Properties

Label 600.2.m.e
Level 600
Weight 2
Character orbit 600.m
Analytic conductor 4.791
Analytic rank 0
Dimension 24
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 600.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 20q^{4} + 14q^{6} + 4q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 20q^{4} + 14q^{6} + 4q^{9} - 12q^{16} + 8q^{19} - 10q^{24} + 4q^{34} + 38q^{36} - 32q^{46} + 72q^{49} - 60q^{51} + 60q^{54} - 20q^{64} + 14q^{66} - 76q^{76} - 20q^{81} + 68q^{84} - 48q^{91} - 56q^{94} - 62q^{96} - 116q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
299.1 −1.13191 0.847808i −1.71500 0.242431i 0.562443 + 1.91929i 0 1.73569 + 1.72840i 3.08957 0.990551 2.64930i 2.88245 + 0.831539i 0
299.2 −1.13191 0.847808i −1.71500 + 0.242431i 0.562443 + 1.91929i 0 2.14676 + 1.17958i −3.08957 0.990551 2.64930i 2.88245 0.831539i 0
299.3 −1.13191 + 0.847808i −1.71500 0.242431i 0.562443 1.91929i 0 2.14676 1.17958i −3.08957 0.990551 + 2.64930i 2.88245 + 0.831539i 0
299.4 −1.13191 + 0.847808i −1.71500 + 0.242431i 0.562443 1.91929i 0 1.73569 1.72840i 3.08957 0.990551 + 2.64930i 2.88245 0.831539i 0
299.5 −0.639662 1.26128i 0.730070 1.57067i −1.18166 + 1.61359i 0 −2.44805 + 0.0838735i 1.25539 2.79106 + 0.458259i −1.93400 2.29339i 0
299.6 −0.639662 1.26128i 0.730070 + 1.57067i −1.18166 + 1.61359i 0 1.51406 1.92552i −1.25539 2.79106 + 0.458259i −1.93400 + 2.29339i 0
299.7 −0.639662 + 1.26128i 0.730070 1.57067i −1.18166 1.61359i 0 1.51406 + 1.92552i −1.25539 2.79106 0.458259i −1.93400 2.29339i 0
299.8 −0.639662 + 1.26128i 0.730070 + 1.57067i −1.18166 1.61359i 0 −2.44805 0.0838735i 1.25539 2.79106 0.458259i −1.93400 + 2.29339i 0
299.9 −0.244153 1.39298i −1.12950 1.31310i −1.88078 + 0.680200i 0 −1.55335 + 1.89397i 4.34495 1.40670 + 2.45381i −0.448458 + 2.96629i 0
299.10 −0.244153 1.39298i −1.12950 + 1.31310i −1.88078 + 0.680200i 0 2.10489 + 1.25277i −4.34495 1.40670 + 2.45381i −0.448458 2.96629i 0
299.11 −0.244153 + 1.39298i −1.12950 1.31310i −1.88078 0.680200i 0 2.10489 1.25277i −4.34495 1.40670 2.45381i −0.448458 + 2.96629i 0
299.12 −0.244153 + 1.39298i −1.12950 + 1.31310i −1.88078 0.680200i 0 −1.55335 1.89397i 4.34495 1.40670 2.45381i −0.448458 2.96629i 0
299.13 0.244153 1.39298i 1.12950 1.31310i −1.88078 0.680200i 0 −1.55335 1.89397i −4.34495 −1.40670 + 2.45381i −0.448458 2.96629i 0
299.14 0.244153 1.39298i 1.12950 + 1.31310i −1.88078 0.680200i 0 2.10489 1.25277i 4.34495 −1.40670 + 2.45381i −0.448458 + 2.96629i 0
299.15 0.244153 + 1.39298i 1.12950 1.31310i −1.88078 + 0.680200i 0 2.10489 + 1.25277i 4.34495 −1.40670 2.45381i −0.448458 2.96629i 0
299.16 0.244153 + 1.39298i 1.12950 + 1.31310i −1.88078 + 0.680200i 0 −1.55335 + 1.89397i −4.34495 −1.40670 2.45381i −0.448458 + 2.96629i 0
299.17 0.639662 1.26128i −0.730070 1.57067i −1.18166 1.61359i 0 −2.44805 0.0838735i −1.25539 −2.79106 + 0.458259i −1.93400 + 2.29339i 0
299.18 0.639662 1.26128i −0.730070 + 1.57067i −1.18166 1.61359i 0 1.51406 + 1.92552i 1.25539 −2.79106 + 0.458259i −1.93400 2.29339i 0
299.19 0.639662 + 1.26128i −0.730070 1.57067i −1.18166 + 1.61359i 0 1.51406 1.92552i 1.25539 −2.79106 0.458259i −1.93400 + 2.29339i 0
299.20 0.639662 + 1.26128i −0.730070 + 1.57067i −1.18166 + 1.61359i 0 −2.44805 + 0.0838735i −1.25539 −2.79106 0.458259i −1.93400 2.29339i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 299.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
8.d odd 2 1 inner
15.d odd 2 1 inner
24.f even 2 1 inner
40.e odd 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.m.e 24
3.b odd 2 1 inner 600.2.m.e 24
4.b odd 2 1 2400.2.m.e 24
5.b even 2 1 inner 600.2.m.e 24
5.c odd 4 1 600.2.b.g 12
5.c odd 4 1 600.2.b.h yes 12
8.b even 2 1 2400.2.m.e 24
8.d odd 2 1 inner 600.2.m.e 24
12.b even 2 1 2400.2.m.e 24
15.d odd 2 1 inner 600.2.m.e 24
15.e even 4 1 600.2.b.g 12
15.e even 4 1 600.2.b.h yes 12
20.d odd 2 1 2400.2.m.e 24
20.e even 4 1 2400.2.b.g 12
20.e even 4 1 2400.2.b.h 12
24.f even 2 1 inner 600.2.m.e 24
24.h odd 2 1 2400.2.m.e 24
40.e odd 2 1 inner 600.2.m.e 24
40.f even 2 1 2400.2.m.e 24
40.i odd 4 1 2400.2.b.g 12
40.i odd 4 1 2400.2.b.h 12
40.k even 4 1 600.2.b.g 12
40.k even 4 1 600.2.b.h yes 12
60.h even 2 1 2400.2.m.e 24
60.l odd 4 1 2400.2.b.g 12
60.l odd 4 1 2400.2.b.h 12
120.i odd 2 1 2400.2.m.e 24
120.m even 2 1 inner 600.2.m.e 24
120.q odd 4 1 600.2.b.g 12
120.q odd 4 1 600.2.b.h yes 12
120.w even 4 1 2400.2.b.g 12
120.w even 4 1 2400.2.b.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.b.g 12 5.c odd 4 1
600.2.b.g 12 15.e even 4 1
600.2.b.g 12 40.k even 4 1
600.2.b.g 12 120.q odd 4 1
600.2.b.h yes 12 5.c odd 4 1
600.2.b.h yes 12 15.e even 4 1
600.2.b.h yes 12 40.k even 4 1
600.2.b.h yes 12 120.q odd 4 1
600.2.m.e 24 1.a even 1 1 trivial
600.2.m.e 24 3.b odd 2 1 inner
600.2.m.e 24 5.b even 2 1 inner
600.2.m.e 24 8.d odd 2 1 inner
600.2.m.e 24 15.d odd 2 1 inner
600.2.m.e 24 24.f even 2 1 inner
600.2.m.e 24 40.e odd 2 1 inner
600.2.m.e 24 120.m even 2 1 inner
2400.2.b.g 12 20.e even 4 1
2400.2.b.g 12 40.i odd 4 1
2400.2.b.g 12 60.l odd 4 1
2400.2.b.g 12 120.w even 4 1
2400.2.b.h 12 20.e even 4 1
2400.2.b.h 12 40.i odd 4 1
2400.2.b.h 12 60.l odd 4 1
2400.2.b.h 12 120.w even 4 1
2400.2.m.e 24 4.b odd 2 1
2400.2.m.e 24 8.b even 2 1
2400.2.m.e 24 12.b even 2 1
2400.2.m.e 24 20.d odd 2 1
2400.2.m.e 24 24.h odd 2 1
2400.2.m.e 24 40.f even 2 1
2400.2.m.e 24 60.h even 2 1
2400.2.m.e 24 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(600, [\chi])\):

\( T_{7}^{6} - 30 T_{7}^{4} + 225 T_{7}^{2} - 284 \)
\( T_{11}^{6} + 19 T_{11}^{4} + 112 T_{11}^{2} + 200 \)
\( T_{29}^{6} - 140 T_{29}^{4} + 5752 T_{29}^{2} - 56800 \)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database