Properties

Label 600.2.w.k.293.20
Level $600$
Weight $2$
Character 600.293
Analytic conductor $4.791$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 293.20
Character \(\chi\) \(=\) 600.293
Dual form 600.2.w.k.557.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.552337 + 1.30189i) q^{2} +(0.504984 - 1.65680i) q^{3} +(-1.38985 + 1.43817i) q^{4} +(2.43590 - 0.257678i) q^{6} +(-2.83719 + 2.83719i) q^{7} +(-2.64000 - 1.01508i) q^{8} +(-2.48998 - 1.67332i) q^{9} -4.74897 q^{11} +(1.68091 + 3.02895i) q^{12} +(-0.867956 + 0.867956i) q^{13} +(-5.26080 - 2.12663i) q^{14} +(-0.136650 - 3.99767i) q^{16} +(-1.73117 - 1.73117i) q^{17} +(0.803169 - 4.16592i) q^{18} +3.35370 q^{19} +(3.26792 + 6.13340i) q^{21} +(-2.62303 - 6.18265i) q^{22} +(-4.82662 + 4.82662i) q^{23} +(-3.01494 + 3.86136i) q^{24} +(-1.60939 - 0.650581i) q^{26} +(-4.02976 + 3.28041i) q^{27} +(-0.137093 - 8.02362i) q^{28} -0.936190i q^{29} +5.49627 q^{31} +(5.12905 - 2.38596i) q^{32} +(-2.39815 + 7.86810i) q^{33} +(1.29761 - 3.20999i) q^{34} +(5.86720 - 1.25535i) q^{36} +(0.749350 + 0.749350i) q^{37} +(1.85238 + 4.36616i) q^{38} +(0.999726 + 1.87633i) q^{39} -2.24103i q^{41} +(-6.18003 + 7.64219i) q^{42} +(-8.75448 + 8.75448i) q^{43} +(6.60034 - 6.82981i) q^{44} +(-8.94967 - 3.61782i) q^{46} +(6.71219 + 6.71219i) q^{47} +(-6.69234 - 1.79236i) q^{48} -9.09930i q^{49} +(-3.74242 + 1.99399i) q^{51} +(-0.0419396 - 2.45459i) q^{52} +(-8.46720 - 8.46720i) q^{53} +(-6.49652 - 3.43442i) q^{54} +(10.3702 - 4.61022i) q^{56} +(1.69357 - 5.55642i) q^{57} +(1.21882 - 0.517093i) q^{58} -6.53585i q^{59} +5.10959i q^{61} +(3.03579 + 7.15555i) q^{62} +(11.8121 - 2.31703i) q^{63} +(5.93923 + 5.35962i) q^{64} +(-11.5680 + 1.22370i) q^{66} +(-4.85678 - 4.85678i) q^{67} +(4.89577 - 0.0836501i) q^{68} +(5.55939 + 10.4341i) q^{69} +8.34435i q^{71} +(4.87501 + 6.94509i) q^{72} +(-1.57561 - 1.57561i) q^{73} +(-0.561679 + 1.38947i) q^{74} +(-4.66114 + 4.82319i) q^{76} +(13.4737 - 13.4737i) q^{77} +(-1.89060 + 2.33791i) q^{78} -7.75267i q^{79} +(3.40002 + 8.33306i) q^{81} +(2.91758 - 1.23780i) q^{82} +(9.15657 + 9.15657i) q^{83} +(-13.3628 - 3.82466i) q^{84} +(-16.2328 - 6.56196i) q^{86} +(-1.55108 - 0.472761i) q^{87} +(12.5373 + 4.82057i) q^{88} +4.97996 q^{89} -4.92511i q^{91} +(-0.233222 - 13.6498i) q^{92} +(2.77553 - 9.10622i) q^{93} +(-5.03116 + 12.4459i) q^{94} +(-1.36297 - 9.70270i) q^{96} +(1.42918 - 1.42918i) q^{97} +(11.8463 - 5.02588i) q^{98} +(11.8248 + 7.94653i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 12 q^{6} - 40 q^{16} + 32 q^{31} - 84 q^{36} - 128 q^{46} - 180 q^{66} + 168 q^{76} + 48 q^{81} + 228 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.552337 + 1.30189i 0.390561 + 0.920577i
\(3\) 0.504984 1.65680i 0.291553 0.956555i
\(4\) −1.38985 + 1.43817i −0.694924 + 0.719084i
\(5\) 0 0
\(6\) 2.43590 0.257678i 0.994451 0.105197i
\(7\) −2.83719 + 2.83719i −1.07236 + 1.07236i −0.0751879 + 0.997169i \(0.523956\pi\)
−0.997169 + 0.0751879i \(0.976044\pi\)
\(8\) −2.64000 1.01508i −0.933382 0.358884i
\(9\) −2.48998 1.67332i −0.829994 0.557772i
\(10\) 0 0
\(11\) −4.74897 −1.43187 −0.715934 0.698168i \(-0.753999\pi\)
−0.715934 + 0.698168i \(0.753999\pi\)
\(12\) 1.68091 + 3.02895i 0.485236 + 0.874383i
\(13\) −0.867956 + 0.867956i −0.240728 + 0.240728i −0.817151 0.576424i \(-0.804448\pi\)
0.576424 + 0.817151i \(0.304448\pi\)
\(14\) −5.26080 2.12663i −1.40601 0.568366i
\(15\) 0 0
\(16\) −0.136650 3.99767i −0.0341624 0.999416i
\(17\) −1.73117 1.73117i −0.419870 0.419870i 0.465289 0.885159i \(-0.345950\pi\)
−0.885159 + 0.465289i \(0.845950\pi\)
\(18\) 0.803169 4.16592i 0.189309 0.981918i
\(19\) 3.35370 0.769392 0.384696 0.923043i \(-0.374306\pi\)
0.384696 + 0.923043i \(0.374306\pi\)
\(20\) 0 0
\(21\) 3.26792 + 6.13340i 0.713120 + 1.33842i
\(22\) −2.62303 6.18265i −0.559232 1.31814i
\(23\) −4.82662 + 4.82662i −1.00642 + 1.00642i −0.00644154 + 0.999979i \(0.502050\pi\)
−0.999979 + 0.00644154i \(0.997950\pi\)
\(24\) −3.01494 + 3.86136i −0.615423 + 0.788197i
\(25\) 0 0
\(26\) −1.60939 0.650581i −0.315627 0.127589i
\(27\) −4.02976 + 3.28041i −0.775527 + 0.631314i
\(28\) −0.137093 8.02362i −0.0259081 1.51632i
\(29\) 0.936190i 0.173846i −0.996215 0.0869231i \(-0.972297\pi\)
0.996215 0.0869231i \(-0.0277034\pi\)
\(30\) 0 0
\(31\) 5.49627 0.987159 0.493579 0.869701i \(-0.335688\pi\)
0.493579 + 0.869701i \(0.335688\pi\)
\(32\) 5.12905 2.38596i 0.906697 0.421783i
\(33\) −2.39815 + 7.86810i −0.417465 + 1.36966i
\(34\) 1.29761 3.20999i 0.222538 0.550508i
\(35\) 0 0
\(36\) 5.86720 1.25535i 0.977867 0.209226i
\(37\) 0.749350 + 0.749350i 0.123192 + 0.123192i 0.766015 0.642823i \(-0.222237\pi\)
−0.642823 + 0.766015i \(0.722237\pi\)
\(38\) 1.85238 + 4.36616i 0.300495 + 0.708285i
\(39\) 0.999726 + 1.87633i 0.160084 + 0.300454i
\(40\) 0 0
\(41\) 2.24103i 0.349990i −0.984569 0.174995i \(-0.944009\pi\)
0.984569 0.174995i \(-0.0559909\pi\)
\(42\) −6.18003 + 7.64219i −0.953599 + 1.17922i
\(43\) −8.75448 + 8.75448i −1.33505 + 1.33505i −0.434256 + 0.900789i \(0.642989\pi\)
−0.900789 + 0.434256i \(0.857011\pi\)
\(44\) 6.60034 6.82981i 0.995039 1.02963i
\(45\) 0 0
\(46\) −8.94967 3.61782i −1.31956 0.533419i
\(47\) 6.71219 + 6.71219i 0.979073 + 0.979073i 0.999785 0.0207122i \(-0.00659336\pi\)
−0.0207122 + 0.999785i \(0.506593\pi\)
\(48\) −6.69234 1.79236i −0.965957 0.258704i
\(49\) 9.09930i 1.29990i
\(50\) 0 0
\(51\) −3.74242 + 1.99399i −0.524043 + 0.279214i
\(52\) −0.0419396 2.45459i −0.00581598 0.340391i
\(53\) −8.46720 8.46720i −1.16306 1.16306i −0.983802 0.179258i \(-0.942630\pi\)
−0.179258 0.983802i \(-0.557370\pi\)
\(54\) −6.49652 3.43442i −0.884064 0.467365i
\(55\) 0 0
\(56\) 10.3702 4.61022i 1.38577 0.616067i
\(57\) 1.69357 5.55642i 0.224319 0.735966i
\(58\) 1.21882 0.517093i 0.160039 0.0678976i
\(59\) 6.53585i 0.850895i −0.904983 0.425448i \(-0.860117\pi\)
0.904983 0.425448i \(-0.139883\pi\)
\(60\) 0 0
\(61\) 5.10959i 0.654216i 0.944987 + 0.327108i \(0.106074\pi\)
−0.944987 + 0.327108i \(0.893926\pi\)
\(62\) 3.03579 + 7.15555i 0.385546 + 0.908756i
\(63\) 11.8121 2.31703i 1.48818 0.291919i
\(64\) 5.93923 + 5.35962i 0.742404 + 0.669952i
\(65\) 0 0
\(66\) −11.5680 + 1.22370i −1.42392 + 0.150628i
\(67\) −4.85678 4.85678i −0.593350 0.593350i 0.345185 0.938535i \(-0.387816\pi\)
−0.938535 + 0.345185i \(0.887816\pi\)
\(68\) 4.89577 0.0836501i 0.593699 0.0101441i
\(69\) 5.55939 + 10.4341i 0.669272 + 1.25612i
\(70\) 0 0
\(71\) 8.34435i 0.990292i 0.868810 + 0.495146i \(0.164885\pi\)
−0.868810 + 0.495146i \(0.835115\pi\)
\(72\) 4.87501 + 6.94509i 0.574526 + 0.818487i
\(73\) −1.57561 1.57561i −0.184411 0.184411i 0.608864 0.793275i \(-0.291626\pi\)
−0.793275 + 0.608864i \(0.791626\pi\)
\(74\) −0.561679 + 1.38947i −0.0652939 + 0.161522i
\(75\) 0 0
\(76\) −4.66114 + 4.82319i −0.534669 + 0.553258i
\(77\) 13.4737 13.4737i 1.53547 1.53547i
\(78\) −1.89060 + 2.33791i −0.214068 + 0.264716i
\(79\) 7.75267i 0.872243i −0.899888 0.436122i \(-0.856352\pi\)
0.899888 0.436122i \(-0.143648\pi\)
\(80\) 0 0
\(81\) 3.40002 + 8.33306i 0.377780 + 0.925895i
\(82\) 2.91758 1.23780i 0.322193 0.136693i
\(83\) 9.15657 + 9.15657i 1.00506 + 1.00506i 0.999987 + 0.00507654i \(0.00161592\pi\)
0.00507654 + 0.999987i \(0.498384\pi\)
\(84\) −13.3628 3.82466i −1.45800 0.417305i
\(85\) 0 0
\(86\) −16.2328 6.56196i −1.75043 0.707595i
\(87\) −1.55108 0.472761i −0.166293 0.0506853i
\(88\) 12.5373 + 4.82057i 1.33648 + 0.513875i
\(89\) 4.97996 0.527875 0.263938 0.964540i \(-0.414979\pi\)
0.263938 + 0.964540i \(0.414979\pi\)
\(90\) 0 0
\(91\) 4.92511i 0.516292i
\(92\) −0.233222 13.6498i −0.0243151 1.42309i
\(93\) 2.77553 9.10622i 0.287809 0.944272i
\(94\) −5.03116 + 12.4459i −0.518924 + 1.28370i
\(95\) 0 0
\(96\) −1.36297 9.70270i −0.139108 0.990277i
\(97\) 1.42918 1.42918i 0.145112 0.145112i −0.630819 0.775930i \(-0.717281\pi\)
0.775930 + 0.630819i \(0.217281\pi\)
\(98\) 11.8463 5.02588i 1.19666 0.507691i
\(99\) 11.8248 + 7.94653i 1.18844 + 0.798657i
\(100\) 0 0
\(101\) 4.79140 0.476762 0.238381 0.971172i \(-0.423383\pi\)
0.238381 + 0.971172i \(0.423383\pi\)
\(102\) −4.66304 3.77087i −0.461709 0.373372i
\(103\) 1.07832 + 1.07832i 0.106250 + 0.106250i 0.758233 0.651983i \(-0.226063\pi\)
−0.651983 + 0.758233i \(0.726063\pi\)
\(104\) 3.17245 1.41036i 0.311084 0.138297i
\(105\) 0 0
\(106\) 6.34663 15.7001i 0.616440 1.52493i
\(107\) −6.51086 + 6.51086i −0.629429 + 0.629429i −0.947924 0.318496i \(-0.896822\pi\)
0.318496 + 0.947924i \(0.396822\pi\)
\(108\) 0.882973 10.3547i 0.0849641 0.996384i
\(109\) −8.99273 −0.861347 −0.430674 0.902508i \(-0.641724\pi\)
−0.430674 + 0.902508i \(0.641724\pi\)
\(110\) 0 0
\(111\) 1.61993 0.863114i 0.153757 0.0819232i
\(112\) 11.7298 + 10.9544i 1.10837 + 1.03510i
\(113\) 6.80391 6.80391i 0.640058 0.640058i −0.310511 0.950570i \(-0.600500\pi\)
0.950570 + 0.310511i \(0.100500\pi\)
\(114\) 8.16928 0.864176i 0.765123 0.0809375i
\(115\) 0 0
\(116\) 1.34640 + 1.30116i 0.125010 + 0.120810i
\(117\) 3.61356 0.708829i 0.334074 0.0655312i
\(118\) 8.50897 3.60999i 0.783314 0.332327i
\(119\) 9.82331 0.900502
\(120\) 0 0
\(121\) 11.5527 1.05025
\(122\) −6.65214 + 2.82222i −0.602256 + 0.255512i
\(123\) −3.71294 1.13168i −0.334784 0.102041i
\(124\) −7.63897 + 7.90455i −0.686000 + 0.709850i
\(125\) 0 0
\(126\) 9.54078 + 14.0983i 0.849960 + 1.25597i
\(127\) 0.0736760 0.0736760i 0.00653769 0.00653769i −0.703830 0.710368i \(-0.748528\pi\)
0.710368 + 0.703830i \(0.248528\pi\)
\(128\) −3.69719 + 10.6926i −0.326788 + 0.945098i
\(129\) 10.0836 + 18.9253i 0.887808 + 1.66628i
\(130\) 0 0
\(131\) −13.2979 −1.16184 −0.580922 0.813959i \(-0.697308\pi\)
−0.580922 + 0.813959i \(0.697308\pi\)
\(132\) −7.98257 14.3844i −0.694794 1.25200i
\(133\) −9.51510 + 9.51510i −0.825064 + 0.825064i
\(134\) 3.64043 9.00559i 0.314485 0.777964i
\(135\) 0 0
\(136\) 2.81302 + 6.32756i 0.241214 + 0.542584i
\(137\) −0.613004 0.613004i −0.0523724 0.0523724i 0.680436 0.732808i \(-0.261791\pi\)
−0.732808 + 0.680436i \(0.761791\pi\)
\(138\) −10.5135 + 13.0009i −0.894965 + 1.10671i
\(139\) −17.5621 −1.48960 −0.744798 0.667290i \(-0.767454\pi\)
−0.744798 + 0.667290i \(0.767454\pi\)
\(140\) 0 0
\(141\) 14.5103 7.73121i 1.22199 0.651086i
\(142\) −10.8634 + 4.60890i −0.911640 + 0.386770i
\(143\) 4.12189 4.12189i 0.344690 0.344690i
\(144\) −6.34911 + 10.1828i −0.529092 + 0.848564i
\(145\) 0 0
\(146\) 1.18100 2.92154i 0.0977407 0.241788i
\(147\) −15.0757 4.59501i −1.24343 0.378990i
\(148\) −2.11917 + 0.0362086i −0.174195 + 0.00297633i
\(149\) 2.68064i 0.219607i 0.993953 + 0.109803i \(0.0350221\pi\)
−0.993953 + 0.109803i \(0.964978\pi\)
\(150\) 0 0
\(151\) −15.6429 −1.27300 −0.636502 0.771275i \(-0.719619\pi\)
−0.636502 + 0.771275i \(0.719619\pi\)
\(152\) −8.85379 3.40427i −0.718137 0.276123i
\(153\) 1.41378 + 7.20738i 0.114298 + 0.582682i
\(154\) 24.9834 + 10.0993i 2.01322 + 0.813825i
\(155\) 0 0
\(156\) −4.08795 1.17004i −0.327298 0.0936785i
\(157\) 14.1557 + 14.1557i 1.12975 + 1.12975i 0.990217 + 0.139534i \(0.0445604\pi\)
0.139534 + 0.990217i \(0.455440\pi\)
\(158\) 10.0931 4.28209i 0.802967 0.340665i
\(159\) −18.3043 + 9.75267i −1.45162 + 0.773437i
\(160\) 0 0
\(161\) 27.3881i 2.15849i
\(162\) −8.97079 + 9.02912i −0.704812 + 0.709394i
\(163\) 5.09399 5.09399i 0.398992 0.398992i −0.478885 0.877878i \(-0.658959\pi\)
0.877878 + 0.478885i \(0.158959\pi\)
\(164\) 3.22297 + 3.11469i 0.251672 + 0.243216i
\(165\) 0 0
\(166\) −6.86335 + 16.9784i −0.532699 + 1.31778i
\(167\) −13.7751 13.7751i −1.06595 1.06595i −0.997666 0.0682869i \(-0.978247\pi\)
−0.0682869 0.997666i \(-0.521753\pi\)
\(168\) −2.40145 19.5094i −0.185276 1.50518i
\(169\) 11.4933i 0.884100i
\(170\) 0 0
\(171\) −8.35066 5.61181i −0.638591 0.429146i
\(172\) −0.423016 24.7578i −0.0322547 1.88776i
\(173\) 7.07803 + 7.07803i 0.538133 + 0.538133i 0.922980 0.384848i \(-0.125746\pi\)
−0.384848 + 0.922980i \(0.625746\pi\)
\(174\) −0.241236 2.28046i −0.0182880 0.172882i
\(175\) 0 0
\(176\) 0.648945 + 18.9848i 0.0489161 + 1.43103i
\(177\) −10.8286 3.30050i −0.813928 0.248081i
\(178\) 2.75062 + 6.48338i 0.206168 + 0.485950i
\(179\) 2.82136i 0.210879i −0.994426 0.105439i \(-0.966375\pi\)
0.994426 0.105439i \(-0.0336249\pi\)
\(180\) 0 0
\(181\) 14.0239i 1.04239i 0.853439 + 0.521194i \(0.174513\pi\)
−0.853439 + 0.521194i \(0.825487\pi\)
\(182\) 6.41197 2.72032i 0.475287 0.201644i
\(183\) 8.46558 + 2.58026i 0.625794 + 0.190739i
\(184\) 17.6417 7.84290i 1.30056 0.578186i
\(185\) 0 0
\(186\) 13.3884 1.41627i 0.981682 0.103846i
\(187\) 8.22127 + 8.22127i 0.601199 + 0.601199i
\(188\) −18.9822 + 0.324333i −1.38442 + 0.0236544i
\(189\) 2.12605 20.7403i 0.154647 1.50864i
\(190\) 0 0
\(191\) 26.2648i 1.90045i 0.311563 + 0.950225i \(0.399147\pi\)
−0.311563 + 0.950225i \(0.600853\pi\)
\(192\) 11.8790 7.13361i 0.857296 0.514824i
\(193\) −8.27030 8.27030i −0.595309 0.595309i 0.343752 0.939061i \(-0.388302\pi\)
−0.939061 + 0.343752i \(0.888302\pi\)
\(194\) 2.65003 + 1.07125i 0.190261 + 0.0769114i
\(195\) 0 0
\(196\) 13.0863 + 12.6466i 0.934737 + 0.903332i
\(197\) 2.99822 2.99822i 0.213614 0.213614i −0.592187 0.805801i \(-0.701735\pi\)
0.805801 + 0.592187i \(0.201735\pi\)
\(198\) −3.81423 + 19.7838i −0.271065 + 1.40598i
\(199\) 6.70234i 0.475116i −0.971373 0.237558i \(-0.923653\pi\)
0.971373 0.237558i \(-0.0763470\pi\)
\(200\) 0 0
\(201\) −10.4993 + 5.59412i −0.740565 + 0.394579i
\(202\) 2.64647 + 6.23789i 0.186205 + 0.438896i
\(203\) 2.65615 + 2.65615i 0.186425 + 0.186425i
\(204\) 2.33370 8.15356i 0.163391 0.570864i
\(205\) 0 0
\(206\) −0.808260 + 1.99945i −0.0563142 + 0.139308i
\(207\) 20.0947 3.94173i 1.39668 0.273969i
\(208\) 3.58840 + 3.35119i 0.248811 + 0.232363i
\(209\) −15.9266 −1.10167
\(210\) 0 0
\(211\) 9.44133i 0.649968i −0.945720 0.324984i \(-0.894641\pi\)
0.945720 0.324984i \(-0.105359\pi\)
\(212\) 23.9454 0.409135i 1.64457 0.0280995i
\(213\) 13.8249 + 4.21377i 0.947269 + 0.288722i
\(214\) −12.0726 4.88025i −0.825268 0.333607i
\(215\) 0 0
\(216\) 13.9684 4.56977i 0.950432 0.310933i
\(217\) −15.5940 + 15.5940i −1.05859 + 1.05859i
\(218\) −4.96702 11.7076i −0.336409 0.792936i
\(219\) −3.40613 + 1.81481i −0.230165 + 0.122634i
\(220\) 0 0
\(221\) 3.00516 0.202149
\(222\) 2.01843 + 1.63225i 0.135468 + 0.109549i
\(223\) −17.3049 17.3049i −1.15882 1.15882i −0.984729 0.174091i \(-0.944301\pi\)
−0.174091 0.984729i \(-0.555699\pi\)
\(224\) −7.78267 + 21.3215i −0.520002 + 1.42460i
\(225\) 0 0
\(226\) 12.6160 + 5.09991i 0.839205 + 0.339241i
\(227\) −6.96809 + 6.96809i −0.462489 + 0.462489i −0.899470 0.436982i \(-0.856047\pi\)
0.436982 + 0.899470i \(0.356047\pi\)
\(228\) 5.63726 + 10.1582i 0.373337 + 0.672744i
\(229\) 2.90511 0.191975 0.0959874 0.995383i \(-0.469399\pi\)
0.0959874 + 0.995383i \(0.469399\pi\)
\(230\) 0 0
\(231\) −15.5193 29.1273i −1.02109 1.91644i
\(232\) −0.950306 + 2.47155i −0.0623907 + 0.162265i
\(233\) −0.413436 + 0.413436i −0.0270851 + 0.0270851i −0.720520 0.693435i \(-0.756097\pi\)
0.693435 + 0.720520i \(0.256097\pi\)
\(234\) 2.91872 + 4.31295i 0.190803 + 0.281947i
\(235\) 0 0
\(236\) 9.39964 + 9.08383i 0.611865 + 0.591307i
\(237\) −12.8446 3.91498i −0.834349 0.254305i
\(238\) 5.42578 + 12.7889i 0.351701 + 0.828981i
\(239\) 8.34435 0.539751 0.269876 0.962895i \(-0.413017\pi\)
0.269876 + 0.962895i \(0.413017\pi\)
\(240\) 0 0
\(241\) −15.4459 −0.994960 −0.497480 0.867475i \(-0.665741\pi\)
−0.497480 + 0.867475i \(0.665741\pi\)
\(242\) 6.38099 + 15.0404i 0.410186 + 0.966832i
\(243\) 15.5232 1.42509i 0.995812 0.0914196i
\(244\) −7.34845 7.10155i −0.470436 0.454630i
\(245\) 0 0
\(246\) −0.577464 5.45892i −0.0368177 0.348048i
\(247\) −2.91087 + 2.91087i −0.185214 + 0.185214i
\(248\) −14.5102 5.57914i −0.921396 0.354276i
\(249\) 19.7945 10.5467i 1.25443 0.668369i
\(250\) 0 0
\(251\) 19.6634 1.24114 0.620572 0.784150i \(-0.286901\pi\)
0.620572 + 0.784150i \(0.286901\pi\)
\(252\) −13.0847 + 20.2081i −0.824258 + 1.27299i
\(253\) 22.9215 22.9215i 1.44106 1.44106i
\(254\) 0.136612 + 0.0552242i 0.00857181 + 0.00346508i
\(255\) 0 0
\(256\) −15.9627 + 1.09256i −0.997666 + 0.0682849i
\(257\) 13.1156 + 13.1156i 0.818128 + 0.818128i 0.985837 0.167709i \(-0.0536368\pi\)
−0.167709 + 0.985837i \(0.553637\pi\)
\(258\) −19.0692 + 23.5809i −1.18720 + 1.46808i
\(259\) −4.25210 −0.264212
\(260\) 0 0
\(261\) −1.56654 + 2.33110i −0.0969666 + 0.144291i
\(262\) −7.34494 17.3125i −0.453772 1.06957i
\(263\) −9.08999 + 9.08999i −0.560513 + 0.560513i −0.929453 0.368940i \(-0.879721\pi\)
0.368940 + 0.929453i \(0.379721\pi\)
\(264\) 14.3179 18.3375i 0.881204 1.12859i
\(265\) 0 0
\(266\) −17.6432 7.13209i −1.08177 0.437297i
\(267\) 2.51480 8.25081i 0.153903 0.504941i
\(268\) 13.7350 0.234680i 0.839002 0.0143353i
\(269\) 11.3272i 0.690635i 0.938486 + 0.345317i \(0.112229\pi\)
−0.938486 + 0.345317i \(0.887771\pi\)
\(270\) 0 0
\(271\) 2.39400 0.145425 0.0727126 0.997353i \(-0.476834\pi\)
0.0727126 + 0.997353i \(0.476834\pi\)
\(272\) −6.68407 + 7.15720i −0.405281 + 0.433969i
\(273\) −8.15993 2.48710i −0.493862 0.150526i
\(274\) 0.459480 1.13665i 0.0277582 0.0686675i
\(275\) 0 0
\(276\) −22.7327 6.50651i −1.36835 0.391646i
\(277\) 2.60387 + 2.60387i 0.156451 + 0.156451i 0.780992 0.624541i \(-0.214714\pi\)
−0.624541 + 0.780992i \(0.714714\pi\)
\(278\) −9.70018 22.8639i −0.581778 1.37129i
\(279\) −13.6856 9.19700i −0.819336 0.550610i
\(280\) 0 0
\(281\) 12.9461i 0.772301i −0.922436 0.386151i \(-0.873805\pi\)
0.922436 0.386151i \(-0.126195\pi\)
\(282\) 18.0798 + 14.6206i 1.07664 + 0.870646i
\(283\) −1.95205 + 1.95205i −0.116037 + 0.116037i −0.762741 0.646704i \(-0.776147\pi\)
0.646704 + 0.762741i \(0.276147\pi\)
\(284\) −12.0006 11.5974i −0.712103 0.688177i
\(285\) 0 0
\(286\) 7.64294 + 3.08959i 0.451936 + 0.182691i
\(287\) 6.35823 + 6.35823i 0.375314 + 0.375314i
\(288\) −16.7637 2.64153i −0.987812 0.155654i
\(289\) 11.0061i 0.647418i
\(290\) 0 0
\(291\) −1.64616 3.08959i −0.0964995 0.181115i
\(292\) 4.45584 0.0761334i 0.260758 0.00445537i
\(293\) −17.2193 17.2193i −1.00596 1.00596i −0.999982 0.00597927i \(-0.998097\pi\)
−0.00597927 0.999982i \(-0.501903\pi\)
\(294\) −2.34469 22.1650i −0.136745 1.29269i
\(295\) 0 0
\(296\) −1.21764 2.73893i −0.0707737 0.159197i
\(297\) 19.1372 15.5785i 1.11045 0.903959i
\(298\) −3.48991 + 1.48062i −0.202165 + 0.0857699i
\(299\) 8.37859i 0.484547i
\(300\) 0 0
\(301\) 49.6763i 2.86329i
\(302\) −8.64018 20.3654i −0.497186 1.17190i
\(303\) 2.41958 7.93840i 0.139001 0.456049i
\(304\) −0.458282 13.4070i −0.0262843 0.768943i
\(305\) 0 0
\(306\) −8.60234 + 5.82150i −0.491763 + 0.332793i
\(307\) 7.34204 + 7.34204i 0.419033 + 0.419033i 0.884870 0.465838i \(-0.154247\pi\)
−0.465838 + 0.884870i \(0.654247\pi\)
\(308\) 0.651051 + 38.1039i 0.0370970 + 2.17117i
\(309\) 2.33110 1.24203i 0.132611 0.0706565i
\(310\) 0 0
\(311\) 21.9193i 1.24293i −0.783442 0.621465i \(-0.786538\pi\)
0.783442 0.621465i \(-0.213462\pi\)
\(312\) −0.734655 5.96833i −0.0415916 0.337890i
\(313\) −14.8922 14.8922i −0.841759 0.841759i 0.147329 0.989088i \(-0.452933\pi\)
−0.989088 + 0.147329i \(0.952933\pi\)
\(314\) −10.6105 + 26.2480i −0.598786 + 1.48126i
\(315\) 0 0
\(316\) 11.1496 + 10.7750i 0.627216 + 0.606142i
\(317\) −17.6185 + 17.6185i −0.989556 + 0.989556i −0.999946 0.0103899i \(-0.996693\pi\)
0.0103899 + 0.999946i \(0.496693\pi\)
\(318\) −22.8071 18.4434i −1.27896 1.03426i
\(319\) 4.44594i 0.248925i
\(320\) 0 0
\(321\) 7.49932 + 14.0751i 0.418571 + 0.785595i
\(322\) 35.6564 15.1275i 1.98705 0.843021i
\(323\) −5.80583 5.80583i −0.323045 0.323045i
\(324\) −16.7098 6.69188i −0.928324 0.371771i
\(325\) 0 0
\(326\) 9.44543 + 3.81823i 0.523134 + 0.211472i
\(327\) −4.54119 + 14.8992i −0.251128 + 0.823926i
\(328\) −2.27482 + 5.91632i −0.125606 + 0.326674i
\(329\) −38.0875 −2.09983
\(330\) 0 0
\(331\) 7.13080i 0.391944i 0.980609 + 0.195972i \(0.0627862\pi\)
−0.980609 + 0.195972i \(0.937214\pi\)
\(332\) −25.8949 + 0.442445i −1.42117 + 0.0242823i
\(333\) −0.611967 3.11977i −0.0335356 0.170962i
\(334\) 10.3252 25.5423i 0.564971 1.39761i
\(335\) 0 0
\(336\) 24.0727 13.9022i 1.31327 0.758427i
\(337\) 18.6144 18.6144i 1.01399 1.01399i 0.0140911 0.999901i \(-0.495515\pi\)
0.999901 0.0140911i \(-0.00448549\pi\)
\(338\) −14.9630 + 6.34818i −0.813882 + 0.345295i
\(339\) −7.83687 14.7086i −0.425640 0.798862i
\(340\) 0 0
\(341\) −26.1016 −1.41348
\(342\) 2.69359 13.9713i 0.145653 0.755480i
\(343\) 5.95612 + 5.95612i 0.321600 + 0.321600i
\(344\) 31.9983 14.2254i 1.72523 0.766981i
\(345\) 0 0
\(346\) −5.30537 + 13.1243i −0.285219 + 0.705566i
\(347\) 1.56152 1.56152i 0.0838269 0.0838269i −0.663950 0.747777i \(-0.731121\pi\)
0.747777 + 0.663950i \(0.231121\pi\)
\(348\) 2.83568 1.57365i 0.152008 0.0843564i
\(349\) −26.5812 −1.42286 −0.711430 0.702757i \(-0.751952\pi\)
−0.711430 + 0.702757i \(0.751952\pi\)
\(350\) 0 0
\(351\) 0.650403 6.34490i 0.0347159 0.338666i
\(352\) −24.3577 + 11.3309i −1.29827 + 0.603937i
\(353\) 6.51124 6.51124i 0.346558 0.346558i −0.512268 0.858826i \(-0.671194\pi\)
0.858826 + 0.512268i \(0.171194\pi\)
\(354\) −1.68414 15.9207i −0.0895113 0.846174i
\(355\) 0 0
\(356\) −6.92139 + 7.16202i −0.366833 + 0.379586i
\(357\) 4.96062 16.2753i 0.262544 0.861379i
\(358\) 3.67311 1.55834i 0.194130 0.0823611i
\(359\) −9.82331 −0.518455 −0.259227 0.965816i \(-0.583468\pi\)
−0.259227 + 0.965816i \(0.583468\pi\)
\(360\) 0 0
\(361\) −7.75267 −0.408035
\(362\) −18.2576 + 7.74591i −0.959597 + 0.407116i
\(363\) 5.83393 19.1405i 0.306202 1.00462i
\(364\) 7.08313 + 6.84515i 0.371257 + 0.358784i
\(365\) 0 0
\(366\) 1.31663 + 12.4465i 0.0688213 + 0.650586i
\(367\) −0.983469 + 0.983469i −0.0513367 + 0.0513367i −0.732309 0.680972i \(-0.761557\pi\)
0.680972 + 0.732309i \(0.261557\pi\)
\(368\) 19.9548 + 18.6357i 1.04022 + 0.971452i
\(369\) −3.74995 + 5.58012i −0.195215 + 0.290489i
\(370\) 0 0
\(371\) 48.0461 2.49443
\(372\) 9.23871 + 16.6479i 0.479005 + 0.863155i
\(373\) −18.9116 + 18.9116i −0.979205 + 0.979205i −0.999788 0.0205831i \(-0.993448\pi\)
0.0205831 + 0.999788i \(0.493448\pi\)
\(374\) −6.16229 + 15.2441i −0.318645 + 0.788255i
\(375\) 0 0
\(376\) −10.9068 24.5336i −0.562475 1.26522i
\(377\) 0.812572 + 0.812572i 0.0418496 + 0.0418496i
\(378\) 28.1760 8.68777i 1.44922 0.446851i
\(379\) 24.3755 1.25209 0.626043 0.779788i \(-0.284673\pi\)
0.626043 + 0.779788i \(0.284673\pi\)
\(380\) 0 0
\(381\) −0.0848613 0.159272i −0.00434758 0.00815974i
\(382\) −34.1939 + 14.5070i −1.74951 + 0.742243i
\(383\) −15.0463 + 15.0463i −0.768831 + 0.768831i −0.977901 0.209070i \(-0.932957\pi\)
0.209070 + 0.977901i \(0.432957\pi\)
\(384\) 15.8484 + 11.5251i 0.808762 + 0.588137i
\(385\) 0 0
\(386\) 6.19904 15.3350i 0.315523 0.780532i
\(387\) 36.4475 7.14947i 1.85273 0.363428i
\(388\) 0.0690581 + 4.04175i 0.00350589 + 0.205189i
\(389\) 3.98314i 0.201953i −0.994889 0.100977i \(-0.967803\pi\)
0.994889 0.100977i \(-0.0321967\pi\)
\(390\) 0 0
\(391\) 16.7114 0.845132
\(392\) −9.23650 + 24.0222i −0.466514 + 1.21330i
\(393\) −6.71524 + 22.0320i −0.338739 + 1.11137i
\(394\) 5.55939 + 2.24733i 0.280078 + 0.113219i
\(395\) 0 0
\(396\) −27.8632 + 5.96164i −1.40018 + 0.299584i
\(397\) −18.0470 18.0470i −0.905755 0.905755i 0.0901716 0.995926i \(-0.471258\pi\)
−0.995926 + 0.0901716i \(0.971258\pi\)
\(398\) 8.72572 3.70195i 0.437381 0.185562i
\(399\) 10.9597 + 20.5696i 0.548669 + 1.02977i
\(400\) 0 0
\(401\) 22.6814i 1.13265i 0.824181 + 0.566327i \(0.191636\pi\)
−0.824181 + 0.566327i \(0.808364\pi\)
\(402\) −13.0821 10.5791i −0.652477 0.527640i
\(403\) −4.77052 + 4.77052i −0.237636 + 0.237636i
\(404\) −6.65931 + 6.89083i −0.331313 + 0.342832i
\(405\) 0 0
\(406\) −1.99093 + 4.92511i −0.0988082 + 0.244429i
\(407\) −3.55864 3.55864i −0.176395 0.176395i
\(408\) 11.9040 1.46530i 0.589338 0.0725429i
\(409\) 1.51280i 0.0748032i 0.999300 + 0.0374016i \(0.0119081\pi\)
−0.999300 + 0.0374016i \(0.988092\pi\)
\(410\) 0 0
\(411\) −1.32518 + 0.706068i −0.0653664 + 0.0348278i
\(412\) −3.04950 + 0.0521044i −0.150238 + 0.00256700i
\(413\) 18.5435 + 18.5435i 0.912464 + 0.912464i
\(414\) 16.2308 + 23.9839i 0.797698 + 1.17875i
\(415\) 0 0
\(416\) −2.38088 + 6.52270i −0.116732 + 0.319802i
\(417\) −8.86857 + 29.0969i −0.434296 + 1.42488i
\(418\) −8.79687 20.7348i −0.430269 1.01417i
\(419\) 11.4558i 0.559653i 0.960051 + 0.279827i \(0.0902770\pi\)
−0.960051 + 0.279827i \(0.909723\pi\)
\(420\) 0 0
\(421\) 18.1975i 0.886894i 0.896301 + 0.443447i \(0.146245\pi\)
−0.896301 + 0.443447i \(0.853755\pi\)
\(422\) 12.2916 5.21480i 0.598345 0.253852i
\(423\) −5.48161 27.9448i −0.266525 1.35873i
\(424\) 13.7586 + 30.9483i 0.668175 + 1.50298i
\(425\) 0 0
\(426\) 2.15015 + 20.3260i 0.104175 + 0.984797i
\(427\) −14.4969 14.4969i −0.701554 0.701554i
\(428\) −0.314605 18.4128i −0.0152070 0.890017i
\(429\) −4.74767 8.91065i −0.229220 0.430210i
\(430\) 0 0
\(431\) 33.4688i 1.61214i 0.591822 + 0.806069i \(0.298409\pi\)
−0.591822 + 0.806069i \(0.701591\pi\)
\(432\) 13.6646 + 15.6613i 0.657440 + 0.753507i
\(433\) 16.3942 + 16.3942i 0.787853 + 0.787853i 0.981142 0.193289i \(-0.0619153\pi\)
−0.193289 + 0.981142i \(0.561915\pi\)
\(434\) −28.9148 11.6885i −1.38795 0.561068i
\(435\) 0 0
\(436\) 12.4985 12.9330i 0.598570 0.619381i
\(437\) −16.1871 + 16.1871i −0.774333 + 0.774333i
\(438\) −4.24402 3.43202i −0.202787 0.163988i
\(439\) 24.1557i 1.15289i 0.817136 + 0.576445i \(0.195561\pi\)
−0.817136 + 0.576445i \(0.804439\pi\)
\(440\) 0 0
\(441\) −15.2260 + 22.6571i −0.725049 + 1.07891i
\(442\) 1.65986 + 3.91239i 0.0789515 + 0.186093i
\(443\) 4.83418 + 4.83418i 0.229679 + 0.229679i 0.812558 0.582880i \(-0.198074\pi\)
−0.582880 + 0.812558i \(0.698074\pi\)
\(444\) −1.01016 + 3.52933i −0.0479400 + 0.167495i
\(445\) 0 0
\(446\) 12.9710 32.0872i 0.614193 1.51937i
\(447\) 4.44129 + 1.35368i 0.210066 + 0.0640269i
\(448\) −32.0570 + 1.64448i −1.51455 + 0.0776942i
\(449\) 8.70564 0.410845 0.205422 0.978673i \(-0.434143\pi\)
0.205422 + 0.978673i \(0.434143\pi\)
\(450\) 0 0
\(451\) 10.6426i 0.501139i
\(452\) 0.328765 + 19.2416i 0.0154638 + 0.905047i
\(453\) −7.89944 + 25.9172i −0.371148 + 1.21770i
\(454\) −12.9204 5.22297i −0.606386 0.245126i
\(455\) 0 0
\(456\) −10.1112 + 12.9499i −0.473502 + 0.606433i
\(457\) −5.80514 + 5.80514i −0.271553 + 0.271553i −0.829725 0.558172i \(-0.811503\pi\)
0.558172 + 0.829725i \(0.311503\pi\)
\(458\) 1.60460 + 3.78214i 0.0749780 + 0.176728i
\(459\) 12.6551 + 1.29725i 0.590691 + 0.0605505i
\(460\) 0 0
\(461\) 20.6299 0.960829 0.480415 0.877042i \(-0.340486\pi\)
0.480415 + 0.877042i \(0.340486\pi\)
\(462\) 29.3488 36.2925i 1.36543 1.68848i
\(463\) −9.79796 9.79796i −0.455350 0.455350i 0.441776 0.897126i \(-0.354349\pi\)
−0.897126 + 0.441776i \(0.854349\pi\)
\(464\) −3.74257 + 0.127930i −0.173745 + 0.00593900i
\(465\) 0 0
\(466\) −0.766605 0.309893i −0.0355123 0.0143555i
\(467\) 17.9061 17.9061i 0.828593 0.828593i −0.158729 0.987322i \(-0.550740\pi\)
0.987322 + 0.158729i \(0.0507395\pi\)
\(468\) −4.00288 + 6.18207i −0.185033 + 0.285766i
\(469\) 27.5592 1.27257
\(470\) 0 0
\(471\) 30.6017 16.3048i 1.41005 0.751287i
\(472\) −6.63440 + 17.2547i −0.305373 + 0.794210i
\(473\) 41.5747 41.5747i 1.91161 1.91161i
\(474\) −1.99769 18.8847i −0.0917570 0.867404i
\(475\) 0 0
\(476\) −13.6529 + 14.1276i −0.625780 + 0.647536i
\(477\) 6.91486 + 35.2515i 0.316610 + 1.61406i
\(478\) 4.60890 + 10.8634i 0.210806 + 0.496882i
\(479\) 18.1677 0.830102 0.415051 0.909798i \(-0.363764\pi\)
0.415051 + 0.909798i \(0.363764\pi\)
\(480\) 0 0
\(481\) −1.30081 −0.0593116
\(482\) −8.53137 20.1089i −0.388593 0.915937i
\(483\) −45.3767 13.8306i −2.06471 0.629312i
\(484\) −16.0565 + 16.6147i −0.729841 + 0.755215i
\(485\) 0 0
\(486\) 10.4293 + 19.4224i 0.473085 + 0.881017i
\(487\) −2.60795 + 2.60795i −0.118177 + 0.118177i −0.763722 0.645545i \(-0.776630\pi\)
0.645545 + 0.763722i \(0.276630\pi\)
\(488\) 5.18664 13.4893i 0.234788 0.610634i
\(489\) −5.86735 11.0121i −0.265331 0.497985i
\(490\) 0 0
\(491\) −10.4772 −0.472829 −0.236415 0.971652i \(-0.575972\pi\)
−0.236415 + 0.971652i \(0.575972\pi\)
\(492\) 6.78797 3.76696i 0.306025 0.169828i
\(493\) −1.62070 + 1.62070i −0.0729928 + 0.0729928i
\(494\) −5.39742 2.18186i −0.242841 0.0981663i
\(495\) 0 0
\(496\) −0.751063 21.9722i −0.0337237 0.986583i
\(497\) −23.6745 23.6745i −1.06195 1.06195i
\(498\) 24.6639 + 19.9450i 1.10522 + 0.893758i
\(499\) −16.6637 −0.745969 −0.372984 0.927838i \(-0.621665\pi\)
−0.372984 + 0.927838i \(0.621665\pi\)
\(500\) 0 0
\(501\) −29.7789 + 15.8664i −1.33042 + 0.708861i
\(502\) 10.8608 + 25.5996i 0.484743 + 1.14257i
\(503\) −11.7513 + 11.7513i −0.523965 + 0.523965i −0.918766 0.394802i \(-0.870813\pi\)
0.394802 + 0.918766i \(0.370813\pi\)
\(504\) −33.5359 5.87320i −1.49381 0.261613i
\(505\) 0 0
\(506\) 42.5017 + 17.1809i 1.88943 + 0.763785i
\(507\) 19.0421 + 5.80394i 0.845690 + 0.257762i
\(508\) 0.00356002 + 0.208357i 0.000157951 + 0.00924434i
\(509\) 16.9269i 0.750272i 0.926970 + 0.375136i \(0.122404\pi\)
−0.926970 + 0.375136i \(0.877596\pi\)
\(510\) 0 0
\(511\) 8.94060 0.395509
\(512\) −10.2392 20.1782i −0.452511 0.891759i
\(513\) −13.5146 + 11.0015i −0.596685 + 0.485729i
\(514\) −9.83086 + 24.3193i −0.433620 + 1.07268i
\(515\) 0 0
\(516\) −41.2324 11.8014i −1.81515 0.519530i
\(517\) −31.8760 31.8760i −1.40190 1.40190i
\(518\) −2.34859 5.53577i −0.103191 0.243228i
\(519\) 15.3012 8.15260i 0.671647 0.357859i
\(520\) 0 0
\(521\) 17.4056i 0.762553i −0.924461 0.381277i \(-0.875485\pi\)
0.924461 0.381277i \(-0.124515\pi\)
\(522\) −3.90010 0.751919i −0.170703 0.0329106i
\(523\) 22.7980 22.7980i 0.996888 0.996888i −0.00310741 0.999995i \(-0.500989\pi\)
0.999995 + 0.00310741i \(0.000989121\pi\)
\(524\) 18.4821 19.1246i 0.807393 0.835464i
\(525\) 0 0
\(526\) −16.8549 6.81345i −0.734910 0.297081i
\(527\) −9.51497 9.51497i −0.414479 0.414479i
\(528\) 31.7817 + 8.51185i 1.38312 + 0.370431i
\(529\) 23.5926i 1.02577i
\(530\) 0 0
\(531\) −10.9366 + 16.2741i −0.474606 + 0.706238i
\(532\) −0.459769 26.9088i −0.0199335 1.16665i
\(533\) 1.94511 + 1.94511i 0.0842522 + 0.0842522i
\(534\) 12.1307 1.28323i 0.524946 0.0555306i
\(535\) 0 0
\(536\) 7.89191 + 17.7519i 0.340878 + 0.766767i
\(537\) −4.67444 1.42474i −0.201717 0.0614823i
\(538\) −14.7469 + 6.25646i −0.635782 + 0.269735i
\(539\) 43.2123i 1.86129i
\(540\) 0 0
\(541\) 2.53614i 0.109037i −0.998513 0.0545187i \(-0.982638\pi\)
0.998513 0.0545187i \(-0.0173624\pi\)
\(542\) 1.32230 + 3.11673i 0.0567975 + 0.133875i
\(543\) 23.2348 + 7.08184i 0.997100 + 0.303911i
\(544\) −13.0098 4.74875i −0.557789 0.203601i
\(545\) 0 0
\(546\) −1.26909 11.9971i −0.0543122 0.513427i
\(547\) 14.4630 + 14.4630i 0.618394 + 0.618394i 0.945119 0.326726i \(-0.105945\pi\)
−0.326726 + 0.945119i \(0.605945\pi\)
\(548\) 1.73358 0.0296203i 0.0740550 0.00126532i
\(549\) 8.54997 12.7228i 0.364904 0.542996i
\(550\) 0 0
\(551\) 3.13970i 0.133756i
\(552\) −4.08535 33.1893i −0.173884 1.41263i
\(553\) 21.9958 + 21.9958i 0.935357 + 0.935357i
\(554\) −1.95174 + 4.82817i −0.0829216 + 0.205129i
\(555\) 0 0
\(556\) 24.4086 25.2572i 1.03515 1.07114i
\(557\) −17.5535 + 17.5535i −0.743767 + 0.743767i −0.973301 0.229533i \(-0.926280\pi\)
0.229533 + 0.973301i \(0.426280\pi\)
\(558\) 4.41443 22.8970i 0.186878 0.969309i
\(559\) 15.1970i 0.642765i
\(560\) 0 0
\(561\) 17.7726 9.46940i 0.750361 0.399798i
\(562\) 16.8545 7.15063i 0.710963 0.301631i
\(563\) −14.6880 14.6880i −0.619024 0.619024i 0.326257 0.945281i \(-0.394212\pi\)
−0.945281 + 0.326257i \(0.894212\pi\)
\(564\) −9.04834 + 31.6135i −0.381004 + 1.33117i
\(565\) 0 0
\(566\) −3.61955 1.46317i −0.152141 0.0615016i
\(567\) −33.2890 13.9960i −1.39801 0.587776i
\(568\) 8.47017 22.0291i 0.355400 0.924321i
\(569\) 27.6388 1.15868 0.579338 0.815087i \(-0.303311\pi\)
0.579338 + 0.815087i \(0.303311\pi\)
\(570\) 0 0
\(571\) 2.71823i 0.113754i 0.998381 + 0.0568772i \(0.0181143\pi\)
−0.998381 + 0.0568772i \(0.981886\pi\)
\(572\) 0.199170 + 11.6568i 0.00832771 + 0.487394i
\(573\) 43.5155 + 13.2633i 1.81789 + 0.554082i
\(574\) −4.76584 + 11.7896i −0.198922 + 0.492089i
\(575\) 0 0
\(576\) −5.82024 23.2836i −0.242510 0.970149i
\(577\) 6.19740 6.19740i 0.258001 0.258001i −0.566240 0.824241i \(-0.691602\pi\)
0.824241 + 0.566240i \(0.191602\pi\)
\(578\) 14.3288 6.07908i 0.595998 0.252856i
\(579\) −17.8786 + 9.52587i −0.743010 + 0.395882i
\(580\) 0 0
\(581\) −51.9578 −2.15557
\(582\) 3.11308 3.84961i 0.129041 0.159572i
\(583\) 40.2105 + 40.2105i 1.66535 + 1.66535i
\(584\) 2.56024 + 5.75897i 0.105944 + 0.238308i
\(585\) 0 0
\(586\) 12.9068 31.9285i 0.533175 1.31895i
\(587\) 23.7301 23.7301i 0.979448 0.979448i −0.0203450 0.999793i \(-0.506476\pi\)
0.999793 + 0.0203450i \(0.00647647\pi\)
\(588\) 27.5614 15.2951i 1.13661 0.630758i
\(589\) 18.4329 0.759513
\(590\) 0 0
\(591\) −3.45340 6.48151i −0.142054 0.266614i
\(592\) 2.89325 3.09805i 0.118912 0.127329i
\(593\) 1.82747 1.82747i 0.0750452 0.0750452i −0.668588 0.743633i \(-0.733101\pi\)
0.743633 + 0.668588i \(0.233101\pi\)
\(594\) 30.8518 + 16.3099i 1.26586 + 0.669205i
\(595\) 0 0
\(596\) −3.85521 3.72568i −0.157916 0.152610i
\(597\) −11.1044 3.38458i −0.454475 0.138521i
\(598\) 10.9080 4.62781i 0.446062 0.189245i
\(599\) 20.1671 0.824006 0.412003 0.911182i \(-0.364829\pi\)
0.412003 + 0.911182i \(0.364829\pi\)
\(600\) 0 0
\(601\) 17.2324 0.702924 0.351462 0.936202i \(-0.385685\pi\)
0.351462 + 0.936202i \(0.385685\pi\)
\(602\) 64.6731 27.4380i 2.63588 1.11829i
\(603\) 3.96636 + 20.2202i 0.161523 + 0.823432i
\(604\) 21.7413 22.4972i 0.884641 0.915397i
\(605\) 0 0
\(606\) 11.6714 1.23464i 0.474117 0.0501537i
\(607\) 20.5409 20.5409i 0.833729 0.833729i −0.154296 0.988025i \(-0.549311\pi\)
0.988025 + 0.154296i \(0.0493109\pi\)
\(608\) 17.2013 8.00181i 0.697606 0.324516i
\(609\) 5.74203 3.05940i 0.232679 0.123973i
\(610\) 0 0
\(611\) −11.6518 −0.471380
\(612\) −12.3304 7.98389i −0.498425 0.322730i
\(613\) −17.7138 + 17.7138i −0.715452 + 0.715452i −0.967670 0.252218i \(-0.918840\pi\)
0.252218 + 0.967670i \(0.418840\pi\)
\(614\) −5.50327 + 13.6138i −0.222094 + 0.549410i
\(615\) 0 0
\(616\) −49.2476 + 21.8938i −1.98424 + 0.882126i
\(617\) 13.8378 + 13.8378i 0.557089 + 0.557089i 0.928478 0.371388i \(-0.121118\pi\)
−0.371388 + 0.928478i \(0.621118\pi\)
\(618\) 2.90454 + 2.34882i 0.116838 + 0.0944833i
\(619\) 4.67429 0.187876 0.0939378 0.995578i \(-0.470055\pi\)
0.0939378 + 0.995578i \(0.470055\pi\)
\(620\) 0 0
\(621\) 3.61683 35.2834i 0.145138 1.41587i
\(622\) 28.5366 12.1068i 1.14421 0.485440i
\(623\) −14.1291 + 14.1291i −0.566071 + 0.566071i
\(624\) 7.36434 4.25297i 0.294810 0.170255i
\(625\) 0 0
\(626\) 11.1626 27.6136i 0.446145 1.10366i
\(627\) −8.04270 + 26.3873i −0.321195 + 1.05381i
\(628\) −40.0326 + 0.684005i −1.59748 + 0.0272948i
\(629\) 2.59450i 0.103450i
\(630\) 0 0
\(631\) −26.9009 −1.07091 −0.535455 0.844564i \(-0.679860\pi\)
−0.535455 + 0.844564i \(0.679860\pi\)
\(632\) −7.86956 + 20.4671i −0.313034 + 0.814136i
\(633\) −15.6424 4.76772i −0.621730 0.189500i
\(634\) −32.6688 13.2061i −1.29744 0.524480i
\(635\) 0 0
\(636\) 11.4142 39.8793i 0.452602 1.58132i
\(637\) 7.89779 + 7.89779i 0.312922 + 0.312922i
\(638\) −5.78813 + 2.45566i −0.229154 + 0.0972204i
\(639\) 13.9627 20.7773i 0.552358 0.821936i
\(640\) 0 0
\(641\) 19.6466i 0.775995i 0.921660 + 0.387998i \(0.126833\pi\)
−0.921660 + 0.387998i \(0.873167\pi\)
\(642\) −14.1821 + 17.5375i −0.559723 + 0.692150i
\(643\) −18.4955 + 18.4955i −0.729392 + 0.729392i −0.970499 0.241107i \(-0.922490\pi\)
0.241107 + 0.970499i \(0.422490\pi\)
\(644\) 39.3887 + 38.0653i 1.55213 + 1.49998i
\(645\) 0 0
\(646\) 4.35179 10.7653i 0.171219 0.423557i
\(647\) −14.8338 14.8338i −0.583178 0.583178i 0.352597 0.935775i \(-0.385299\pi\)
−0.935775 + 0.352597i \(0.885299\pi\)
\(648\) −0.517352 25.4506i −0.0203235 0.999793i
\(649\) 31.0385i 1.21837i
\(650\) 0 0
\(651\) 17.9614 + 33.7108i 0.703962 + 1.32123i
\(652\) 0.246142 + 14.4059i 0.00963965 + 0.564178i
\(653\) −9.72818 9.72818i −0.380693 0.380693i 0.490659 0.871352i \(-0.336756\pi\)
−0.871352 + 0.490659i \(0.836756\pi\)
\(654\) −21.9054 + 2.31723i −0.856568 + 0.0906108i
\(655\) 0 0
\(656\) −8.95888 + 0.306236i −0.349786 + 0.0119565i
\(657\) 1.28674 + 6.55973i 0.0502006 + 0.255919i
\(658\) −21.0372 49.5858i −0.820114 1.93306i
\(659\) 28.9095i 1.12616i −0.826404 0.563078i \(-0.809617\pi\)
0.826404 0.563078i \(-0.190383\pi\)
\(660\) 0 0
\(661\) 39.6271i 1.54131i 0.637250 + 0.770657i \(0.280072\pi\)
−0.637250 + 0.770657i \(0.719928\pi\)
\(662\) −9.28353 + 3.93860i −0.360815 + 0.153078i
\(663\) 1.51756 4.97895i 0.0589370 0.193366i
\(664\) −14.8787 33.4680i −0.577407 1.29881i
\(665\) 0 0
\(666\) 3.72359 2.51988i 0.144286 0.0976434i
\(667\) 4.51864 + 4.51864i 0.174962 + 0.174962i
\(668\) 38.9563 0.665615i 1.50726 0.0257534i
\(669\) −37.4095 + 19.9321i −1.44633 + 0.770618i
\(670\) 0 0
\(671\) 24.2653i 0.936751i
\(672\) 31.3954 + 23.6614i 1.21110 + 0.912758i
\(673\) 25.5135 + 25.5135i 0.983475 + 0.983475i 0.999866 0.0163909i \(-0.00521761\pi\)
−0.0163909 + 0.999866i \(0.505218\pi\)
\(674\) 34.5154 + 13.9525i 1.32948 + 0.537431i
\(675\) 0 0
\(676\) −16.5293 15.9739i −0.635742 0.614382i
\(677\) 5.46898 5.46898i 0.210190 0.210190i −0.594158 0.804348i \(-0.702515\pi\)
0.804348 + 0.594158i \(0.202515\pi\)
\(678\) 14.8204 18.3269i 0.569175 0.703839i
\(679\) 8.10973i 0.311223i
\(680\) 0 0
\(681\) 8.02597 + 15.0635i 0.307556 + 0.577235i
\(682\) −14.4169 33.9815i −0.552051 1.30122i
\(683\) −5.47421 5.47421i −0.209465 0.209465i 0.594575 0.804040i \(-0.297320\pi\)
−0.804040 + 0.594575i \(0.797320\pi\)
\(684\) 19.6769 4.21009i 0.752364 0.160977i
\(685\) 0 0
\(686\) −4.46444 + 11.0440i −0.170453 + 0.421663i
\(687\) 1.46703 4.81318i 0.0559708 0.183634i
\(688\) 36.1938 + 33.8012i 1.37987 + 1.28866i
\(689\) 14.6983 0.559961
\(690\) 0 0
\(691\) 20.5069i 0.780118i 0.920790 + 0.390059i \(0.127545\pi\)
−0.920790 + 0.390059i \(0.872455\pi\)
\(692\) −20.0168 + 0.342010i −0.760923 + 0.0130013i
\(693\) −56.0952 + 11.0035i −2.13088 + 0.417989i
\(694\) 2.89542 + 1.17045i 0.109909 + 0.0444296i
\(695\) 0 0
\(696\) 3.61497 + 2.82256i 0.137025 + 0.106989i
\(697\) −3.87960 + 3.87960i −0.146950 + 0.146950i
\(698\) −14.6818 34.6059i −0.555714 1.30985i
\(699\) 0.476202 + 0.893760i 0.0180116 + 0.0338051i
\(700\) 0 0
\(701\) −32.9176 −1.24328 −0.621641 0.783302i \(-0.713534\pi\)
−0.621641 + 0.783302i \(0.713534\pi\)
\(702\) 8.61961 2.65777i 0.325326 0.100311i
\(703\) 2.51310 + 2.51310i 0.0947833 + 0.0947833i
\(704\) −28.2052 25.4527i −1.06302 0.959283i
\(705\) 0 0
\(706\) 12.0733 + 4.88053i 0.454386 + 0.183681i
\(707\) −13.5941 + 13.5941i −0.511259 + 0.511259i
\(708\) 19.7968 10.9862i 0.744009 0.412885i
\(709\) 31.3218 1.17632 0.588158 0.808746i \(-0.299853\pi\)
0.588158 + 0.808746i \(0.299853\pi\)
\(710\) 0 0
\(711\) −12.9727 + 19.3040i −0.486513 + 0.723957i
\(712\) −13.1471 5.05505i −0.492709 0.189446i
\(713\) −26.5284 + 26.5284i −0.993497 + 0.993497i
\(714\) 23.9286 2.53125i 0.895505 0.0947297i
\(715\) 0 0
\(716\) 4.05759 + 3.92127i 0.151639 + 0.146545i
\(717\) 4.21377 13.8249i 0.157366 0.516302i
\(718\) −5.42578 12.7889i −0.202488 0.477277i
\(719\) −44.9529 −1.67646 −0.838230 0.545317i \(-0.816409\pi\)
−0.838230 + 0.545317i \(0.816409\pi\)
\(720\) 0 0
\(721\) −6.11880 −0.227876
\(722\) −4.28209 10.0931i −0.159363 0.375628i
\(723\) −7.79996 + 25.5909i −0.290083 + 0.951734i
\(724\) −20.1687 19.4911i −0.749563 0.724379i
\(725\) 0 0
\(726\) 28.1412 2.97688i 1.04442 0.110482i
\(727\) 19.0849 19.0849i 0.707821 0.707821i −0.258256 0.966077i \(-0.583148\pi\)
0.966077 + 0.258256i \(0.0831477\pi\)
\(728\) −4.99937 + 13.0023i −0.185289 + 0.481898i
\(729\) 5.47787 26.4385i 0.202884 0.979203i
\(730\) 0 0
\(731\) 30.3110 1.12109
\(732\) −15.4767 + 8.58875i −0.572036 + 0.317449i
\(733\) 10.9177 10.9177i 0.403256 0.403256i −0.476123 0.879379i \(-0.657958\pi\)
0.879379 + 0.476123i \(0.157958\pi\)
\(734\) −1.82358 0.737164i −0.0673095 0.0272092i
\(735\) 0 0
\(736\) −13.2399 + 36.2722i −0.488028 + 1.33701i
\(737\) 23.0647 + 23.0647i 0.849599 + 0.849599i
\(738\) −9.33595 1.79993i −0.343661 0.0662562i
\(739\) 13.6946 0.503765 0.251882 0.967758i \(-0.418950\pi\)
0.251882 + 0.967758i \(0.418950\pi\)
\(740\) 0 0
\(741\) 3.35279 + 6.29267i 0.123168 + 0.231167i
\(742\) 26.5377 + 62.5509i 0.974229 + 2.29632i
\(743\) −3.15355 + 3.15355i −0.115692 + 0.115692i −0.762583 0.646890i \(-0.776069\pi\)
0.646890 + 0.762583i \(0.276069\pi\)
\(744\) −16.5709 + 21.2231i −0.607520 + 0.778076i
\(745\) 0 0
\(746\) −35.0664 14.1753i −1.28387 0.518994i
\(747\) −7.47784 38.1215i −0.273600 1.39479i
\(748\) −23.2499 + 0.397252i −0.850099 + 0.0145250i
\(749\) 36.9451i 1.34995i
\(750\) 0 0
\(751\) 32.4641 1.18463 0.592315 0.805706i \(-0.298214\pi\)
0.592315 + 0.805706i \(0.298214\pi\)
\(752\) 25.9159 27.7503i 0.945054 1.01195i
\(753\) 9.92971 32.5784i 0.361859 1.18722i
\(754\) −0.609067 + 1.50669i −0.0221809 + 0.0548706i
\(755\) 0 0
\(756\) 26.8732 + 31.8835i 0.977368 + 1.15959i
\(757\) 23.2548 + 23.2548i 0.845209 + 0.845209i 0.989531 0.144322i \(-0.0461001\pi\)
−0.144322 + 0.989531i \(0.546100\pi\)
\(758\) 13.4635 + 31.7343i 0.489017 + 1.15264i
\(759\) −26.4014 49.5513i −0.958309 1.79860i
\(760\) 0 0
\(761\) 10.7051i 0.388059i 0.980996 + 0.194030i \(0.0621558\pi\)
−0.980996 + 0.194030i \(0.937844\pi\)
\(762\) 0.160483 0.198452i 0.00581367 0.00718916i
\(763\) 25.5141 25.5141i 0.923672 0.923672i
\(764\) −37.7731 36.5040i −1.36658 1.32067i
\(765\) 0 0
\(766\) −27.8993 11.2780i −1.00804 0.407492i
\(767\) 5.67283 + 5.67283i 0.204834 + 0.204834i
\(768\) −6.25074 + 26.9987i −0.225554 + 0.974231i
\(769\) 38.8506i 1.40099i 0.713658 + 0.700495i \(0.247037\pi\)
−0.713658 + 0.700495i \(0.752963\pi\)
\(770\) 0 0
\(771\) 28.3531 15.1068i 1.02111 0.544057i
\(772\) 23.3885 0.399621i 0.841771 0.0143827i
\(773\) −10.3611 10.3611i −0.372664 0.372664i 0.495783 0.868447i \(-0.334881\pi\)
−0.868447 + 0.495783i \(0.834881\pi\)
\(774\) 29.4392 + 43.5018i 1.05817 + 1.56364i
\(775\) 0 0
\(776\) −5.22378 + 2.32232i −0.187523 + 0.0833663i
\(777\) −2.14724 + 7.04488i −0.0770319 + 0.252734i
\(778\) 5.18562 2.20004i 0.185913 0.0788751i
\(779\) 7.51575i 0.269280i
\(780\) 0 0
\(781\) 39.6271i 1.41797i
\(782\) 9.23033 + 21.7565i 0.330076 + 0.778009i
\(783\) 3.07108 + 3.77262i 0.109752 + 0.134822i
\(784\) −36.3760 + 1.24342i −1.29914 + 0.0444077i
\(785\) 0 0
\(786\) −32.3924 + 3.42658i −1.15540 + 0.122222i
\(787\) −15.0090 15.0090i −0.535014 0.535014i 0.387046 0.922060i \(-0.373495\pi\)
−0.922060 + 0.387046i \(0.873495\pi\)
\(788\) 0.144874 + 8.47901i 0.00516092 + 0.302052i
\(789\) 10.4700 + 19.6506i 0.372742 + 0.699581i
\(790\) 0 0
\(791\) 38.6080i 1.37274i
\(792\) −23.1513 32.9820i −0.822645 1.17196i
\(793\) −4.43490 4.43490i −0.157488 0.157488i
\(794\) 13.5272 33.4633i 0.480064 1.18757i
\(795\) 0 0
\(796\) 9.63908 + 9.31523i 0.341648 + 0.330169i
\(797\) 7.93974 7.93974i 0.281240 0.281240i −0.552363 0.833603i \(-0.686274\pi\)
0.833603 + 0.552363i \(0.186274\pi\)
\(798\) −20.7260 + 25.6296i −0.733692 + 0.907280i
\(799\) 23.2399i 0.822167i
\(800\) 0 0
\(801\) −12.4000 8.33306i −0.438133 0.294434i
\(802\) −29.5287 + 12.5278i −1.04269 + 0.442371i
\(803\) 7.48251 + 7.48251i 0.264052 + 0.264052i
\(804\) 6.54717 22.8748i 0.230901 0.806730i
\(805\) 0 0
\(806\) −8.84563 3.57577i −0.311574 0.125951i
\(807\) 18.7670 + 5.72008i 0.660630 + 0.201356i
\(808\) −12.6493 4.86364i −0.445001 0.171102i
\(809\) 1.99039 0.0699782 0.0349891 0.999388i \(-0.488860\pi\)
0.0349891 + 0.999388i \(0.488860\pi\)
\(810\) 0 0
\(811\) 39.1133i 1.37345i 0.726915 + 0.686727i \(0.240953\pi\)
−0.726915 + 0.686727i \(0.759047\pi\)
\(812\) −7.51163 + 0.128345i −0.263607 + 0.00450403i
\(813\) 1.20893 3.96639i 0.0423991 0.139107i
\(814\) 2.66740 6.59853i 0.0934922 0.231279i
\(815\) 0 0
\(816\) 8.48271 + 14.6885i 0.296954 + 0.514199i
\(817\) −29.3599 + 29.3599i −1.02717 + 1.02717i
\(818\) −1.96950 + 0.835576i −0.0688621 + 0.0292152i
\(819\) −8.24128 + 12.2634i −0.287973 + 0.428519i
\(820\) 0 0
\(821\) 1.78624 0.0623403 0.0311702 0.999514i \(-0.490077\pi\)
0.0311702 + 0.999514i \(0.490077\pi\)
\(822\) −1.65117 1.33526i −0.0575913 0.0465725i
\(823\) −14.7321 14.7321i −0.513529 0.513529i 0.402077 0.915606i \(-0.368288\pi\)
−0.915606 + 0.402077i \(0.868288\pi\)
\(824\) −1.75219 3.94135i −0.0610404 0.137303i
\(825\) 0 0
\(826\) −13.8993 + 34.3838i −0.483620 + 1.19637i
\(827\) −2.09499 + 2.09499i −0.0728498 + 0.0728498i −0.742593 0.669743i \(-0.766404\pi\)
0.669743 + 0.742593i \(0.266404\pi\)
\(828\) −22.2597 + 34.3779i −0.773577 + 1.19472i
\(829\) −2.73512 −0.0949945 −0.0474973 0.998871i \(-0.515125\pi\)
−0.0474973 + 0.998871i \(0.515125\pi\)
\(830\) 0 0
\(831\) 5.62900 2.99918i 0.195268 0.104040i
\(832\) −9.80690 + 0.503080i −0.339993 + 0.0174411i
\(833\) −15.7524 + 15.7524i −0.545789 + 0.545789i
\(834\) −42.7794 + 4.52536i −1.48133 + 0.156700i
\(835\) 0 0
\(836\) 22.1356 22.9052i 0.765575 0.792192i
\(837\) −22.1486 + 18.0300i −0.765568 + 0.623208i
\(838\) −14.9142 + 6.32747i −0.515204 + 0.218579i
\(839\) 20.7869 0.717643 0.358821 0.933406i \(-0.383179\pi\)
0.358821 + 0.933406i \(0.383179\pi\)
\(840\) 0 0
\(841\) 28.1235 0.969778
\(842\) −23.6912 + 10.0512i −0.816454 + 0.346387i
\(843\) −21.4492 6.53759i −0.738748 0.225167i
\(844\) 13.5782 + 13.1220i 0.467381 + 0.451678i
\(845\) 0 0
\(846\) 33.3535 22.5714i 1.14672 0.776022i
\(847\) −32.7772 + 32.7772i −1.12624 + 1.12624i
\(848\) −32.6920 + 35.0061i −1.12265 + 1.20211i
\(849\) 2.24841 + 4.21992i 0.0771651 + 0.144827i
\(850\) 0 0
\(851\) −7.23366 −0.247967
\(852\) −25.2746 + 14.0261i −0.865895 + 0.480525i
\(853\) 12.6345 12.6345i 0.432597 0.432597i −0.456914 0.889511i \(-0.651045\pi\)
0.889511 + 0.456914i \(0.151045\pi\)
\(854\) 10.8662 26.8806i 0.371834 0.919834i
\(855\) 0 0
\(856\) 23.7977 10.5797i 0.813390 0.361605i
\(857\) −4.87637 4.87637i −0.166574 0.166574i 0.618898 0.785472i \(-0.287579\pi\)
−0.785472 + 0.618898i \(0.787579\pi\)
\(858\) 8.97840 11.1026i 0.306517 0.379038i
\(859\) 55.4601 1.89227 0.946136 0.323768i \(-0.104950\pi\)
0.946136 + 0.323768i \(0.104950\pi\)
\(860\) 0 0
\(861\) 13.7451 7.32351i 0.468432 0.249585i
\(862\) −43.5728 + 18.4861i −1.48410 + 0.629639i
\(863\) 31.6243 31.6243i 1.07650 1.07650i 0.0796816 0.996820i \(-0.474610\pi\)
0.996820 0.0796816i \(-0.0253904\pi\)
\(864\) −12.8419 + 26.4402i −0.436891 + 0.899515i
\(865\) 0 0
\(866\) −12.2883 + 30.3985i −0.417575 + 1.03298i
\(867\) −18.2349 5.55791i −0.619291 0.188757i
\(868\) −0.753500 44.0999i −0.0255755 1.49685i
\(869\) 36.8172i 1.24894i
\(870\) 0 0
\(871\) 8.43094 0.285672
\(872\) 23.7408 + 9.12832i 0.803966 + 0.309124i
\(873\) −5.95012 + 1.16716i −0.201381 + 0.0395025i
\(874\) −30.0145 12.1331i −1.01526 0.410408i
\(875\) 0 0
\(876\) 2.12399 7.42089i 0.0717630 0.250729i
\(877\) −13.4991 13.4991i −0.455831 0.455831i 0.441453 0.897284i \(-0.354463\pi\)
−0.897284 + 0.441453i \(0.854463\pi\)
\(878\) −31.4482 + 13.3421i −1.06132 + 0.450275i
\(879\) −37.2244 + 19.8335i −1.25555 + 0.668966i
\(880\) 0 0
\(881\) 38.0875i 1.28320i −0.767039 0.641601i \(-0.778271\pi\)
0.767039 0.641601i \(-0.221729\pi\)
\(882\) −37.9070 7.30828i −1.27640 0.246083i
\(883\) 8.86328 8.86328i 0.298273 0.298273i −0.542064 0.840337i \(-0.682357\pi\)
0.840337 + 0.542064i \(0.182357\pi\)
\(884\) −4.17671 + 4.32192i −0.140478 + 0.145362i
\(885\) 0 0
\(886\) −3.62348 + 8.96368i −0.121733 + 0.301141i
\(887\) 27.3410 + 27.3410i 0.918021 + 0.918021i 0.996885 0.0788646i \(-0.0251295\pi\)
−0.0788646 + 0.996885i \(0.525129\pi\)
\(888\) −5.15276 + 0.634264i −0.172915 + 0.0212845i
\(889\) 0.418066i 0.0140215i
\(890\) 0 0
\(891\) −16.1466 39.5734i −0.540931 1.32576i
\(892\) 48.9385 0.836172i 1.63858 0.0279971i
\(893\) 22.5107 + 22.5107i 0.753292 + 0.753292i
\(894\) 0.690742 + 6.52977i 0.0231019 + 0.218388i
\(895\) 0 0
\(896\) −19.8472 40.8265i −0.663049 1.36392i
\(897\) −13.8817 4.23106i −0.463495 0.141271i
\(898\) 4.80845 + 11.3338i 0.160460 + 0.378214i
\(899\) 5.14555i 0.171614i
\(900\) 0 0
\(901\) 29.3163i 0.976668i
\(902\) −13.8555 + 5.87829i −0.461337 + 0.195726i
\(903\) −82.3037 25.0857i −2.73890 0.834801i
\(904\) −24.8689 + 11.0559i −0.827126 + 0.367712i
\(905\) 0 0
\(906\) −38.1046 + 4.03084i −1.26594 + 0.133916i
\(907\) −11.1000 11.1000i −0.368569 0.368569i 0.498386 0.866955i \(-0.333926\pi\)
−0.866955 + 0.498386i \(0.833926\pi\)
\(908\) −0.336698 19.7059i −0.0111737 0.653962i
\(909\) −11.9305 8.01753i −0.395710 0.265925i
\(910\) 0 0
\(911\) 28.8502i 0.955849i −0.878401 0.477925i \(-0.841389\pi\)
0.878401 0.477925i \(-0.158611\pi\)
\(912\) −22.4441 6.01103i −0.743200 0.199045i
\(913\) −43.4842 43.4842i −1.43912 1.43912i
\(914\) −10.7641 4.35127i −0.356044 0.143927i
\(915\) 0 0
\(916\) −4.03765 + 4.17803i −0.133408 + 0.138046i
\(917\) 37.7287 37.7287i 1.24591 1.24591i
\(918\) 5.30102 + 17.1921i 0.174960 + 0.567425i
\(919\) 45.6949i 1.50733i 0.657256 + 0.753667i \(0.271717\pi\)
−0.657256 + 0.753667i \(0.728283\pi\)
\(920\) 0 0
\(921\) 15.8719 8.45669i 0.522998 0.278657i
\(922\) 11.3946 + 26.8579i 0.375263 + 0.884517i
\(923\) −7.24253 7.24253i −0.238391 0.238391i
\(924\) 63.4594 + 18.1632i 2.08766 + 0.597526i
\(925\) 0 0
\(926\) 7.34411 18.1677i 0.241342 0.597027i
\(927\) −0.880625 4.48937i −0.0289235 0.147450i
\(928\) −2.23371 4.80177i −0.0733253 0.157626i
\(929\) −55.0325 −1.80556 −0.902780 0.430103i \(-0.858477\pi\)
−0.902780 + 0.430103i \(0.858477\pi\)
\(930\) 0 0
\(931\) 30.5164i 1.00013i
\(932\) −0.0199772 1.16920i −0.000654375 0.0382985i
\(933\) −36.3159 11.0689i −1.18893 0.362380i
\(934\) 33.2019 + 13.4216i 1.08640 + 0.439167i
\(935\) 0 0
\(936\) −10.2593 1.79674i −0.335337 0.0587281i
\(937\) 14.5009 14.5009i 0.473724 0.473724i −0.429394 0.903117i \(-0.641273\pi\)
0.903117 + 0.429394i \(0.141273\pi\)
\(938\) 15.2220 + 35.8792i 0.497016 + 1.17150i
\(939\) −32.1938 + 17.1531i −1.05061 + 0.559771i
\(940\) 0 0
\(941\) 55.5572 1.81111 0.905556 0.424226i \(-0.139454\pi\)
0.905556 + 0.424226i \(0.139454\pi\)
\(942\) 38.1296 + 30.8343i 1.24233 + 1.00464i
\(943\) 10.8166 + 10.8166i 0.352237 + 0.352237i
\(944\) −26.1281 + 0.893121i −0.850398 + 0.0290686i
\(945\) 0 0
\(946\) 77.0891 + 31.1626i 2.50638 + 1.01318i
\(947\) 12.2804 12.2804i 0.399059 0.399059i −0.478842 0.877901i \(-0.658943\pi\)
0.877901 + 0.478842i \(0.158943\pi\)
\(948\) 23.4825 13.0315i 0.762675 0.423244i
\(949\) 2.73512 0.0887856
\(950\) 0 0
\(951\) 20.2933 + 38.0875i 0.658057 + 1.23507i
\(952\) −25.9336 9.97143i −0.840512 0.323176i
\(953\) −10.6654 + 10.6654i −0.345486 + 0.345486i −0.858425 0.512939i \(-0.828557\pi\)
0.512939 + 0.858425i \(0.328557\pi\)
\(954\) −42.0743 + 28.4731i −1.36221 + 0.921851i
\(955\) 0 0
\(956\) −11.5974 + 12.0006i −0.375086 + 0.388126i
\(957\) 7.36604 + 2.24513i 0.238110 + 0.0725747i
\(958\) 10.0347 + 23.6523i 0.324206 + 0.764173i
\(959\) 3.47842 0.112324
\(960\) 0 0
\(961\) −0.791035 −0.0255173
\(962\) −0.718483 1.69351i −0.0231648 0.0546009i
\(963\) 27.1067 5.31719i 0.873500 0.171344i
\(964\) 21.4675 22.2138i 0.691421 0.715460i
\(965\) 0 0
\(966\) −7.05731 66.7147i −0.227065 2.14651i
\(967\) 38.1275 38.1275i 1.22610 1.22610i 0.260670 0.965428i \(-0.416056\pi\)
0.965428 0.260670i \(-0.0839436\pi\)
\(968\) −30.4992 11.7269i −0.980281 0.376917i
\(969\) −12.5510 + 6.68725i −0.403195 + 0.214826i
\(970\) 0 0
\(971\) −30.2255 −0.969981 −0.484991 0.874519i \(-0.661177\pi\)
−0.484991 + 0.874519i \(0.661177\pi\)
\(972\) −19.5253 + 24.3056i −0.626275 + 0.779602i
\(973\) 49.8269 49.8269i 1.59738 1.59738i
\(974\) −4.83574 1.95480i −0.154947 0.0626359i
\(975\) 0 0
\(976\) 20.4264 0.698224i 0.653835 0.0223496i
\(977\) 11.0641 + 11.0641i 0.353972 + 0.353972i 0.861585 0.507613i \(-0.169472\pi\)
−0.507613 + 0.861585i \(0.669472\pi\)
\(978\) 11.0958 13.7211i 0.354806 0.438751i
\(979\) −23.6497 −0.755847
\(980\) 0 0
\(981\) 22.3917 + 15.0477i 0.714913 + 0.480436i
\(982\) −5.78695 13.6402i −0.184669 0.435276i
\(983\) 9.37350 9.37350i 0.298968 0.298968i −0.541641 0.840610i \(-0.682197\pi\)
0.840610 + 0.541641i \(0.182197\pi\)
\(984\) 8.65342 + 6.75657i 0.275861 + 0.215392i
\(985\) 0 0
\(986\) −3.00516 1.21481i −0.0957037 0.0386873i
\(987\) −19.2336 + 63.1035i −0.612212 + 2.00861i
\(988\) −0.140653 8.23197i −0.00447477 0.261894i
\(989\) 84.5092i 2.68724i
\(990\) 0 0
\(991\) −51.4416 −1.63410 −0.817048 0.576569i \(-0.804391\pi\)
−0.817048 + 0.576569i \(0.804391\pi\)
\(992\) 28.1907 13.1139i 0.895054 0.416366i
\(993\) 11.8143 + 3.60094i 0.374916 + 0.114272i
\(994\) 17.7454 43.8980i 0.562848 1.39236i
\(995\) 0 0
\(996\) −12.3435 + 43.1261i −0.391118 + 1.36650i
\(997\) 1.26149 + 1.26149i 0.0399517 + 0.0399517i 0.726800 0.686849i \(-0.241007\pi\)
−0.686849 + 0.726800i \(0.741007\pi\)
\(998\) −9.20397 21.6943i −0.291347 0.686721i
\(999\) −5.47787 0.561525i −0.173312 0.0177659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.k.293.20 yes 64
3.2 odd 2 inner 600.2.w.k.293.14 yes 64
5.2 odd 4 inner 600.2.w.k.557.3 yes 64
5.3 odd 4 inner 600.2.w.k.557.30 yes 64
5.4 even 2 inner 600.2.w.k.293.13 yes 64
8.5 even 2 inner 600.2.w.k.293.29 yes 64
15.2 even 4 inner 600.2.w.k.557.29 yes 64
15.8 even 4 inner 600.2.w.k.557.4 yes 64
15.14 odd 2 inner 600.2.w.k.293.19 yes 64
24.5 odd 2 inner 600.2.w.k.293.3 64
40.13 odd 4 inner 600.2.w.k.557.19 yes 64
40.29 even 2 inner 600.2.w.k.293.4 yes 64
40.37 odd 4 inner 600.2.w.k.557.14 yes 64
120.29 odd 2 inner 600.2.w.k.293.30 yes 64
120.53 even 4 inner 600.2.w.k.557.13 yes 64
120.77 even 4 inner 600.2.w.k.557.20 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.k.293.3 64 24.5 odd 2 inner
600.2.w.k.293.4 yes 64 40.29 even 2 inner
600.2.w.k.293.13 yes 64 5.4 even 2 inner
600.2.w.k.293.14 yes 64 3.2 odd 2 inner
600.2.w.k.293.19 yes 64 15.14 odd 2 inner
600.2.w.k.293.20 yes 64 1.1 even 1 trivial
600.2.w.k.293.29 yes 64 8.5 even 2 inner
600.2.w.k.293.30 yes 64 120.29 odd 2 inner
600.2.w.k.557.3 yes 64 5.2 odd 4 inner
600.2.w.k.557.4 yes 64 15.8 even 4 inner
600.2.w.k.557.13 yes 64 120.53 even 4 inner
600.2.w.k.557.14 yes 64 40.37 odd 4 inner
600.2.w.k.557.19 yes 64 40.13 odd 4 inner
600.2.w.k.557.20 yes 64 120.77 even 4 inner
600.2.w.k.557.29 yes 64 15.2 even 4 inner
600.2.w.k.557.30 yes 64 5.3 odd 4 inner