + 30.9483i −0.668175 + 1.50298i
\(425\) 0 0
\(426\) 2.15015 20.3260i 0.104175 0.984797i
\(427\) 14.4969 + 14.4969i 0.701554 + 0.701554i
\(428\) −18.4128 0.314605i −0.890017 0.0152070i
\(429\) 4.74767 8.91065i 0.229220 0.430210i
\(430\) 0 0
\(431\) 33.4688i 1.61214i −0.591822 0.806069i \(-0.701591\pi\)
0.591822 0.806069i \(-0.298409\pi\)
\(432\) −15.6613 13.6646i −0.753507 0.657440i
\(433\) 16.3942 + 16.3942i 0.787853 + 0.787853i 0.981142 0.193289i \(-0.0619153\pi\)
−0.193289 + 0.981142i \(0.561915\pi\)
\(434\) 28.9148 11.6885i 1.38795 0.561068i
\(435\) 0 0
\(436\) 12.4985 + 12.9330i 0.598570 + 0.619381i
\(437\) −16.1871 + 16.1871i −0.774333 + 0.774333i
\(438\) −3.43202 4.24402i −0.163988 0.202787i
\(439\) 24.1557i 1.15289i 0.817136 + 0.576445i \(0.195561\pi\)
−0.817136 + 0.576445i \(0.804439\pi\)
\(440\) 0 0
\(441\) −15.2260 22.6571i −0.725049 1.07891i
\(442\) −3.91239 1.65986i −0.186093 0.0789515i
\(443\) 4.83418 + 4.83418i 0.229679 + 0.229679i 0.812558 0.582880i \(-0.198074\pi\)
−0.582880 + 0.812558i \(0.698074\pi\)
\(444\) 1.01016 + 3.52933i 0.0479400 + 0.167495i
\(445\) 0 0
\(446\) 12.9710 + 32.0872i 0.614193 + 1.51937i
\(447\) −1.35368 4.44129i −0.0640269 0.210066i
\(448\) 1.64448 32.0570i 0.0776942 1.51455i
\(449\) −8.70564 −0.410845 −0.205422 0.978673i \(-0.565857\pi\)
−0.205422 + 0.978673i \(0.565857\pi\)
\(450\) 0 0
\(451\) 10.6426i 0.501139i
\(452\) −19.2416 0.328765i −0.905047 0.0154638i
\(453\) 25.9172 7.89944i 1.21770 0.371148i
\(454\) 12.9204 5.22297i 0.606386 0.245126i
\(455\) 0 0
\(456\) −10.1112 12.9499i −0.473502 0.606433i
\(457\) −5.80514 + 5.80514i −0.271553 + 0.271553i −0.829725 0.558172i \(-0.811503\pi\)
0.558172 + 0.829725i \(0.311503\pi\)
\(458\) 3.78214 + 1.60460i 0.176728 + 0.0749780i
\(459\) −12.6551 + 1.29725i −0.590691 + 0.0605505i
\(460\) 0 0
\(461\) 20.6299 0.960829 0.480415 0.877042i \(-0.340486\pi\)
0.480415 + 0.877042i \(0.340486\pi\)
\(462\) 36.2925 29.3488i 1.68848 1.36543i
\(463\) −9.79796 9.79796i −0.455350 0.455350i 0.441776 0.897126i \(-0.354349\pi\)
−0.897126 + 0.441776i \(0.854349\pi\)
\(464\) 3.74257 + 0.127930i 0.173745 + 0.00593900i
\(465\) 0 0
\(466\) −0.766605 + 0.309893i −0.0355123 + 0.0143555i
\(467\) 17.9061 17.9061i 0.828593 0.828593i −0.158729 0.987322i \(-0.550740\pi\)
0.987322 + 0.158729i \(0.0507395\pi\)
\(468\) 6.18207 4.00288i 0.285766 0.185033i
\(469\) −27.5592 −1.27257
\(470\) 0 0
\(471\) 30.6017 + 16.3048i 1.41005 + 0.751287i
\(472\) −17.2547 + 6.63440i −0.794210 + 0.305373i
\(473\) −41.5747 + 41.5747i −1.91161 + 1.91161i
\(474\) 1.99769 18.8847i 0.0917570 0.867404i
\(475\) 0 0
\(476\) −13.6529 14.1276i −0.625780 0.647536i
\(477\) −35.2515 6.91486i −1.61406 0.316610i
\(478\) 10.8634 + 4.60890i 0.496882 + 0.210806i
\(479\) −18.1677 −0.830102 −0.415051 0.909798i \(-0.636236\pi\)
−0.415051 + 0.909798i \(0.636236\pi\)
\(480\) 0 0
\(481\) −1.30081 −0.0593116
\(482\) 20.1089 + 8.53137i 0.915937 + 0.388593i
\(483\) −13.8306 45.3767i −0.629312 2.06471i
\(484\) 16.0565 + 16.6147i 0.729841 + 0.755215i
\(485\) 0 0
\(486\) 10.4293 19.4224i 0.473085 0.881017i
\(487\) −2.60795 + 2.60795i −0.118177 + 0.118177i −0.763722 0.645545i \(-0.776630\pi\)
0.645545 + 0.763722i \(0.276630\pi\)
\(488\) −13.4893 + 5.18664i −0.610634 + 0.234788i
\(489\) 5.86735 11.0121i 0.265331 0.497985i
\(490\) 0 0
\(491\) −10.4772 −0.472829 −0.236415 0.971652i \(-0.575972\pi\)
−0.236415 + 0.971652i \(0.575972\pi\)
\(492\) 3.76696 6.78797i 0.169828 0.306025i
\(493\) 1.62070 1.62070i 0.0729928 0.0729928i
\(494\) 5.39742 2.18186i 0.242841 0.0981663i
\(495\) 0 0
\(496\) −0.751063 + 21.9722i −0.0337237 + 0.986583i
\(497\) 23.6745 + 23.6745i 1.06195 + 1.06195i
\(498\) 19.9450 + 24.6639i 0.893758 + 1.10522i
\(499\) 16.6637 0.745969 0.372984 0.927838i \(-0.378335\pi\)
0.372984 + 0.927838i \(0.378335\pi\)
\(500\) 0 0
\(501\) −29.7789 15.8664i −1.33042 0.708861i
\(502\) −25.5996 10.8608i −1.14257 0.484743i
\(503\) 11.7513 11.7513i 0.523965 0.523965i −0.394802 0.918766i \(-0.629187\pi\)
0.918766 + 0.394802i \(0.129187\pi\)
\(504\) 33.5359 5.87320i 1.49381 0.261613i
\(505\) 0 0
\(506\) 42.5017 17.1809i 1.88943 0.763785i
\(507\) −5.80394 19.0421i −0.257762 0.845690i
\(508\) 0.208357 + 0.00356002i 0.00924434 + 0.000157951i
\(509\) 16.9269i 0.750272i 0.926970 + 0.375136i \(0.122404\pi\)
−0.926970 + 0.375136i \(0.877596\pi\)
\(510\) 0 0
\(511\) 8.94060 0.395509
\(512\) 20.1782 + 10.2392i 0.891759 + 0.452511i
\(513\) 11.0015 13.5146i 0.485729 0.596685i
\(514\) 9.83086 + 24.3193i 0.433620 + 1.07268i
\(515\) 0 0
\(516\) −41.2324 + 11.8014i −1.81515 + 0.519530i
\(517\) 31.8760 + 31.8760i 1.40190 + 1.40190i
\(518\) −5.53577 2.34859i −0.243228 0.103191i
\(519\) −15.3012 8.15260i −0.671647 0.357859i
\(520\) 0 0
\(521\) 17.4056i 0.762553i 0.924461 + 0.381277i \(0.124515\pi\)
−0.924461 + 0.381277i \(0.875485\pi\)
\(522\) 0.751919 + 3.90010i 0.0329106 + 0.170703i
\(523\) −22.7980 + 22.7980i −0.996888 + 0.996888i −0.999995 0.00310741i \(-0.999011\pi\)
0.00310741 + 0.999995i \(0.499011\pi\)
\(524\) −18.4821 19.1246i −0.807393 0.835464i
\(525\) 0 0
\(526\) −16.8549 + 6.81345i −0.734910 + 0.297081i
\(527\) 9.51497 + 9.51497i 0.414479 + 0.414479i
\(528\) 8.51185 + 31.7817i 0.370431 + 1.38312i
\(529\) 23.5926i 1.02577i
\(530\) 0 0
\(531\) −10.9366 16.2741i −0.474606 0.706238i
\(532\) 26.9088 + 0.459769i 1.16665 + 0.0199335i
\(533\) 1.94511 + 1.94511i 0.0842522 + 0.0842522i
\(534\) −12.1307 1.28323i −0.524946 0.0555306i
\(535\) 0 0
\(536\) 7.89191 17.7519i 0.340878 0.766767i
\(537\) 1.42474 + 4.67444i 0.0614823 + 0.201717i
\(538\) 6.25646 14.7469i 0.269735 0.635782i
\(539\) 43.2123i 1.86129i
\(540\) 0 0
\(541\) 2.53614i 0.109037i 0.998513 + 0.0545187i \(0.0173624\pi\)
−0.998513 + 0.0545187i \(0.982638\pi\)
\(542\) −3.11673 1.32230i −0.133875 0.0567975i
\(543\) 7.08184 + 23.2348i 0.303911 + 0.997100i
\(544\) 13.0098 4.74875i 0.557789 0.203601i
\(545\) 0 0
\(546\) −1.26909 + 11.9971i −0.0543122 + 0.513427i
\(547\) −14.4630 14.4630i −0.618394 0.618394i 0.326726 0.945119i \(-0.394055\pi\)
−0.945119 + 0.326726i \(0.894055\pi\)
\(548\) −0.0296203 + 1.73358i −0.00126532 + 0.0740550i
\(549\) −8.54997 12.7228i −0.364904 0.542996i
\(550\) 0 0
\(551\) 3.13970i 0.133756i
\(552\) 33.1893 + 4.08535i 1.41263 + 0.173884i
\(553\) 21.9958 + 21.9958i 0.935357 + 0.935357i
\(554\) 1.95174 + 4.82817i 0.0829216 + 0.205129i
\(555\) 0 0
\(556\) 24.4086 + 25.2572i 1.03515 + 1.07114i
\(557\) −17.5535 + 17.5535i −0.743767 + 0.743767i −0.973301 0.229533i \(-0.926280\pi\)
0.229533 + 0.973301i \(0.426280\pi\)
\(558\) −22.8970 + 4.41443i −0.969309 + 0.186878i
\(559\) 15.1970i 0.642765i
\(560\) 0 0
\(561\) 17.7726 + 9.46940i 0.750361 + 0.399798i
\(562\) 7.15063 16.8545i 0.301631 0.710963i
\(563\) −14.6880 14.6880i −0.619024 0.619024i 0.326257 0.945281i \(-0.394212\pi\)
−0.945281 + 0.326257i \(0.894212\pi\)
\(564\) 9.04834 + 31.6135i 0.381004 + 1.33117i
\(565\) 0 0
\(566\) −3.61955 + 1.46317i −0.152141 + 0.0615016i
\(567\) 13.9960 + 33.2890i 0.587776 + 1.39801i
\(568\) −22.0291 + 8.47017i −0.924321 + 0.355400i
\(569\) −27.6388 −1.15868 −0.579338 0.815087i \(-0.696689\pi\)
−0.579338 + 0.815087i \(0.696689\pi\)
\(570\) 0 0
\(571\) 2.71823i 0.113754i −0.998381 0.0568772i \(-0.981886\pi\)
0.998381 0.0568772i \(-0.0181143\pi\)
\(572\) −11.6568 0.199170i −0.487394 0.00832771i
\(573\) 13.2633 + 43.5155i 0.554082 + 1.81789i
\(574\) 4.76584 + 11.7896i 0.198922 + 0.492089i
\(575\) 0 0
\(576\) −5.82024 + 23.2836i −0.242510 + 0.970149i
\(577\) 6.19740 6.19740i 0.258001 0.258001i −0.566240 0.824241i \(-0.691602\pi\)
0.824241 + 0.566240i \(0.191602\pi\)
\(578\) −6.07908 + 14.3288i −0.252856 + 0.595998i
\(579\) 17.8786 + 9.52587i 0.743010 + 0.395882i
\(580\) 0 0
\(581\) −51.9578 −2.15557
\(582\) 3.84961 3.11308i 0.159572 0.129041i
\(583\) 40.2105 + 40.2105i 1.66535 + 1.66535i
\(584\) −2.56024 + 5.75897i −0.105944 + 0.238308i
\(585\) 0 0
\(586\) 12.9068 + 31.9285i 0.533175 + 1.31895i
\(587\) 23.7301 23.7301i 0.979448 0.979448i −0.0203450 0.999793i \(-0.506476\pi\)
0.999793 + 0.0203450i \(0.00647647\pi\)
\(588\) −15.2951 + 27.5614i −0.630758 + 1.13661i
\(589\) −18.4329 −0.759513
\(590\) 0 0
\(591\) −3.45340 + 6.48151i −0.142054 + 0.266614i
\(592\) 3.09805 2.89325i 0.127329 0.118912i
\(593\) −1.82747 + 1.82747i −0.0750452 + 0.0750452i −0.743633 0.668588i \(-0.766899\pi\)
0.668588 + 0.743633i \(0.266899\pi\)
\(594\) −30.8518 + 16.3099i −1.26586 + 0.669205i
\(595\) 0 0
\(596\) −3.85521 + 3.72568i −0.157916 + 0.152610i
\(597\) 3.38458 + 11.1044i 0.138521 + 0.454475i
\(598\) −4.62781 + 10.9080i −0.189245 + 0.446062i
\(599\) −20.1671 −0.824006 −0.412003 0.911182i \(-0.635171\pi\)
−0.412003 + 0.911182i \(0.635171\pi\)
\(600\) 0 0
\(601\) 17.2324 0.702924 0.351462 0.936202i \(-0.385685\pi\)
0.351462 + 0.936202i \(0.385685\pi\)
\(602\) 27.4380 64.6731i 1.11829 2.63588i
\(603\) 20.2202 + 3.96636i 0.823432 + 0.161523i
\(604\) −21.7413 22.4972i −0.884641 0.915397i
\(605\) 0 0
\(606\) 11.6714 + 1.23464i 0.474117 + 0.0501537i
\(607\) 20.5409 20.5409i 0.833729 0.833729i −0.154296 0.988025i \(-0.549311\pi\)
0.988025 + 0.154296i \(0.0493109\pi\)
\(608\) −8.00181 + 17.2013i −0.324516 + 0.697606i
\(609\) −5.74203 3.05940i −0.232679 0.123973i
\(610\) 0 0
\(611\) −11.6518 −0.471380
\(612\) 7.98389 + 12.3304i 0.322730 + 0.498425i
\(613\) 17.7138 17.7138i 0.715452 0.715452i −0.252218 0.967670i \(-0.581160\pi\)
0.967670 + 0.252218i \(0.0811602\pi\)
\(614\) 5.50327 + 13.6138i 0.222094 + 0.549410i
\(615\) 0 0
\(616\) −49.2476 21.8938i −1.98424 0.882126i
\(617\) −13.8378 13.8378i −0.557089 0.557089i 0.371388 0.928478i \(-0.378882\pi\)
−0.928478 + 0.371388i \(0.878882\pi\)
\(618\) 2.34882 + 2.90454i 0.0944833 + 0.116838i
\(619\) −4.67429 −0.187876 −0.0939378 0.995578i \(-0.529945\pi\)
−0.0939378 + 0.995578i \(0.529945\pi\)
\(620\) 0 0
\(621\) 3.61683 + 35.2834i 0.145138 + 1.41587i
\(622\) 12.1068 28.5366i 0.485440 1.14421i
\(623\) 14.1291 14.1291i 0.566071 0.566071i
\(624\) −7.36434 4.25297i −0.294810 0.170255i
\(625\) 0 0
\(626\) 11.1626 + 27.6136i 0.446145 + 1.10366i
\(627\) −26.3873 + 8.04270i −1.05381 + 0.321195i
\(628\) 0.684005 40.0326i 0.0272948 1.59748i
\(629\) 2.59450i 0.103450i
\(630\) 0 0
\(631\) −26.9009 −1.07091 −0.535455 0.844564i \(-0.679860\pi\)
−0.535455 + 0.844564i \(0.679860\pi\)
\(632\) −20.4671 + 7.86956i −0.814136 + 0.313034i
\(633\) −4.76772 15.6424i −0.189500 0.621730i
\(634\) 32.6688 13.2061i 1.29744 0.524480i
\(635\) 0 0
\(636\) 11.4142 + 39.8793i 0.452602 + 1.58132i
\(637\) −7.89779 7.89779i −0.312922 0.312922i
\(638\) 2.45566 5.78813i 0.0972204 0.229154i
\(639\) −13.9627 20.7773i −0.552358 0.821936i
\(640\) 0 0
\(641\) 19.6466i 0.775995i −0.921660 0.387998i \(-0.873167\pi\)
0.921660 0.387998i \(-0.126833\pi\)
\(642\) −17.5375 + 14.1821i −0.692150 + 0.559723i
\(643\) 18.4955 18.4955i 0.729392 0.729392i −0.241107 0.970499i \(-0.577510\pi\)
0.970499 + 0.241107i \(0.0775103\pi\)
\(644\) −39.3887 + 38.0653i −1.55213 + 1.49998i
\(645\) 0 0
\(646\) 4.35179 + 10.7653i 0.171219 + 0.423557i
\(647\) 14.8338 + 14.8338i 0.583178 + 0.583178i 0.935775 0.352597i \(-0.114701\pi\)
−0.352597 + 0.935775i \(0.614701\pi\)
\(648\) −25.4506 0.517352i −0.999793 0.0203235i
\(649\) 31.0385i 1.21837i
\(650\) 0 0
\(651\) 17.9614 33.7108i 0.703962 1.32123i
\(652\) −14.4059 0.246142i −0.564178 0.00963965i
\(653\) −9.72818 9.72818i −0.380693 0.380693i 0.490659 0.871352i \(-0.336756\pi\)
−0.871352 + 0.490659i \(0.836756\pi\)
\(654\) 21.9054 + 2.31723i 0.856568 + 0.0906108i
\(655\) 0 0
\(656\) −8.95888 0.306236i −0.349786 0.0119565i
\(657\) −6.55973 1.28674i −0.255919 0.0502006i
\(658\) −49.5858 21.0372i −1.93306 0.820114i
\(659\) 28.9095i 1.12616i −0.826404 0.563078i \(-0.809617\pi\)
0.826404 0.563078i \(-0.190383\pi\)
\(660\) 0 0
\(661\) 39.6271i 1.54131i −0.637250 0.770657i \(-0.719928\pi\)
0.637250 0.770657i \(-0.280072\pi\)
\(662\) −3.93860 + 9.28353i −0.153078 + 0.360815i
\(663\) −4.97895 + 1.51756i −0.193366 + 0.0589370i
\(664\) 14.8787 33.4680i 0.577407 1.29881i
\(665\) 0 0
\(666\) 3.72359 + 2.51988i 0.144286 + 0.0976434i
\(667\) −4.51864 4.51864i −0.174962 0.174962i
\(668\) −0.665615 + 38.9563i −0.0257534 + 1.50726i
\(669\) 37.4095 + 19.9321i 1.44633 + 0.770618i
\(670\) 0 0
\(671\) 24.2653i 0.936751i
\(672\) −23.6614 31.3954i −0.912758 1.21110i
\(673\) 25.5135 + 25.5135i 0.983475 + 0.983475i 0.999866 0.0163909i \(-0.00521761\pi\)
−0.0163909 + 0.999866i \(0.505218\pi\)
\(674\) −34.5154 + 13.9525i −1.32948 + 0.537431i
\(675\) 0 0
\(676\) −16.5293 + 15.9739i −0.635742 + 0.614382i
\(677\) 5.46898 5.46898i 0.210190 0.210190i −0.594158 0.804348i \(-0.702515\pi\)
0.804348 + 0.594158i \(0.202515\pi\)
\(678\) −18.3269 + 14.8204i −0.703839 + 0.569175i
\(679\) 8.10973i 0.311223i
\(680\) 0 0
\(681\) 8.02597 15.0635i 0.307556 0.577235i
\(682\) 33.9815 + 14.4169i 1.30122 + 0.552051i
\(683\) −5.47421 5.47421i −0.209465 0.209465i 0.594575 0.804040i \(-0.297320\pi\)
−0.804040 + 0.594575i \(0.797320\pi\)
\(684\) −19.6769 4.21009i −0.752364 0.160977i
\(685\) 0 0
\(686\) −4.46444 11.0440i −0.170453 0.421663i
\(687\) 4.81318 1.46703i 0.183634 0.0559708i
\(688\) 33.8012 + 36.1938i 1.28866 + 1.37987i
\(689\) −14.6983 −0.559961
\(690\) 0 0
\(691\) 20.5069i 0.780118i −0.920790 0.390059i \(-0.872455\pi\)
0.920790 0.390059i \(-0.127545\pi\)
\(692\) −0.342010 + 20.0168i −0.0130013 + 0.760923i
\(693\) 11.0035 56.0952i 0.417989 2.13088i
\(694\) −2.89542 + 1.17045i −0.109909 + 0.0444296i
\(695\) 0 0
\(696\) 3.61497 2.82256i 0.137025 0.106989i
\(697\) −3.87960 + 3.87960i −0.146950 + 0.146950i
\(698\) −34.6059 14.6818i −1.30985 0.555714i
\(699\) −0.476202 + 0.893760i −0.0180116 + 0.0338051i
\(700\) 0 0
\(701\) −32.9176 −1.24328 −0.621641 0.783302i \(-0.713534\pi\)
−0.621641 + 0.783302i \(0.713534\pi\)
\(702\) 2.65777 8.61961i 0.100311 0.325326i
\(703\) 2.51310 + 2.51310i 0.0947833 + 0.0947833i
\(704\) 28.2052 25.4527i 1.06302 0.959283i
\(705\) 0 0
\(706\) 12.0733 4.88053i 0.454386 0.183681i
\(707\) −13.5941 + 13.5941i −0.511259 + 0.511259i
\(708\) −10.9862 + 19.7968i −0.412885 + 0.744009i
\(709\) −31.3218 −1.17632 −0.588158 0.808746i \(-0.700147\pi\)
−0.588158 + 0.808746i \(0.700147\pi\)
\(710\) 0 0
\(711\) −12.9727 19.3040i −0.486513 0.723957i
\(712\) 5.05505 + 13.1471i 0.189446 + 0.492709i
\(713\) 26.5284 26.5284i 0.993497 0.993497i
\(714\) −23.9286 2.53125i −0.895505 0.0947297i
\(715\) 0 0
\(716\) 4.05759 3.92127i 0.151639 0.146545i
\(717\) 13.8249 4.21377i 0.516302 0.157366i
\(718\) −12.7889 5.42578i −0.477277 0.202488i
\(719\) 44.9529 1.67646 0.838230 0.545317i \(-0.183591\pi\)
0.838230 + 0.545317i \(0.183591\pi\)
\(720\) 0 0
\(721\) −6.11880 −0.227876
\(722\) 10.0931 + 4.28209i 0.375628 + 0.159363i
\(723\) 25.5909 7.79996i 0.951734 0.290083i
\(724\) 20.1687 19.4911i 0.749563 0.724379i
\(725\) 0 0
\(726\) 28.1412 + 2.97688i 1.04442 + 0.110482i
\(727\) 19.0849 19.0849i 0.707821 0.707821i −0.258256 0.966077i \(-0.583148\pi\)
0.966077 + 0.258256i \(0.0831477\pi\)
\(728\) 13.0023 4.99937i 0.481898 0.185289i
\(729\) −5.47787 26.4385i −0.202884 0.979203i
\(730\) 0 0
\(731\) 30.3110 1.12109
\(732\) −8.58875 + 15.4767i −0.317449 + 0.572036i
\(733\) −10.9177 + 10.9177i −0.403256 + 0.403256i −0.879379 0.476123i \(-0.842042\pi\)
0.476123 + 0.879379i \(0.342042\pi\)
\(734\) 1.82358 0.737164i 0.0673095 0.0272092i
\(735\) 0 0
\(736\) −13.2399 36.2722i −0.488028 1.33701i
\(737\) −23.0647 23.0647i −0.849599 0.849599i
\(738\) −1.79993 9.33595i −0.0662562 0.343661i
\(739\) −13.6946 −0.503765 −0.251882 0.967758i \(-0.581050\pi\)
−0.251882 + 0.967758i \(0.581050\pi\)
\(740\) 0 0
\(741\) 3.35279 6.29267i 0.123168 0.231167i
\(742\) −62.5509 26.5377i −2.29632 0.974229i
\(743\) 3.15355 3.15355i 0.115692 0.115692i −0.646890 0.762583i \(-0.723931\pi\)
0.762583 + 0.646890i \(0.223931\pi\)
\(744\) 16.5709 + 21.2231i 0.607520 + 0.778076i
\(745\) 0 0
\(746\) −35.0664 + 14.1753i −1.28387 + 0.518994i
\(747\) 38.1215 + 7.47784i 1.39479 + 0.273600i
\(748\) 0.397252 23.2499i 0.0145250 0.850099i
\(749\) 36.9451i 1.34995i
\(750\) 0 0
\(751\) 32.4641 1.18463 0.592315 0.805706i \(-0.298214\pi\)
0.592315 + 0.805706i \(0.298214\pi\)
\(752\) 27.7503 25.9159i 1.01195 0.945054i
\(753\) −32.5784 + 9.92971i −1.18722 + 0.361859i
\(754\) 0.609067 + 1.50669i 0.0221809 + 0.0548706i
\(755\) 0 0
\(756\) 26.8732 31.8835i 0.977368 1.15959i
\(757\) −23.2548 23.2548i −0.845209 0.845209i 0.144322 0.989531i \(-0.453900\pi\)
−0.989531 + 0.144322i \(0.953900\pi\)
\(758\) 31.7343 + 13.4635i 1.15264 + 0.489017i
\(759\) 26.4014 49.5513i 0.958309 1.79860i
\(760\) 0 0
\(761\) 10.7051i 0.388059i −0.980996 0.194030i \(-0.937844\pi\)
0.980996 0.194030i \(-0.0621558\pi\)
\(762\) 0.198452 0.160483i 0.00718916 0.00581367i
\(763\) −25.5141 + 25.5141i −0.923672 + 0.923672i
\(764\) 37.7731 36.5040i 1.36658 1.32067i
\(765\) 0 0
\(766\) −27.8993 + 11.2780i −1.00804 + 0.407492i
\(767\) −5.67283 5.67283i −0.204834 0.204834i
\(768\) 26.9987 6.25074i 0.974231 0.225554i
\(769\) 38.8506i 1.40099i 0.713658 + 0.700495i \(0.247037\pi\)
−0.713658 + 0.700495i \(0.752963\pi\)
\(770\) 0 0
\(771\) 28.3531 + 15.1068i 1.02111 + 0.544057i
\(772\) 0.399621 23.3885i 0.0143827 0.841771i
\(773\) −10.3611 10.3611i −0.372664 0.372664i 0.495783 0.868447i \(-0.334881\pi\)
−0.868447 + 0.495783i \(0.834881\pi\)
\(774\) −29.4392 + 43.5018i −1.05817 + 1.56364i
\(775\) 0 0
\(776\) −5.22378 2.32232i −0.187523 0.0833663i
\(777\) −7.04488 + 2.14724i −0.252734 + 0.0770319i
\(778\) −2.20004 + 5.18562i −0.0788751 + 0.185913i
\(779\) 7.51575i 0.269280i
\(780\) 0 0
\(781\) 39.6271i 1.41797i
\(782\) −21.7565 9.23033i −0.778009 0.330076i
\(783\) 3.77262 + 3.07108i 0.134822 + 0.109752i
\(784\) 36.3760 + 1.24342i 1.29914 + 0.0444077i
\(785\) 0 0
\(786\) −32.3924 3.42658i −1.15540 0.122222i
\(787\) 15.0090 + 15.0090i 0.535014 + 0.535014i 0.922060 0.387046i \(-0.126505\pi\)
−0.387046 + 0.922060i \(0.626505\pi\)
\(788\) 8.47901 + 0.144874i 0.302052 + 0.00516092i
\(789\) −10.4700 + 19.6506i −0.372742 + 0.699581i
\(790\) 0 0
\(791\) 38.6080i 1.37274i
\(792\) 32.9820 + 23.1513i 1.17196 + 0.822645i
\(793\) −4.43490 4.43490i −0.157488 0.157488i
\(794\) −13.5272 33.4633i −0.480064 1.18757i
\(795\) 0 0
\(796\) 9.63908 9.31523i 0.341648 0.330169i
\(797\) 7.93974 7.93974i 0.281240 0.281240i −0.552363 0.833603i \(-0.686274\pi\)
0.833603 + 0.552363i \(0.186274\pi\)
\(798\) 25.6296 20.7260i 0.907280 0.733692i
\(799\) 23.2399i 0.822167i
\(800\) 0 0
\(801\) −12.4000 + 8.33306i −0.438133 + 0.294434i
\(802\) −12.5278 + 29.5287i −0.442371 + 1.04269i
\(803\) 7.48251 + 7.48251i 0.264052 + 0.264052i
\(804\) −6.54717 22.8748i −0.230901 0.806730i
\(805\) 0 0
\(806\) −8.84563 + 3.57577i −0.311574 + 0.125951i
\(807\) −5.72008 18.7670i −0.201356 0.660630i
\(808\) −4.86364 12.6493i −0.171102 0.445001i
\(809\) −1.99039 −0.0699782 −0.0349891 0.999388i \(-0.511140\pi\)
−0.0349891 + 0.999388i \(0.511140\pi\)
\(810\) 0 0
\(811\) 39.1133i 1.37345i −0.726915 0.686727i \(-0.759047\pi\)
0.726915 0.686727i \(-0.240953\pi\)
\(812\) −0.128345 + 7.51163i −0.00450403 + 0.263607i
\(813\) −3.96639 + 1.20893i −0.139107 + 0.0423991i
\(814\) −2.66740 6.59853i −0.0934922 0.231279i
\(815\) 0 0
\(816\) 8.48271 14.6885i 0.296954 0.514199i
\(817\) −29.3599 + 29.3599i −1.02717 + 1.02717i
\(818\) 0.835576 1.96950i 0.0292152 0.0688621i
\(819\) 8.24128 + 12.2634i 0.287973 + 0.428519i
\(820\) 0 0
\(821\) 1.78624 0.0623403 0.0311702 0.999514i \(-0.490077\pi\)
0.0311702 + 0.999514i \(0.490077\pi\)
\(822\) 1.33526 + 1.65117i 0.0465725 + 0.0575913i
\(823\) −14.7321 14.7321i −0.513529 0.513529i 0.402077 0.915606i \(-0.368288\pi\)
−0.915606 + 0.402077i \(0.868288\pi\)
\(824\) 1.75219 3.94135i 0.0610404 0.137303i
\(825\) 0 0
\(826\) −13.8993 34.3838i −0.483620 1.19637i
\(827\) −2.09499 + 2.09499i −0.0728498 + 0.0728498i −0.742593 0.669743i \(-0.766404\pi\)
0.669743 + 0.742593i \(0.266404\pi\)
\(828\) 34.3779 22.2597i 1.19472 0.773577i
\(829\) 2.73512 0.0949945 0.0474973 0.998871i \(-0.484875\pi\)
0.0474973 + 0.998871i \(0.484875\pi\)
\(830\) 0 0
\(831\) 5.62900 + 2.99918i 0.195268 + 0.104040i
\(832\) −0.503080 + 9.80690i −0.0174411 + 0.339993i
\(833\) 15.7524 15.7524i 0.545789 0.545789i
\(834\) 42.7794 + 4.52536i 1.48133 + 0.156700i
\(835\) 0 0
\(836\) 22.1356 + 22.9052i 0.765575 + 0.792192i
\(837\) −18.0300 + 22.1486i −0.623208 + 0.765568i
\(838\) 6.32747 14.9142i 0.218579 0.515204i
\(839\) −20.7869 −0.717643 −0.358821 0.933406i \(-0.616821\pi\)
−0.358821 + 0.933406i \(0.616821\pi\)
\(840\) 0 0
\(841\) 28.1235 0.969778
\(842\) −10.0512 + 23.6912i −0.346387 + 0.816454i
\(843\) −6.53759 21.4492i −0.225167 0.738748i
\(844\) −13.5782 + 13.1220i −0.467381 + 0.451678i
\(845\) 0 0
\(846\) 33.3535 + 22.5714i 1.14672 + 0.776022i
\(847\) −32.7772 + 32.7772i −1.12624 + 1.12624i
\(848\) 35.0061 32.6920i 1.20211 1.12265i
\(849\) −2.24841 + 4.21992i −0.0771651 + 0.144827i
\(850\) 0 0
\(851\) −7.23366 −0.247967
\(852\) −14.0261 + 25.2746i −0.480525 + 0.865895i
\(853\) −12.6345 + 12.6345i −0.432597 + 0.432597i −0.889511 0.456914i \(-0.848955\pi\)
0.456914 + 0.889511i \(0.348955\pi\)
\(854\) −10.8662 26.8806i −0.371834 0.919834i
\(855\) 0 0
\(856\) 23.7977 + 10.5797i 0.813390 + 0.361605i
\(857\) 4.87637 + 4.87637i 0.166574 + 0.166574i 0.785472 0.618898i \(-0.212421\pi\)
−0.618898 + 0.785472i \(0.712421\pi\)
\(858\) −11.1026 + 8.97840i −0.379038 + 0.306517i
\(859\) −55.4601 −1.89227 −0.946136 0.323768i \(-0.895050\pi\)
−0.946136 + 0.323768i \(0.895050\pi\)
\(860\) 0 0
\(861\) 13.7451 + 7.32351i 0.468432 + 0.249585i
\(862\) −18.4861 + 43.5728i −0.629639 + 1.48410i
\(863\) −31.6243 + 31.6243i −1.07650 + 1.07650i −0.0796816 + 0.996820i \(0.525390\pi\)
−0.996820 + 0.0796816i \(0.974610\pi\)
\(864\) 12.8419 + 26.4402i 0.436891 + 0.899515i
\(865\) 0 0
\(866\) −12.2883 30.3985i −0.417575 1.03298i
\(867\) 5.55791 + 18.2349i 0.188757 + 0.619291i
\(868\) −44.0999 0.753500i −1.49685 0.0255755i
\(869\) 36.8172i 1.24894i
\(870\) 0 0
\(871\) 8.43094 0.285672
\(872\) −9.12832 23.7408i −0.309124 0.803966i
\(873\) 1.16716 5.95012i 0.0395025 0.201381i
\(874\) 30.0145 12.1331i 1.01526 0.410408i
\(875\) 0 0
\(876\) 2.12399 + 7.42089i 0.0717630 + 0.250729i
\(877\) 13.4991 + 13.4991i 0.455831 + 0.455831i 0.897284 0.441453i \(-0.145537\pi\)
−0.441453 + 0.897284i \(0.645537\pi\)
\(878\) 13.3421 31.4482i 0.450275 1.06132i
\(879\) 37.2244 + 19.8335i 1.25555 + 0.668966i
\(880\) 0 0
\(881\) 38.0875i 1.28320i 0.767039 + 0.641601i \(0.221729\pi\)
−0.767039 + 0.641601i \(0.778271\pi\)
\(882\) 7.30828 + 37.9070i 0.246083 + 1.27640i
\(883\) −8.86328 + 8.86328i −0.298273 + 0.298273i −0.840337 0.542064i \(-0.817643\pi\)
0.542064 + 0.840337i \(0.317643\pi\)
\(884\) 4.17671 + 4.32192i 0.140478 + 0.145362i
\(885\) 0 0
\(886\) −3.62348 8.96368i −0.121733 0.301141i
\(887\) −27.3410 27.3410i −0.918021 0.918021i 0.0788646 0.996885i \(-0.474871\pi\)
−0.996885 + 0.0788646i \(0.974871\pi\)
\(888\) 0.634264 5.15276i 0.0212845 0.172915i
\(889\) 0.418066i 0.0140215i
\(890\) 0 0
\(891\) −16.1466 + 39.5734i −0.540931 + 1.32576i
\(892\) 0.836172 48.9385i 0.0279971 1.63858i
\(893\) 22.5107 + 22.5107i 0.753292 + 0.753292i
\(894\) −0.690742 + 6.52977i −0.0231019 + 0.218388i
\(895\) 0 0
\(896\) −19.8472 + 40.8265i −0.663049 + 1.36392i
\(897\) 4.23106 + 13.8817i 0.141271 + 0.463495i
\(898\) 11.3338 + 4.80845i 0.378214 + 0.160460i
\(899\) 5.14555i 0.171614i
\(900\) 0 0
\(901\) 29.3163i 0.976668i
\(902\) −5.87829 + 13.8555i −0.195726 + 0.461337i
\(903\) −25.0857 82.3037i −0.834801 2.73890i
\(904\) 24.8689 + 11.0559i 0.827126 + 0.367712i
\(905\) 0 0
\(906\) −38.1046 4.03084i −1.26594 0.133916i
\(907\) 11.1000 + 11.1000i 0.368569 + 0.368569i 0.866955 0.498386i \(-0.166074\pi\)
−0.498386 + 0.866955i \(0.666074\pi\)
\(908\) −19.7059 0.336698i −0.653962 0.0111737i
\(909\) 11.9305 8.01753i 0.395710 0.265925i
\(910\) 0 0
\(911\) 28.8502i 0.955849i 0.878401 + 0.477925i \(0.158611\pi\)
−0.878401 + 0.477925i \(0.841389\pi\)
\(912\) 6.01103 + 22.4441i 0.199045 + 0.743200i
\(913\) −43.4842 43.4842i −1.43912 1.43912i
\(914\) 10.7641 4.35127i 0.356044 0.143927i
\(915\) 0 0
\(916\) −4.03765 4.17803i −0.133408 0.138046i
\(917\) 37.7287 37.7287i 1.24591 1.24591i
\(918\) 17.1921 + 5.30102i 0.567425 + 0.174960i
\(919\) 45.6949i 1.50733i 0.657256 + 0.753667i \(0.271717\pi\)
−0.657256 + 0.753667i \(0.728283\pi\)
\(920\) 0 0
\(921\) 15.8719 + 8.45669i 0.522998 + 0.278657i
\(922\) −26.8579 11.3946i −0.884517 0.375263i
\(923\) −7.24253 7.24253i −0.238391 0.238391i
\(924\) −63.4594 + 18.1632i −2.08766 + 0.597526i
\(925\) 0 0
\(926\) 7.34411 + 18.1677i 0.241342 + 0.597027i
\(927\) 4.48937 + 0.880625i 0.147450 + 0.0289235i
\(928\) −4.80177 2.23371i −0.157626 0.0733253i
\(929\) 55.0325 1.80556 0.902780 0.430103i \(-0.141523\pi\)
0.902780 + 0.430103i \(0.141523\pi\)
\(930\) 0 0
\(931\) 30.5164i 1.00013i
\(932\) 1.16920 + 0.0199772i 0.0382985 + 0.000654375i
\(933\) −11.0689 36.3159i −0.362380 1.18893i
\(934\) −33.2019 + 13.4216i −1.08640 + 0.439167i
\(935\) 0 0
\(936\) −10.2593 + 1.79674i −0.335337 + 0.0587281i
\(937\) 14.5009 14.5009i 0.473724 0.473724i −0.429394 0.903117i \(-0.641273\pi\)
0.903117 + 0.429394i \(0.141273\pi\)
\(938\) 35.8792 + 15.2220i 1.17150 + 0.497016i
\(939\) 32.1938 + 17.1531i 1.05061 + 0.559771i
\(940\) 0 0
\(941\) 55.5572 1.81111 0.905556 0.424226i \(-0.139454\pi\)
0.905556 + 0.424226i \(0.139454\pi\)
\(942\) −30.8343 38.1296i −1.00464 1.24233i
\(943\) 10.8166 + 10.8166i 0.352237 + 0.352237i
\(944\) 26.1281 + 0.893121i 0.850398 + 0.0290686i
\(945\) 0 0
\(946\) 77.0891 31.1626i 2.50638 1.01318i
\(947\) 12.2804 12.2804i 0.399059 0.399059i −0.478842 0.877901i \(-0.658943\pi\)
0.877901 + 0.478842i \(0.158943\pi\)
\(948\) −13.0315 + 23.4825i −0.423244 + 0.762675i
\(949\) −2.73512 −0.0887856
\(950\) 0 0
\(951\) 20.2933 38.0875i 0.658057 1.23507i
\(952\) 9.97143 + 25.9336i 0.323176 + 0.840512i
\(953\) 10.6654 10.6654i 0.345486 0.345486i −0.512939 0.858425i \(-0.671443\pi\)
0.858425 + 0.512939i \(0.171443\pi\)
\(954\) 42.0743 + 28.4731i 1.36221 + 0.921851i
\(955\) 0 0
\(956\) −11.5974 12.0006i −0.375086 0.388126i
\(957\) −2.24513 7.36604i −0.0725747 0.238110i
\(958\) 23.6523 + 10.0347i 0.764173 + 0.324206i
\(959\) −3.47842 −0.112324
\(960\) 0 0
\(961\) −0.791035 −0.0255173
\(962\) 1.69351 + 0.718483i 0.0546009 + 0.0231648i
\(963\) −5.31719 + 27.1067i −0.171344 + 0.873500i
\(964\) −21.4675 22.2138i −0.691421 0.715460i
\(965\) 0 0
\(966\) −7.05731 + 66.7147i −0.227065 + 2.14651i
\(967\) 38.1275 38.1275i 1.22610 1.22610i 0.260670 0.965428i \(-0.416056\pi\)
0.965428 0.260670i \(-0.0839436\pi\)
\(968\) −11.7269 30.4992i −0.376917 0.980281i
\(969\) 12.5510 + 6.68725i 0.403195 + 0.214826i
\(970\) 0 0
\(971\) −30.2255 −0.969981 −0.484991 0.874519i \(-0.661177\pi\)
−0.484991 + 0.874519i \(0.661177\pi\)
\(972\) −24.3056 + 19.5253i −0.779602 + 0.626275i
\(973\) −49.8269 + 49.8269i −1.59738 + 1.59738i
\(974\) 4.83574 1.95480i 0.154947 0.0626359i
\(975\) 0 0
\(976\) 20.4264 + 0.698224i 0.653835 + 0.0223496i
\(977\) −11.0641 11.0641i −0.353972 0.353972i 0.507613 0.861585i \(-0.330528\pi\)
−0.861585 + 0.507613i \(0.830528\pi\)
\(978\) −13.7211 + 11.0958i −0.438751 + 0.354806i
\(979\) 23.6497 0.755847
\(980\) 0 0
\(981\) 22.3917 15.0477i 0.714913 0.480436i
\(982\) 13.6402 + 5.78695i 0.435276 + 0.184669i
\(983\) −9.37350 + 9.37350i −0.298968 + 0.298968i −0.840610 0.541641i \(-0.817803\pi\)
0.541641 + 0.840610i \(0.317803\pi\)
\(984\) −8.65342 + 6.75657i −0.275861 + 0.215392i
\(985\) 0 0
\(986\) −3.00516 + 1.21481i −0.0957037 + 0.0386873i
\(987\) −63.1035 + 19.2336i −2.00861 + 0.612212i
\(988\) −8.23197 0.140653i −0.261894 0.00447477i
\(989\) 84.5092i 2.68724i
\(990\) 0 0
\(991\) −51.4416 −1.63410 −0.817048 0.576569i \(-0.804391\pi\)
−0.817048 + 0.576569i \(0.804391\pi\)
\(992\) 13.1139 28.1907i 0.416366 0.895054i
\(993\) 3.60094 + 11.8143i 0.114272 + 0.374916i
\(994\) −17.7454 43.8980i −0.562848 1.39236i
\(995\) 0 0
\(996\) −12.3435 43.1261i −0.391118 1.36650i
\(997\) −1.26149 1.26149i −0.0399517 0.0399517i 0.686849 0.726800i \(-0.258993\pi\)
−0.726800 + 0.686849i \(0.758993\pi\)
\(998\) −21.6943 9.20397i −0.686721 0.291347i
\(999\) 5.47787 0.561525i 0.173312 0.0177659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.k.293.3 64
3.2 odd 2 inner 600.2.w.k.293.29 yes 64
5.2 odd 4 inner 600.2.w.k.557.20 yes 64
5.3 odd 4 inner 600.2.w.k.557.13 yes 64
5.4 even 2 inner 600.2.w.k.293.30 yes 64
8.5 even 2 inner 600.2.w.k.293.14 yes 64
15.2 even 4 inner 600.2.w.k.557.14 yes 64
15.8 even 4 inner 600.2.w.k.557.19 yes 64
15.14 odd 2 inner 600.2.w.k.293.4 yes 64
24.5 odd 2 inner 600.2.w.k.293.20 yes 64
40.13 odd 4 inner 600.2.w.k.557.4 yes 64
40.29 even 2 inner 600.2.w.k.293.19 yes 64
40.37 odd 4 inner 600.2.w.k.557.29 yes 64
120.29 odd 2 inner 600.2.w.k.293.13 yes 64
120.53 even 4 inner 600.2.w.k.557.30 yes 64
120.77 even 4 inner 600.2.w.k.557.3 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.k.293.3 64 1.1 even 1 trivial
600.2.w.k.293.4 yes 64 15.14 odd 2 inner
600.2.w.k.293.13 yes 64 120.29 odd 2 inner
600.2.w.k.293.14 yes 64 8.5 even 2 inner
600.2.w.k.293.19 yes 64 40.29 even 2 inner
600.2.w.k.293.20 yes 64 24.5 odd 2 inner
600.2.w.k.293.29 yes 64 3.2 odd 2 inner
600.2.w.k.293.30 yes 64 5.4 even 2 inner
600.2.w.k.557.3 yes 64 120.77 even 4 inner
600.2.w.k.557.4 yes 64 40.13 odd 4 inner
600.2.w.k.557.13 yes 64 5.3 odd 4 inner
600.2.w.k.557.14 yes 64 15.2 even 4 inner
600.2.w.k.557.19 yes 64 15.8 even 4 inner
600.2.w.k.557.20 yes 64 5.2 odd 4 inner
600.2.w.k.557.29 yes 64 40.37 odd 4 inner
600.2.w.k.557.30 yes 64 120.53 even 4 inner