Properties

Label 600.2.w.g.557.1
Level $600$
Weight $2$
Character 600.557
Analytic conductor $4.791$
Analytic rank $0$
Dimension $4$
CM discriminant -120
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 557.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 600.557
Dual form 600.2.w.g.293.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +(-1.22474 - 1.22474i) q^{3} -2.00000i q^{4} -2.44949 q^{6} +(-2.00000 - 2.00000i) q^{8} +3.00000i q^{9} -4.89898 q^{11} +(-2.44949 + 2.44949i) q^{12} +(-2.44949 - 2.44949i) q^{13} -4.00000 q^{16} +(2.00000 - 2.00000i) q^{17} +(3.00000 + 3.00000i) q^{18} +(-4.89898 + 4.89898i) q^{22} +(-4.00000 - 4.00000i) q^{23} +4.89898i q^{24} -4.89898 q^{26} +(3.67423 - 3.67423i) q^{27} +9.79796i q^{29} +2.00000 q^{31} +(-4.00000 + 4.00000i) q^{32} +(6.00000 + 6.00000i) q^{33} -4.00000i q^{34} +6.00000 q^{36} +(7.34847 - 7.34847i) q^{37} +6.00000i q^{39} +(-2.44949 - 2.44949i) q^{43} +9.79796i q^{44} -8.00000 q^{46} +(-8.00000 + 8.00000i) q^{47} +(4.89898 + 4.89898i) q^{48} -7.00000i q^{49} -4.89898 q^{51} +(-4.89898 + 4.89898i) q^{52} -7.34847i q^{54} +(9.79796 + 9.79796i) q^{58} -14.6969i q^{59} +(2.00000 - 2.00000i) q^{62} +8.00000i q^{64} +12.0000 q^{66} +(7.34847 - 7.34847i) q^{67} +(-4.00000 - 4.00000i) q^{68} +9.79796i q^{69} +(6.00000 - 6.00000i) q^{72} -14.6969i q^{74} +(6.00000 + 6.00000i) q^{78} -14.0000i q^{79} -9.00000 q^{81} -4.89898 q^{86} +(12.0000 - 12.0000i) q^{87} +(9.79796 + 9.79796i) q^{88} +(-8.00000 + 8.00000i) q^{92} +(-2.44949 - 2.44949i) q^{93} +16.0000i q^{94} +9.79796 q^{96} +(-7.00000 - 7.00000i) q^{98} -14.6969i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 16 q^{16} + 8 q^{17} + 12 q^{18} - 16 q^{23} + 8 q^{31} - 16 q^{32} + 24 q^{33} + 24 q^{36} - 32 q^{46} - 32 q^{47} + 8 q^{62} + 48 q^{66} - 16 q^{68} + 24 q^{72} + 24 q^{78} - 36 q^{81}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) −1.22474 1.22474i −0.707107 0.707107i
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) −2.44949 −1.00000
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) −2.44949 + 2.44949i −0.707107 + 0.707107i
\(13\) −2.44949 2.44949i −0.679366 0.679366i 0.280491 0.959857i \(-0.409503\pi\)
−0.959857 + 0.280491i \(0.909503\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 2.00000 2.00000i 0.485071 0.485071i −0.421676 0.906747i \(-0.638558\pi\)
0.906747 + 0.421676i \(0.138558\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.89898 + 4.89898i −1.04447 + 1.04447i
\(23\) −4.00000 4.00000i −0.834058 0.834058i 0.154011 0.988069i \(-0.450781\pi\)
−0.988069 + 0.154011i \(0.950781\pi\)
\(24\) 4.89898i 1.00000i
\(25\) 0 0
\(26\) −4.89898 −0.960769
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 0 0
\(29\) 9.79796i 1.81944i 0.415227 + 0.909718i \(0.363702\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 6.00000 + 6.00000i 1.04447 + 1.04447i
\(34\) 4.00000i 0.685994i
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) 7.34847 7.34847i 1.20808 1.20808i 0.236433 0.971648i \(-0.424022\pi\)
0.971648 0.236433i \(-0.0759784\pi\)
\(38\) 0 0
\(39\) 6.00000i 0.960769i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −2.44949 2.44949i −0.373544 0.373544i 0.495222 0.868766i \(-0.335087\pi\)
−0.868766 + 0.495222i \(0.835087\pi\)
\(44\) 9.79796i 1.47710i
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) −8.00000 + 8.00000i −1.16692 + 1.16692i −0.183992 + 0.982928i \(0.558902\pi\)
−0.982928 + 0.183992i \(0.941098\pi\)
\(48\) 4.89898 + 4.89898i 0.707107 + 0.707107i
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) −4.89898 −0.685994
\(52\) −4.89898 + 4.89898i −0.679366 + 0.679366i
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 7.34847i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 9.79796 + 9.79796i 1.28654 + 1.28654i
\(59\) 14.6969i 1.91338i −0.291111 0.956689i \(-0.594025\pi\)
0.291111 0.956689i \(-0.405975\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 2.00000 2.00000i 0.254000 0.254000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 12.0000 1.47710
\(67\) 7.34847 7.34847i 0.897758 0.897758i −0.0974792 0.995238i \(-0.531078\pi\)
0.995238 + 0.0974792i \(0.0310779\pi\)
\(68\) −4.00000 4.00000i −0.485071 0.485071i
\(69\) 9.79796i 1.17954i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 6.00000 6.00000i 0.707107 0.707107i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 14.6969i 1.70848i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 6.00000 + 6.00000i 0.679366 + 0.679366i
\(79\) 14.0000i 1.57512i −0.616236 0.787562i \(-0.711343\pi\)
0.616236 0.787562i \(-0.288657\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.89898 −0.528271
\(87\) 12.0000 12.0000i 1.28654 1.28654i
\(88\) 9.79796 + 9.79796i 1.04447 + 1.04447i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −8.00000 + 8.00000i −0.834058 + 0.834058i
\(93\) −2.44949 2.44949i −0.254000 0.254000i
\(94\) 16.0000i 1.65027i
\(95\) 0 0
\(96\) 9.79796 1.00000
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −7.00000 7.00000i −0.707107 0.707107i
\(99\) 14.6969i 1.47710i
\(100\) 0 0
\(101\) 19.5959 1.94987 0.974933 0.222497i \(-0.0714208\pi\)
0.974933 + 0.222497i \(0.0714208\pi\)
\(102\) −4.89898 + 4.89898i −0.485071 + 0.485071i
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 9.79796i 0.960769i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −7.34847 7.34847i −0.707107 0.707107i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −18.0000 −1.70848
\(112\) 0 0
\(113\) −14.0000 14.0000i −1.31701 1.31701i −0.916132 0.400878i \(-0.868705\pi\)
−0.400878 0.916132i \(-0.631295\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 19.5959 1.81944
\(117\) 7.34847 7.34847i 0.679366 0.679366i
\(118\) −14.6969 14.6969i −1.35296 1.35296i
\(119\) 0 0
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) 0 0
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 6.00000i 0.528271i
\(130\) 0 0
\(131\) −4.89898 −0.428026 −0.214013 0.976831i \(-0.568653\pi\)
−0.214013 + 0.976831i \(0.568653\pi\)
\(132\) 12.0000 12.0000i 1.04447 1.04447i
\(133\) 0 0
\(134\) 14.6969i 1.26962i
\(135\) 0 0
\(136\) −8.00000 −0.685994
\(137\) 2.00000 2.00000i 0.170872 0.170872i −0.616491 0.787362i \(-0.711446\pi\)
0.787362 + 0.616491i \(0.211446\pi\)
\(138\) 9.79796 + 9.79796i 0.834058 + 0.834058i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 19.5959 1.65027
\(142\) 0 0
\(143\) 12.0000 + 12.0000i 1.00349 + 1.00349i
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) 0 0
\(147\) −8.57321 + 8.57321i −0.707107 + 0.707107i
\(148\) −14.6969 14.6969i −1.20808 1.20808i
\(149\) 9.79796i 0.802680i 0.915929 + 0.401340i \(0.131455\pi\)
−0.915929 + 0.401340i \(0.868545\pi\)
\(150\) 0 0
\(151\) 22.0000 1.79033 0.895167 0.445730i \(-0.147056\pi\)
0.895167 + 0.445730i \(0.147056\pi\)
\(152\) 0 0
\(153\) 6.00000 + 6.00000i 0.485071 + 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 12.0000 0.960769
\(157\) −17.1464 + 17.1464i −1.36843 + 1.36843i −0.505759 + 0.862675i \(0.668788\pi\)
−0.862675 + 0.505759i \(0.831212\pi\)
\(158\) −14.0000 14.0000i −1.11378 1.11378i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −9.00000 + 9.00000i −0.707107 + 0.707107i
\(163\) −2.44949 2.44949i −0.191859 0.191859i 0.604640 0.796499i \(-0.293317\pi\)
−0.796499 + 0.604640i \(0.793317\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 + 8.00000i −0.619059 + 0.619059i −0.945290 0.326231i \(-0.894221\pi\)
0.326231 + 0.945290i \(0.394221\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.89898 + 4.89898i −0.373544 + 0.373544i
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 24.0000i 1.81944i
\(175\) 0 0
\(176\) 19.5959 1.47710
\(177\) −18.0000 + 18.0000i −1.35296 + 1.35296i
\(178\) 0 0
\(179\) 14.6969i 1.09850i −0.835658 0.549250i \(-0.814913\pi\)
0.835658 0.549250i \(-0.185087\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 16.0000i 1.17954i
\(185\) 0 0
\(186\) −4.89898 −0.359211
\(187\) −9.79796 + 9.79796i −0.716498 + 0.716498i
\(188\) 16.0000 + 16.0000i 1.16692 + 1.16692i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 9.79796 9.79796i 0.707107 0.707107i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) −14.6969 14.6969i −1.04447 1.04447i
\(199\) 26.0000i 1.84309i 0.388270 + 0.921546i \(0.373073\pi\)
−0.388270 + 0.921546i \(0.626927\pi\)
\(200\) 0 0
\(201\) −18.0000 −1.26962
\(202\) 19.5959 19.5959i 1.37876 1.37876i
\(203\) 0 0
\(204\) 9.79796i 0.685994i
\(205\) 0 0
\(206\) 0 0
\(207\) 12.0000 12.0000i 0.834058 0.834058i
\(208\) 9.79796 + 9.79796i 0.679366 + 0.679366i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −14.6969 −1.00000
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.79796 −0.659082
\(222\) −18.0000 + 18.0000i −1.20808 + 1.20808i
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −28.0000 −1.86253
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 19.5959 19.5959i 1.28654 1.28654i
\(233\) −14.0000 14.0000i −0.917170 0.917170i 0.0796522 0.996823i \(-0.474619\pi\)
−0.996823 + 0.0796522i \(0.974619\pi\)
\(234\) 14.6969i 0.960769i
\(235\) 0 0
\(236\) −29.3939 −1.91338
\(237\) −17.1464 + 17.1464i −1.11378 + 1.11378i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 13.0000 13.0000i 0.835672 0.835672i
\(243\) 11.0227 + 11.0227i 0.707107 + 0.707107i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −4.00000 4.00000i −0.254000 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) −4.89898 −0.309221 −0.154610 0.987976i \(-0.549412\pi\)
−0.154610 + 0.987976i \(0.549412\pi\)
\(252\) 0 0
\(253\) 19.5959 + 19.5959i 1.23198 + 1.23198i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 22.0000 22.0000i 1.37232 1.37232i 0.515331 0.856991i \(-0.327669\pi\)
0.856991 0.515331i \(-0.172331\pi\)
\(258\) 6.00000 + 6.00000i 0.373544 + 0.373544i
\(259\) 0 0
\(260\) 0 0
\(261\) −29.3939 −1.81944
\(262\) −4.89898 + 4.89898i −0.302660 + 0.302660i
\(263\) 16.0000 + 16.0000i 0.986602 + 0.986602i 0.999911 0.0133092i \(-0.00423656\pi\)
−0.0133092 + 0.999911i \(0.504237\pi\)
\(264\) 24.0000i 1.47710i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −14.6969 14.6969i −0.897758 0.897758i
\(269\) 9.79796i 0.597392i 0.954348 + 0.298696i \(0.0965517\pi\)
−0.954348 + 0.298696i \(0.903448\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −8.00000 + 8.00000i −0.485071 + 0.485071i
\(273\) 0 0
\(274\) 4.00000i 0.241649i
\(275\) 0 0
\(276\) 19.5959 1.17954
\(277\) 7.34847 7.34847i 0.441527 0.441527i −0.450998 0.892525i \(-0.648932\pi\)
0.892525 + 0.450998i \(0.148932\pi\)
\(278\) 0 0
\(279\) 6.00000i 0.359211i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 19.5959 19.5959i 1.16692 1.16692i
\(283\) 22.0454 + 22.0454i 1.31046 + 1.31046i 0.921073 + 0.389391i \(0.127314\pi\)
0.389391 + 0.921073i \(0.372686\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 0 0
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) 9.00000i 0.529412i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 17.1464i 1.00000i
\(295\) 0 0
\(296\) −29.3939 −1.70848
\(297\) −18.0000 + 18.0000i −1.04447 + 1.04447i
\(298\) 9.79796 + 9.79796i 0.567581 + 0.567581i
\(299\) 19.5959i 1.13326i
\(300\) 0 0
\(301\) 0 0
\(302\) 22.0000 22.0000i 1.26596 1.26596i
\(303\) −24.0000 24.0000i −1.37876 1.37876i
\(304\) 0 0
\(305\) 0 0
\(306\) 12.0000 0.685994
\(307\) −17.1464 + 17.1464i −0.978598 + 0.978598i −0.999776 0.0211774i \(-0.993259\pi\)
0.0211774 + 0.999776i \(0.493259\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 12.0000 12.0000i 0.679366 0.679366i
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 34.2929i 1.93526i
\(315\) 0 0
\(316\) −28.0000 −1.57512
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 48.0000i 2.68748i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) −4.89898 −0.271329
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 22.0454 + 22.0454i 1.20808 + 1.20808i
\(334\) 16.0000i 0.875481i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −1.00000 1.00000i −0.0543928 0.0543928i
\(339\) 34.2929i 1.86253i
\(340\) 0 0
\(341\) −9.79796 −0.530589
\(342\) 0 0
\(343\) 0 0
\(344\) 9.79796i 0.528271i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) −24.0000 24.0000i −1.28654 1.28654i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −18.0000 −0.960769
\(352\) 19.5959 19.5959i 1.04447 1.04447i
\(353\) 26.0000 + 26.0000i 1.38384 + 1.38384i 0.837682 + 0.546159i \(0.183910\pi\)
0.546159 + 0.837682i \(0.316090\pi\)
\(354\) 36.0000i 1.91338i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −14.6969 14.6969i −0.776757 0.776757i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −15.9217 15.9217i −0.835672 0.835672i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 16.0000 + 16.0000i 0.834058 + 0.834058i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −4.89898 + 4.89898i −0.254000 + 0.254000i
\(373\) −26.9444 26.9444i −1.39513 1.39513i −0.813343 0.581785i \(-0.802355\pi\)
−0.581785 0.813343i \(-0.697645\pi\)
\(374\) 19.5959i 1.01328i
\(375\) 0 0
\(376\) 32.0000 1.65027
\(377\) 24.0000 24.0000i 1.23606 1.23606i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.00000 4.00000i −0.204390 0.204390i 0.597488 0.801878i \(-0.296166\pi\)
−0.801878 + 0.597488i \(0.796166\pi\)
\(384\) 19.5959i 1.00000i
\(385\) 0 0
\(386\) 0 0
\(387\) 7.34847 7.34847i 0.373544 0.373544i
\(388\) 0 0
\(389\) 39.1918i 1.98710i −0.113373 0.993552i \(-0.536166\pi\)
0.113373 0.993552i \(-0.463834\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) −14.0000 + 14.0000i −0.707107 + 0.707107i
\(393\) 6.00000 + 6.00000i 0.302660 + 0.302660i
\(394\) 0 0
\(395\) 0 0
\(396\) −29.3939 −1.47710
\(397\) −17.1464 + 17.1464i −0.860555 + 0.860555i −0.991402 0.130848i \(-0.958230\pi\)
0.130848 + 0.991402i \(0.458230\pi\)
\(398\) 26.0000 + 26.0000i 1.30326 + 1.30326i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −18.0000 + 18.0000i −0.897758 + 0.897758i
\(403\) −4.89898 4.89898i −0.244036 0.244036i
\(404\) 39.1918i 1.94987i
\(405\) 0 0
\(406\) 0 0
\(407\) −36.0000 + 36.0000i −1.78445 + 1.78445i
\(408\) 9.79796 + 9.79796i 0.485071 + 0.485071i
\(409\) 34.0000i 1.68119i −0.541663 0.840596i \(-0.682205\pi\)
0.541663 0.840596i \(-0.317795\pi\)
\(410\) 0 0
\(411\) −4.89898 −0.241649
\(412\) 0 0
\(413\) 0 0
\(414\) 24.0000i 1.17954i
\(415\) 0 0
\(416\) 19.5959 0.960769
\(417\) 0 0
\(418\) 0 0
\(419\) 34.2929i 1.67532i 0.546195 + 0.837658i \(0.316076\pi\)
−0.546195 + 0.837658i \(0.683924\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −24.0000 24.0000i −1.16692 1.16692i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 29.3939i 1.41915i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −14.6969 + 14.6969i −0.707107 + 0.707107i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 26.0000i 1.24091i 0.784241 + 0.620456i \(0.213053\pi\)
−0.784241 + 0.620456i \(0.786947\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) −9.79796 + 9.79796i −0.466041 + 0.466041i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 36.0000i 1.70848i
\(445\) 0 0
\(446\) 0 0
\(447\) 12.0000 12.0000i 0.567581 0.567581i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −28.0000 + 28.0000i −1.31701 + 1.31701i
\(453\) −26.9444 26.9444i −1.26596 1.26596i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 14.6969i 0.685994i
\(460\) 0 0
\(461\) −29.3939 −1.36901 −0.684505 0.729008i \(-0.739981\pi\)
−0.684505 + 0.729008i \(0.739981\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 39.1918i 1.81944i
\(465\) 0 0
\(466\) −28.0000 −1.29707
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) −14.6969 14.6969i −0.679366 0.679366i
\(469\) 0 0
\(470\) 0 0
\(471\) 42.0000 1.93526
\(472\) −29.3939 + 29.3939i −1.35296 + 1.35296i
\(473\) 12.0000 + 12.0000i 0.551761 + 0.551761i
\(474\) 34.2929i 1.57512i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −36.0000 −1.64146
\(482\) 22.0000 22.0000i 1.00207 1.00207i
\(483\) 0 0
\(484\) 26.0000i 1.18182i
\(485\) 0 0
\(486\) 22.0454 1.00000
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 6.00000i 0.271329i
\(490\) 0 0
\(491\) 44.0908 1.98979 0.994895 0.100912i \(-0.0321762\pi\)
0.994895 + 0.100912i \(0.0321762\pi\)
\(492\) 0 0
\(493\) 19.5959 + 19.5959i 0.882556 + 0.882556i
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 19.5959 0.875481
\(502\) −4.89898 + 4.89898i −0.218652 + 0.218652i
\(503\) 16.0000 + 16.0000i 0.713405 + 0.713405i 0.967246 0.253841i \(-0.0816941\pi\)
−0.253841 + 0.967246i \(0.581694\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 39.1918 1.74229
\(507\) −1.22474 + 1.22474i −0.0543928 + 0.0543928i
\(508\) 0 0
\(509\) 39.1918i 1.73715i −0.495560 0.868574i \(-0.665037\pi\)
0.495560 0.868574i \(-0.334963\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 44.0000i 1.94076i
\(515\) 0 0
\(516\) 12.0000 0.528271
\(517\) 39.1918 39.1918i 1.72365 1.72365i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −29.3939 + 29.3939i −1.28654 + 1.28654i
\(523\) −26.9444 26.9444i −1.17820 1.17820i −0.980204 0.197992i \(-0.936558\pi\)
−0.197992 0.980204i \(-0.563442\pi\)
\(524\) 9.79796i 0.428026i
\(525\) 0 0
\(526\) 32.0000 1.39527
\(527\) 4.00000 4.00000i 0.174243 0.174243i
\(528\) −24.0000 24.0000i −1.04447 1.04447i
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) 44.0908 1.91338
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −29.3939 −1.26962
\(537\) −18.0000 + 18.0000i −0.776757 + 0.776757i
\(538\) 9.79796 + 9.79796i 0.422420 + 0.422420i
\(539\) 34.2929i 1.47710i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 2.00000 2.00000i 0.0859074 0.0859074i
\(543\) 0 0
\(544\) 16.0000i 0.685994i
\(545\) 0 0
\(546\) 0 0
\(547\) 31.8434 31.8434i 1.36152 1.36152i 0.489547 0.871977i \(-0.337162\pi\)
0.871977 0.489547i \(-0.162838\pi\)
\(548\) −4.00000 4.00000i −0.170872 0.170872i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 19.5959 19.5959i 0.834058 0.834058i
\(553\) 0 0
\(554\) 14.6969i 0.624413i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 6.00000 + 6.00000i 0.254000 + 0.254000i
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 39.1918i 1.65027i
\(565\) 0 0
\(566\) 44.0908 1.85328
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 24.0000 24.0000i 1.00349 1.00349i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.0000 −1.00000
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 9.00000 + 9.00000i 0.374351 + 0.374351i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 17.1464 + 17.1464i 0.707107 + 0.707107i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −29.3939 + 29.3939i −1.20808 + 1.20808i
\(593\) −34.0000 34.0000i −1.39621 1.39621i −0.810568 0.585645i \(-0.800841\pi\)
−0.585645 0.810568i \(-0.699159\pi\)
\(594\) 36.0000i 1.47710i
\(595\) 0 0
\(596\) 19.5959 0.802680
\(597\) 31.8434 31.8434i 1.30326 1.30326i
\(598\) 19.5959 + 19.5959i 0.801337 + 0.801337i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 22.0454 + 22.0454i 0.897758 + 0.897758i
\(604\) 44.0000i 1.79033i
\(605\) 0 0
\(606\) −48.0000 −1.94987
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 39.1918 1.58553
\(612\) 12.0000 12.0000i 0.485071 0.485071i
\(613\) −26.9444 26.9444i −1.08827 1.08827i −0.995706 0.0925671i \(-0.970493\pi\)
−0.0925671 0.995706i \(-0.529507\pi\)
\(614\) 34.2929i 1.38395i
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 22.0000i 0.885687 0.885687i −0.108419 0.994105i \(-0.534579\pi\)
0.994105 + 0.108419i \(0.0345787\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −29.3939 −1.17954
\(622\) 0 0
\(623\) 0 0
\(624\) 24.0000i 0.960769i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 34.2929 + 34.2929i 1.36843 + 1.36843i
\(629\) 29.3939i 1.17201i
\(630\) 0 0
\(631\) −38.0000 −1.51276 −0.756378 0.654135i \(-0.773033\pi\)
−0.756378 + 0.654135i \(0.773033\pi\)
\(632\) −28.0000 + 28.0000i −1.11378 + 1.11378i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −17.1464 + 17.1464i −0.679366 + 0.679366i
\(638\) −48.0000 48.0000i −1.90034 1.90034i
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −2.44949 2.44949i −0.0965984 0.0965984i 0.657156 0.753755i \(-0.271759\pi\)
−0.753755 + 0.657156i \(0.771759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000 32.0000i 1.25805 1.25805i 0.306027 0.952023i \(-0.401000\pi\)
0.952023 0.306027i \(-0.0989998\pi\)
\(648\) 18.0000 + 18.0000i 0.707107 + 0.707107i
\(649\) 72.0000i 2.82625i
\(650\) 0 0
\(651\) 0 0
\(652\) −4.89898 + 4.89898i −0.191859 + 0.191859i
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.6969i 0.572511i −0.958153 0.286256i \(-0.907589\pi\)
0.958153 0.286256i \(-0.0924107\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 12.0000 + 12.0000i 0.466041 + 0.466041i
\(664\) 0 0
\(665\) 0 0
\(666\) 44.0908 1.70848
\(667\) 39.1918 39.1918i 1.51751 1.51751i
\(668\) 16.0000 + 16.0000i 0.619059 + 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −2.00000 −0.0769231
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 34.2929 + 34.2929i 1.31701 + 1.31701i
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −9.79796 + 9.79796i −0.375183 + 0.375183i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 9.79796 + 9.79796i 0.373544 + 0.373544i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) −48.0000 −1.81944
\(697\) 0 0
\(698\) 0 0
\(699\) 34.2929i 1.29707i
\(700\) 0 0
\(701\) 19.5959 0.740128 0.370064 0.929006i \(-0.379336\pi\)
0.370064 + 0.929006i \(0.379336\pi\)
\(702\) −18.0000 + 18.0000i −0.679366 + 0.679366i
\(703\) 0 0
\(704\) 39.1918i 1.47710i
\(705\) 0 0
\(706\) 52.0000 1.95705
\(707\) 0 0
\(708\) 36.0000 + 36.0000i 1.35296 + 1.35296i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 42.0000 1.57512
\(712\) 0 0
\(713\) −8.00000 8.00000i −0.299602 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) −29.3939 −1.09850
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19.0000 + 19.0000i −0.707107 + 0.707107i
\(723\) −26.9444 26.9444i −1.00207 1.00207i
\(724\) 0 0
\(725\) 0 0
\(726\) −31.8434 −1.18182
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −9.79796 −0.362391
\(732\) 0 0
\(733\) 22.0454 + 22.0454i 0.814266 + 0.814266i 0.985270 0.171005i \(-0.0547013\pi\)
−0.171005 + 0.985270i \(0.554701\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 32.0000 1.17954
\(737\) −36.0000 + 36.0000i −1.32608 + 1.32608i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.00000 4.00000i −0.146746 0.146746i 0.629917 0.776663i \(-0.283089\pi\)
−0.776663 + 0.629917i \(0.783089\pi\)
\(744\) 9.79796i 0.359211i
\(745\) 0 0
\(746\) −53.8888 −1.97301
\(747\) 0 0
\(748\) 19.5959 + 19.5959i 0.716498 + 0.716498i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 32.0000 32.0000i 1.16692 1.16692i
\(753\) 6.00000 + 6.00000i 0.218652 + 0.218652i
\(754\) 48.0000i 1.74806i
\(755\) 0 0
\(756\) 0 0
\(757\) 31.8434 31.8434i 1.15737 1.15737i 0.172327 0.985040i \(-0.444871\pi\)
0.985040 0.172327i \(-0.0551286\pi\)
\(758\) 0 0
\(759\) 48.0000i 1.74229i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) −36.0000 + 36.0000i −1.29988 + 1.29988i
\(768\) −19.5959 19.5959i −0.707107 0.707107i
\(769\) 34.0000i 1.22607i −0.790055 0.613036i \(-0.789948\pi\)
0.790055 0.613036i \(-0.210052\pi\)
\(770\) 0 0
\(771\) −53.8888 −1.94076
\(772\) 0 0
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 14.6969i 0.528271i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −39.1918 39.1918i −1.40510 1.40510i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −16.0000 + 16.0000i −0.572159 + 0.572159i
\(783\) 36.0000 + 36.0000i 1.28654 + 1.28654i
\(784\) 28.0000i 1.00000i
\(785\) 0 0
\(786\) 12.0000 0.428026
\(787\) −17.1464 + 17.1464i −0.611204 + 0.611204i −0.943260 0.332056i \(-0.892258\pi\)
0.332056 + 0.943260i \(0.392258\pi\)
\(788\) 0 0
\(789\) 39.1918i 1.39527i
\(790\) 0 0
\(791\) 0 0
\(792\) −29.3939 + 29.3939i −1.04447 + 1.04447i
\(793\) 0 0
\(794\) 34.2929i 1.21701i
\(795\) 0 0
\(796\) 52.0000 1.84309
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 32.0000i 1.13208i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 36.0000i 1.26962i
\(805\) 0 0
\(806\) −9.79796 −0.345118
\(807\) 12.0000 12.0000i 0.422420 0.422420i
\(808\) −39.1918 39.1918i −1.37876 1.37876i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −2.44949 2.44949i −0.0859074 0.0859074i
\(814\) 72.0000i 2.52360i
\(815\) 0 0
\(816\) 19.5959 0.685994
\(817\) 0 0
\(818\) −34.0000 34.0000i −1.18878 1.18878i
\(819\) 0 0
\(820\) 0 0
\(821\) −29.3939 −1.02585 −0.512927 0.858432i \(-0.671439\pi\)
−0.512927 + 0.858432i \(0.671439\pi\)
\(822\) −4.89898 + 4.89898i −0.170872 + 0.170872i
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) −24.0000 24.0000i −0.834058 0.834058i
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) −18.0000 −0.624413
\(832\) 19.5959 19.5959i 0.679366 0.679366i
\(833\) −14.0000 14.0000i −0.485071 0.485071i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.34847 7.34847i 0.254000 0.254000i
\(838\) 34.2929 + 34.2929i 1.18463 + 1.18463i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −67.0000 −2.31034
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) −48.0000 −1.65027
\(847\) 0 0
\(848\) 0 0
\(849\) 54.0000i 1.85328i
\(850\) 0 0
\(851\) −58.7878 −2.01522
\(852\) 0 0
\(853\) −26.9444 26.9444i −0.922558 0.922558i 0.0746514 0.997210i \(-0.476216\pi\)
−0.997210 + 0.0746514i \(0.976216\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.0000 + 38.0000i −1.29806 + 1.29806i −0.368380 + 0.929675i \(0.620087\pi\)
−0.929675 + 0.368380i \(0.879913\pi\)
\(858\) −29.3939 29.3939i −1.00349 1.00349i
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.0000 + 16.0000i 0.544646 + 0.544646i 0.924887 0.380241i \(-0.124159\pi\)
−0.380241 + 0.924887i \(0.624159\pi\)
\(864\) 29.3939i 1.00000i
\(865\) 0 0
\(866\) 0 0
\(867\) 11.0227 11.0227i 0.374351 0.374351i
\(868\) 0 0
\(869\) 68.5857i 2.32661i
\(870\) 0 0
\(871\) −36.0000 −1.21981
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −41.6413 + 41.6413i −1.40613 + 1.40613i −0.627557 + 0.778570i \(0.715945\pi\)
−0.778570 + 0.627557i \(0.784055\pi\)
\(878\) 26.0000 + 26.0000i 0.877457 + 0.877457i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 21.0000 21.0000i 0.707107 0.707107i
\(883\) 22.0454 + 22.0454i 0.741887 + 0.741887i 0.972941 0.231054i \(-0.0742174\pi\)
−0.231054 + 0.972941i \(0.574217\pi\)
\(884\) 19.5959i 0.659082i
\(885\) 0 0
\(886\) 0 0
\(887\) 32.0000 32.0000i 1.07445 1.07445i 0.0774593 0.996996i \(-0.475319\pi\)
0.996996 0.0774593i \(-0.0246808\pi\)
\(888\) 36.0000 + 36.0000i 1.20808 + 1.20808i
\(889\) 0 0
\(890\) 0 0
\(891\) 44.0908 1.47710
\(892\) 0 0
\(893\) 0 0
\(894\) 24.0000i 0.802680i
\(895\) 0 0
\(896\) 0 0
\(897\) 24.0000 24.0000i 0.801337 0.801337i
\(898\) 0 0
\(899\) 19.5959i 0.653560i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 56.0000i 1.86253i
\(905\) 0 0
\(906\) −53.8888 −1.79033
\(907\) −41.6413 + 41.6413i −1.38268 + 1.38268i −0.542844 + 0.839834i \(0.682652\pi\)
−0.839834 + 0.542844i \(0.817348\pi\)
\(908\) 0 0
\(909\) 58.7878i 1.94987i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −14.6969 14.6969i −0.485071 0.485071i
\(919\) 26.0000i 0.857661i 0.903385 + 0.428830i \(0.141074\pi\)
−0.903385 + 0.428830i \(0.858926\pi\)
\(920\) 0 0
\(921\) 42.0000 1.38395
\(922\) −29.3939 + 29.3939i −0.968036 + 0.968036i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −39.1918 39.1918i −1.28654 1.28654i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −28.0000 + 28.0000i −0.917170 + 0.917170i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −29.3939 −0.960769
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.5959 0.638809 0.319404 0.947619i \(-0.396517\pi\)
0.319404 + 0.947619i \(0.396517\pi\)
\(942\) 42.0000 42.0000i 1.36843 1.36843i
\(943\) 0 0
\(944\) 58.7878i 1.91338i
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 34.2929 + 34.2929i 1.11378 + 1.11378i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 34.0000i −1.10137 1.10137i −0.994246 0.107122i \(-0.965836\pi\)
−0.107122 0.994246i \(-0.534164\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −58.7878 + 58.7878i −1.90034 + 1.90034i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −36.0000 + 36.0000i −1.16069 + 1.16069i
\(963\) 0 0
\(964\) 44.0000i 1.41714i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −26.0000 26.0000i −0.835672 0.835672i
\(969\) 0 0
\(970\) 0 0
\(971\) −53.8888 −1.72937 −0.864687 0.502312i \(-0.832483\pi\)
−0.864687 + 0.502312i \(0.832483\pi\)
\(972\) 22.0454 22.0454i 0.707107 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.0000 22.0000i 0.703842 0.703842i −0.261391 0.965233i \(-0.584181\pi\)
0.965233 + 0.261391i \(0.0841811\pi\)
\(978\) 6.00000 + 6.00000i 0.191859 + 0.191859i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 44.0908 44.0908i 1.40699 1.40699i
\(983\) −44.0000 44.0000i −1.40338 1.40338i −0.789039 0.614343i \(-0.789421\pi\)
−0.614343 0.789039i \(-0.710579\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 39.1918 1.24812
\(987\) 0 0
\(988\) 0 0
\(989\) 19.5959i 0.623114i
\(990\) 0 0
\(991\) 62.0000 1.96949 0.984747 0.173990i \(-0.0556660\pi\)
0.984747 + 0.173990i \(0.0556660\pi\)
\(992\) −8.00000 + 8.00000i −0.254000 + 0.254000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 31.8434 31.8434i 1.00849 1.00849i 0.00852589 0.999964i \(-0.497286\pi\)
0.999964 0.00852589i \(-0.00271391\pi\)
\(998\) 0 0
\(999\) 54.0000i 1.70848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.g.557.1 yes 4
3.2 odd 2 600.2.w.a.557.1 yes 4
5.2 odd 4 inner 600.2.w.g.293.1 yes 4
5.3 odd 4 600.2.w.a.293.2 yes 4
5.4 even 2 600.2.w.a.557.2 yes 4
8.5 even 2 inner 600.2.w.g.557.2 yes 4
15.2 even 4 600.2.w.a.293.1 4
15.8 even 4 inner 600.2.w.g.293.2 yes 4
15.14 odd 2 inner 600.2.w.g.557.2 yes 4
24.5 odd 2 600.2.w.a.557.2 yes 4
40.13 odd 4 600.2.w.a.293.1 4
40.29 even 2 600.2.w.a.557.1 yes 4
40.37 odd 4 inner 600.2.w.g.293.2 yes 4
120.29 odd 2 CM 600.2.w.g.557.1 yes 4
120.53 even 4 inner 600.2.w.g.293.1 yes 4
120.77 even 4 600.2.w.a.293.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.a.293.1 4 15.2 even 4
600.2.w.a.293.1 4 40.13 odd 4
600.2.w.a.293.2 yes 4 5.3 odd 4
600.2.w.a.293.2 yes 4 120.77 even 4
600.2.w.a.557.1 yes 4 3.2 odd 2
600.2.w.a.557.1 yes 4 40.29 even 2
600.2.w.a.557.2 yes 4 5.4 even 2
600.2.w.a.557.2 yes 4 24.5 odd 2
600.2.w.g.293.1 yes 4 5.2 odd 4 inner
600.2.w.g.293.1 yes 4 120.53 even 4 inner
600.2.w.g.293.2 yes 4 15.8 even 4 inner
600.2.w.g.293.2 yes 4 40.37 odd 4 inner
600.2.w.g.557.1 yes 4 1.1 even 1 trivial
600.2.w.g.557.1 yes 4 120.29 odd 2 CM
600.2.w.g.557.2 yes 4 8.5 even 2 inner
600.2.w.g.557.2 yes 4 15.14 odd 2 inner