Properties

Label 600.2.k.a.301.1
Level $600$
Weight $2$
Character 600.301
Analytic conductor $4.791$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(301,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 301.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 600.301
Dual form 600.2.k.a.301.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} +(1.00000 - 1.00000i) q^{6} -2.00000 q^{7} +(2.00000 - 2.00000i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} +(1.00000 - 1.00000i) q^{6} -2.00000 q^{7} +(2.00000 - 2.00000i) q^{8} -1.00000 q^{9} -4.00000i q^{11} -2.00000 q^{12} +(2.00000 + 2.00000i) q^{14} -4.00000 q^{16} +6.00000 q^{17} +(1.00000 + 1.00000i) q^{18} -4.00000i q^{19} -2.00000i q^{21} +(-4.00000 + 4.00000i) q^{22} +4.00000 q^{23} +(2.00000 + 2.00000i) q^{24} -1.00000i q^{27} -4.00000i q^{28} +6.00000i q^{29} +10.0000 q^{31} +(4.00000 + 4.00000i) q^{32} +4.00000 q^{33} +(-6.00000 - 6.00000i) q^{34} -2.00000i q^{36} +4.00000i q^{37} +(-4.00000 + 4.00000i) q^{38} +10.0000 q^{41} +(-2.00000 + 2.00000i) q^{42} -4.00000i q^{43} +8.00000 q^{44} +(-4.00000 - 4.00000i) q^{46} +4.00000 q^{47} -4.00000i q^{48} -3.00000 q^{49} +6.00000i q^{51} -10.0000i q^{53} +(-1.00000 + 1.00000i) q^{54} +(-4.00000 + 4.00000i) q^{56} +4.00000 q^{57} +(6.00000 - 6.00000i) q^{58} -8.00000i q^{59} +8.00000i q^{61} +(-10.0000 - 10.0000i) q^{62} +2.00000 q^{63} -8.00000i q^{64} +(-4.00000 - 4.00000i) q^{66} -12.0000i q^{67} +12.0000i q^{68} +4.00000i q^{69} -4.00000 q^{71} +(-2.00000 + 2.00000i) q^{72} -10.0000 q^{73} +(4.00000 - 4.00000i) q^{74} +8.00000 q^{76} +8.00000i q^{77} -14.0000 q^{79} +1.00000 q^{81} +(-10.0000 - 10.0000i) q^{82} +4.00000 q^{84} +(-4.00000 + 4.00000i) q^{86} -6.00000 q^{87} +(-8.00000 - 8.00000i) q^{88} +14.0000 q^{89} +8.00000i q^{92} +10.0000i q^{93} +(-4.00000 - 4.00000i) q^{94} +(-4.00000 + 4.00000i) q^{96} +10.0000 q^{97} +(3.00000 + 3.00000i) q^{98} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{6} - 4 q^{7} + 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{6} - 4 q^{7} + 4 q^{8} - 2 q^{9} - 4 q^{12} + 4 q^{14} - 8 q^{16} + 12 q^{17} + 2 q^{18} - 8 q^{22} + 8 q^{23} + 4 q^{24} + 20 q^{31} + 8 q^{32} + 8 q^{33} - 12 q^{34} - 8 q^{38} + 20 q^{41} - 4 q^{42} + 16 q^{44} - 8 q^{46} + 8 q^{47} - 6 q^{49} - 2 q^{54} - 8 q^{56} + 8 q^{57} + 12 q^{58} - 20 q^{62} + 4 q^{63} - 8 q^{66} - 8 q^{71} - 4 q^{72} - 20 q^{73} + 8 q^{74} + 16 q^{76} - 28 q^{79} + 2 q^{81} - 20 q^{82} + 8 q^{84} - 8 q^{86} - 12 q^{87} - 16 q^{88} + 28 q^{89} - 8 q^{94} - 8 q^{96} + 20 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) −2.00000 −0.577350
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 2.00000 + 2.00000i 0.534522 + 0.534522i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 1.00000 + 1.00000i 0.235702 + 0.235702i
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) −4.00000 + 4.00000i −0.852803 + 0.852803i
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 2.00000 + 2.00000i 0.408248 + 0.408248i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 4.00000i 0.755929i
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 4.00000 0.696311
\(34\) −6.00000 6.00000i −1.02899 1.02899i
\(35\) 0 0
\(36\) 2.00000i 0.333333i
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) −4.00000 + 4.00000i −0.648886 + 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) −2.00000 + 2.00000i −0.308607 + 0.308607i
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 8.00000 1.20605
\(45\) 0 0
\(46\) −4.00000 4.00000i −0.589768 0.589768i
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 4.00000i 0.577350i
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 6.00000i 0.840168i
\(52\) 0 0
\(53\) 10.0000i 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) −1.00000 + 1.00000i −0.136083 + 0.136083i
\(55\) 0 0
\(56\) −4.00000 + 4.00000i −0.534522 + 0.534522i
\(57\) 4.00000 0.529813
\(58\) 6.00000 6.00000i 0.787839 0.787839i
\(59\) 8.00000i 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) 8.00000i 1.02430i 0.858898 + 0.512148i \(0.171150\pi\)
−0.858898 + 0.512148i \(0.828850\pi\)
\(62\) −10.0000 10.0000i −1.27000 1.27000i
\(63\) 2.00000 0.251976
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) −4.00000 4.00000i −0.492366 0.492366i
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 12.0000i 1.45521i
\(69\) 4.00000i 0.481543i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) −2.00000 + 2.00000i −0.235702 + 0.235702i
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 4.00000 4.00000i 0.464991 0.464991i
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −10.0000 10.0000i −1.10432 1.10432i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) −4.00000 + 4.00000i −0.431331 + 0.431331i
\(87\) −6.00000 −0.643268
\(88\) −8.00000 8.00000i −0.852803 0.852803i
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.00000i 0.834058i
\(93\) 10.0000i 1.03695i
\(94\) −4.00000 4.00000i −0.412568 0.412568i
\(95\) 0 0
\(96\) −4.00000 + 4.00000i −0.408248 + 0.408248i
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 3.00000 + 3.00000i 0.303046 + 0.303046i
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 14.0000i 1.39305i −0.717532 0.696526i \(-0.754728\pi\)
0.717532 0.696526i \(-0.245272\pi\)
\(102\) 6.00000 6.00000i 0.594089 0.594089i
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −10.0000 + 10.0000i −0.971286 + 0.971286i
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 2.00000 0.192450
\(109\) 4.00000i 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 8.00000 0.755929
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −4.00000 4.00000i −0.374634 0.374634i
\(115\) 0 0
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) −8.00000 + 8.00000i −0.736460 + 0.736460i
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 8.00000 8.00000i 0.724286 0.724286i
\(123\) 10.0000i 0.901670i
\(124\) 20.0000i 1.79605i
\(125\) 0 0
\(126\) −2.00000 2.00000i −0.178174 0.178174i
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 8.00000i 0.696311i
\(133\) 8.00000i 0.693688i
\(134\) −12.0000 + 12.0000i −1.03664 + 1.03664i
\(135\) 0 0
\(136\) 12.0000 12.0000i 1.02899 1.02899i
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 4.00000 4.00000i 0.340503 0.340503i
\(139\) 4.00000i 0.339276i 0.985506 + 0.169638i \(0.0542598\pi\)
−0.985506 + 0.169638i \(0.945740\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) 4.00000 + 4.00000i 0.335673 + 0.335673i
\(143\) 0 0
\(144\) 4.00000 0.333333
\(145\) 0 0
\(146\) 10.0000 + 10.0000i 0.827606 + 0.827606i
\(147\) 3.00000i 0.247436i
\(148\) −8.00000 −0.657596
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) −8.00000 8.00000i −0.648886 0.648886i
\(153\) −6.00000 −0.485071
\(154\) 8.00000 8.00000i 0.644658 0.644658i
\(155\) 0 0
\(156\) 0 0
\(157\) 20.0000i 1.59617i 0.602542 + 0.798087i \(0.294154\pi\)
−0.602542 + 0.798087i \(0.705846\pi\)
\(158\) 14.0000 + 14.0000i 1.11378 + 1.11378i
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) −1.00000 1.00000i −0.0785674 0.0785674i
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 20.0000i 1.56174i
\(165\) 0 0
\(166\) 0 0
\(167\) −24.0000 −1.85718 −0.928588 0.371113i \(-0.878976\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) −4.00000 4.00000i −0.308607 0.308607i
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 8.00000 0.609994
\(173\) 10.0000i 0.760286i −0.924928 0.380143i \(-0.875875\pi\)
0.924928 0.380143i \(-0.124125\pi\)
\(174\) 6.00000 + 6.00000i 0.454859 + 0.454859i
\(175\) 0 0
\(176\) 16.0000i 1.20605i
\(177\) 8.00000 0.601317
\(178\) −14.0000 14.0000i −1.04934 1.04934i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 8.00000 8.00000i 0.589768 0.589768i
\(185\) 0 0
\(186\) 10.0000 10.0000i 0.733236 0.733236i
\(187\) 24.0000i 1.75505i
\(188\) 8.00000i 0.583460i
\(189\) 2.00000i 0.145479i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 8.00000 0.577350
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −10.0000 10.0000i −0.717958 0.717958i
\(195\) 0 0
\(196\) 6.00000i 0.428571i
\(197\) 10.0000i 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 4.00000 4.00000i 0.284268 0.284268i
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) −14.0000 + 14.0000i −0.985037 + 0.985037i
\(203\) 12.0000i 0.842235i
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) −2.00000 2.00000i −0.139347 0.139347i
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 12.0000i 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 20.0000 1.37361
\(213\) 4.00000i 0.274075i
\(214\) 4.00000 4.00000i 0.273434 0.273434i
\(215\) 0 0
\(216\) −2.00000 2.00000i −0.136083 0.136083i
\(217\) −20.0000 −1.35769
\(218\) −4.00000 + 4.00000i −0.270914 + 0.270914i
\(219\) 10.0000i 0.675737i
\(220\) 0 0
\(221\) 0 0
\(222\) 4.00000 + 4.00000i 0.268462 + 0.268462i
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) −8.00000 8.00000i −0.534522 0.534522i
\(225\) 0 0
\(226\) 6.00000 + 6.00000i 0.399114 + 0.399114i
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 12.0000 + 12.0000i 0.787839 + 0.787839i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 16.0000 1.04151
\(237\) 14.0000i 0.909398i
\(238\) 12.0000 + 12.0000i 0.777844 + 0.777844i
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 5.00000 + 5.00000i 0.321412 + 0.321412i
\(243\) 1.00000i 0.0641500i
\(244\) −16.0000 −1.02430
\(245\) 0 0
\(246\) 10.0000 10.0000i 0.637577 0.637577i
\(247\) 0 0
\(248\) 20.0000 20.0000i 1.27000 1.27000i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 4.00000i 0.251976i
\(253\) 16.0000i 1.00591i
\(254\) −6.00000 6.00000i −0.376473 0.376473i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) −4.00000 4.00000i −0.249029 0.249029i
\(259\) 8.00000i 0.497096i
\(260\) 0 0
\(261\) 6.00000i 0.371391i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 8.00000 8.00000i 0.492366 0.492366i
\(265\) 0 0
\(266\) 8.00000 8.00000i 0.490511 0.490511i
\(267\) 14.0000i 0.856786i
\(268\) 24.0000 1.46603
\(269\) 10.0000i 0.609711i −0.952399 0.304855i \(-0.901392\pi\)
0.952399 0.304855i \(-0.0986081\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) −24.0000 −1.45521
\(273\) 0 0
\(274\) −2.00000 2.00000i −0.120824 0.120824i
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) 16.0000i 0.961347i −0.876900 0.480673i \(-0.840392\pi\)
0.876900 0.480673i \(-0.159608\pi\)
\(278\) 4.00000 4.00000i 0.239904 0.239904i
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 4.00000 4.00000i 0.238197 0.238197i
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 8.00000i 0.474713i
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) −4.00000 4.00000i −0.235702 0.235702i
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 10.0000i 0.586210i
\(292\) 20.0000i 1.17041i
\(293\) 2.00000i 0.116841i −0.998292 0.0584206i \(-0.981394\pi\)
0.998292 0.0584206i \(-0.0186065\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) 0 0
\(296\) 8.00000 + 8.00000i 0.464991 + 0.464991i
\(297\) −4.00000 −0.232104
\(298\) 6.00000 6.00000i 0.347571 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 2.00000 + 2.00000i 0.115087 + 0.115087i
\(303\) 14.0000 0.804279
\(304\) 16.0000i 0.917663i
\(305\) 0 0
\(306\) 6.00000 + 6.00000i 0.342997 + 0.342997i
\(307\) 28.0000i 1.59804i 0.601302 + 0.799022i \(0.294649\pi\)
−0.601302 + 0.799022i \(0.705351\pi\)
\(308\) −16.0000 −0.911685
\(309\) 2.00000i 0.113776i
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 20.0000 20.0000i 1.12867 1.12867i
\(315\) 0 0
\(316\) 28.0000i 1.57512i
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) −10.0000 10.0000i −0.560772 0.560772i
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 8.00000 + 8.00000i 0.445823 + 0.445823i
\(323\) 24.0000i 1.33540i
\(324\) 2.00000i 0.111111i
\(325\) 0 0
\(326\) 20.0000 20.0000i 1.10770 1.10770i
\(327\) 4.00000 0.221201
\(328\) 20.0000 20.0000i 1.10432 1.10432i
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) 4.00000i 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 0 0
\(333\) 4.00000i 0.219199i
\(334\) 24.0000 + 24.0000i 1.31322 + 1.31322i
\(335\) 0 0
\(336\) 8.00000i 0.436436i
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) −13.0000 13.0000i −0.707107 0.707107i
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 40.0000i 2.16612i
\(342\) 4.00000 4.00000i 0.216295 0.216295i
\(343\) 20.0000 1.07990
\(344\) −8.00000 8.00000i −0.431331 0.431331i
\(345\) 0 0
\(346\) −10.0000 + 10.0000i −0.537603 + 0.537603i
\(347\) 16.0000i 0.858925i 0.903085 + 0.429463i \(0.141297\pi\)
−0.903085 + 0.429463i \(0.858703\pi\)
\(348\) 12.0000i 0.643268i
\(349\) 8.00000i 0.428230i −0.976808 0.214115i \(-0.931313\pi\)
0.976808 0.214115i \(-0.0686868\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 16.0000 16.0000i 0.852803 0.852803i
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −8.00000 8.00000i −0.425195 0.425195i
\(355\) 0 0
\(356\) 28.0000i 1.48400i
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 20.0000 20.0000i 1.05118 1.05118i
\(363\) 5.00000i 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 8.00000 + 8.00000i 0.418167 + 0.418167i
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) −16.0000 −0.834058
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) 20.0000i 1.03835i
\(372\) −20.0000 −1.03695
\(373\) 20.0000i 1.03556i 0.855514 + 0.517780i \(0.173242\pi\)
−0.855514 + 0.517780i \(0.826758\pi\)
\(374\) −24.0000 + 24.0000i −1.24101 + 1.24101i
\(375\) 0 0
\(376\) 8.00000 8.00000i 0.412568 0.412568i
\(377\) 0 0
\(378\) 2.00000 2.00000i 0.102869 0.102869i
\(379\) 36.0000i 1.84920i 0.380945 + 0.924598i \(0.375599\pi\)
−0.380945 + 0.924598i \(0.624401\pi\)
\(380\) 0 0
\(381\) 6.00000i 0.307389i
\(382\) 8.00000 + 8.00000i 0.409316 + 0.409316i
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) −8.00000 8.00000i −0.408248 0.408248i
\(385\) 0 0
\(386\) −14.0000 14.0000i −0.712581 0.712581i
\(387\) 4.00000i 0.203331i
\(388\) 20.0000i 1.01535i
\(389\) 10.0000i 0.507020i −0.967333 0.253510i \(-0.918415\pi\)
0.967333 0.253510i \(-0.0815851\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) −6.00000 + 6.00000i −0.303046 + 0.303046i
\(393\) 0 0
\(394\) −10.0000 + 10.0000i −0.503793 + 0.503793i
\(395\) 0 0
\(396\) −8.00000 −0.402015
\(397\) 20.0000i 1.00377i 0.864934 + 0.501886i \(0.167360\pi\)
−0.864934 + 0.501886i \(0.832640\pi\)
\(398\) 6.00000 + 6.00000i 0.300753 + 0.300753i
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) −12.0000 12.0000i −0.598506 0.598506i
\(403\) 0 0
\(404\) 28.0000 1.39305
\(405\) 0 0
\(406\) −12.0000 + 12.0000i −0.595550 + 0.595550i
\(407\) 16.0000 0.793091
\(408\) 12.0000 + 12.0000i 0.594089 + 0.594089i
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 2.00000i 0.0986527i
\(412\) 4.00000i 0.197066i
\(413\) 16.0000i 0.787309i
\(414\) 4.00000 + 4.00000i 0.196589 + 0.196589i
\(415\) 0 0
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 16.0000 + 16.0000i 0.782586 + 0.782586i
\(419\) 4.00000i 0.195413i 0.995215 + 0.0977064i \(0.0311506\pi\)
−0.995215 + 0.0977064i \(0.968849\pi\)
\(420\) 0 0
\(421\) 20.0000i 0.974740i −0.873195 0.487370i \(-0.837956\pi\)
0.873195 0.487370i \(-0.162044\pi\)
\(422\) −12.0000 + 12.0000i −0.584151 + 0.584151i
\(423\) −4.00000 −0.194487
\(424\) −20.0000 20.0000i −0.971286 0.971286i
\(425\) 0 0
\(426\) −4.00000 + 4.00000i −0.193801 + 0.193801i
\(427\) 16.0000i 0.774294i
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 4.00000i 0.192450i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 20.0000 + 20.0000i 0.960031 + 0.960031i
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) 16.0000i 0.765384i
\(438\) −10.0000 + 10.0000i −0.477818 + 0.477818i
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) 16.0000i 0.760183i 0.924949 + 0.380091i \(0.124107\pi\)
−0.924949 + 0.380091i \(0.875893\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 0 0
\(446\) 10.0000 + 10.0000i 0.473514 + 0.473514i
\(447\) −6.00000 −0.283790
\(448\) 16.0000i 0.755929i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 40.0000i 1.88353i
\(452\) 12.0000i 0.564433i
\(453\) 2.00000i 0.0939682i
\(454\) 0 0
\(455\) 0 0
\(456\) 8.00000 8.00000i 0.374634 0.374634i
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 4.00000 4.00000i 0.186908 0.186908i
\(459\) 6.00000i 0.280056i
\(460\) 0 0
\(461\) 34.0000i 1.58354i 0.610821 + 0.791769i \(0.290840\pi\)
−0.610821 + 0.791769i \(0.709160\pi\)
\(462\) 8.00000 + 8.00000i 0.372194 + 0.372194i
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) −6.00000 6.00000i −0.277945 0.277945i
\(467\) 8.00000i 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) −20.0000 −0.921551
\(472\) −16.0000 16.0000i −0.736460 0.736460i
\(473\) −16.0000 −0.735681
\(474\) −14.0000 + 14.0000i −0.643041 + 0.643041i
\(475\) 0 0
\(476\) 24.0000i 1.10004i
\(477\) 10.0000i 0.457869i
\(478\) −16.0000 16.0000i −0.731823 0.731823i
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 30.0000 + 30.0000i 1.36646 + 1.36646i
\(483\) 8.00000i 0.364013i
\(484\) 10.0000i 0.454545i
\(485\) 0 0
\(486\) 1.00000 1.00000i 0.0453609 0.0453609i
\(487\) 30.0000 1.35943 0.679715 0.733476i \(-0.262104\pi\)
0.679715 + 0.733476i \(0.262104\pi\)
\(488\) 16.0000 + 16.0000i 0.724286 + 0.724286i
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 40.0000i 1.80517i 0.430507 + 0.902587i \(0.358335\pi\)
−0.430507 + 0.902587i \(0.641665\pi\)
\(492\) −20.0000 −0.901670
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) −40.0000 −1.79605
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 20.0000i 0.895323i 0.894203 + 0.447661i \(0.147743\pi\)
−0.894203 + 0.447661i \(0.852257\pi\)
\(500\) 0 0
\(501\) 24.0000i 1.07224i
\(502\) −12.0000 + 12.0000i −0.535586 + 0.535586i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 4.00000 4.00000i 0.178174 0.178174i
\(505\) 0 0
\(506\) −16.0000 + 16.0000i −0.711287 + 0.711287i
\(507\) 13.0000i 0.577350i
\(508\) 12.0000i 0.532414i
\(509\) 18.0000i 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) −4.00000 −0.176604
\(514\) −2.00000 2.00000i −0.0882162 0.0882162i
\(515\) 0 0
\(516\) 8.00000i 0.352180i
\(517\) 16.0000i 0.703679i
\(518\) −8.00000 + 8.00000i −0.351500 + 0.351500i
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) −6.00000 + 6.00000i −0.262613 + 0.262613i
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 60.0000 2.61364
\(528\) −16.0000 −0.696311
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 8.00000i 0.347170i
\(532\) −16.0000 −0.693688
\(533\) 0 0
\(534\) 14.0000 14.0000i 0.605839 0.605839i
\(535\) 0 0
\(536\) −24.0000 24.0000i −1.03664 1.03664i
\(537\) 0 0
\(538\) −10.0000 + 10.0000i −0.431131 + 0.431131i
\(539\) 12.0000i 0.516877i
\(540\) 0 0
\(541\) 44.0000i 1.89171i 0.324593 + 0.945854i \(0.394773\pi\)
−0.324593 + 0.945854i \(0.605227\pi\)
\(542\) 2.00000 + 2.00000i 0.0859074 + 0.0859074i
\(543\) −20.0000 −0.858282
\(544\) 24.0000 + 24.0000i 1.02899 + 1.02899i
\(545\) 0 0
\(546\) 0 0
\(547\) 4.00000i 0.171028i −0.996337 0.0855138i \(-0.972747\pi\)
0.996337 0.0855138i \(-0.0272532\pi\)
\(548\) 4.00000i 0.170872i
\(549\) 8.00000i 0.341432i
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 8.00000 + 8.00000i 0.340503 + 0.340503i
\(553\) 28.0000 1.19068
\(554\) −16.0000 + 16.0000i −0.679775 + 0.679775i
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 10.0000 + 10.0000i 0.423334 + 0.423334i
\(559\) 0 0
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 10.0000 + 10.0000i 0.421825 + 0.421825i
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) −8.00000 −0.336861
\(565\) 0 0
\(566\) −4.00000 + 4.00000i −0.168133 + 0.168133i
\(567\) −2.00000 −0.0839921
\(568\) −8.00000 + 8.00000i −0.335673 + 0.335673i
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 20.0000 + 20.0000i 0.834784 + 0.834784i
\(575\) 0 0
\(576\) 8.00000i 0.333333i
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −19.0000 19.0000i −0.790296 0.790296i
\(579\) 14.0000i 0.581820i
\(580\) 0 0
\(581\) 0 0
\(582\) 10.0000 10.0000i 0.414513 0.414513i
\(583\) −40.0000 −1.65663
\(584\) −20.0000 + 20.0000i −0.827606 + 0.827606i
\(585\) 0 0
\(586\) −2.00000 + 2.00000i −0.0826192 + 0.0826192i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 6.00000 0.247436
\(589\) 40.0000i 1.64817i
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) 16.0000i 0.657596i
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 4.00000 + 4.00000i 0.164122 + 0.164122i
\(595\) 0 0
\(596\) −12.0000 −0.491539
\(597\) 6.00000i 0.245564i
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 8.00000 8.00000i 0.326056 0.326056i
\(603\) 12.0000i 0.488678i
\(604\) 4.00000i 0.162758i
\(605\) 0 0
\(606\) −14.0000 14.0000i −0.568711 0.568711i
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 16.0000 16.0000i 0.648886 0.648886i
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 0 0
\(612\) 12.0000i 0.485071i
\(613\) 20.0000i 0.807792i −0.914805 0.403896i \(-0.867656\pi\)
0.914805 0.403896i \(-0.132344\pi\)
\(614\) 28.0000 28.0000i 1.12999 1.12999i
\(615\) 0 0
\(616\) 16.0000 + 16.0000i 0.644658 + 0.644658i
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 2.00000 2.00000i 0.0804518 0.0804518i
\(619\) 20.0000i 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) −8.00000 8.00000i −0.320771 0.320771i
\(623\) −28.0000 −1.12180
\(624\) 0 0
\(625\) 0 0
\(626\) 6.00000 + 6.00000i 0.239808 + 0.239808i
\(627\) 16.0000i 0.638978i
\(628\) −40.0000 −1.59617
\(629\) 24.0000i 0.956943i
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) −28.0000 + 28.0000i −1.11378 + 1.11378i
\(633\) 12.0000 0.476957
\(634\) 18.0000 18.0000i 0.714871 0.714871i
\(635\) 0 0
\(636\) 20.0000i 0.793052i
\(637\) 0 0
\(638\) −24.0000 24.0000i −0.950169 0.950169i
\(639\) 4.00000 0.158238
\(640\) 0 0
\(641\) 14.0000 0.552967 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(642\) 4.00000 + 4.00000i 0.157867 + 0.157867i
\(643\) 12.0000i 0.473234i −0.971603 0.236617i \(-0.923961\pi\)
0.971603 0.236617i \(-0.0760386\pi\)
\(644\) 16.0000i 0.630488i
\(645\) 0 0
\(646\) −24.0000 + 24.0000i −0.944267 + 0.944267i
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 2.00000 2.00000i 0.0785674 0.0785674i
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) −40.0000 −1.56652
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) −4.00000 4.00000i −0.156412 0.156412i
\(655\) 0 0
\(656\) −40.0000 −1.56174
\(657\) 10.0000 0.390137
\(658\) 8.00000 + 8.00000i 0.311872 + 0.311872i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i −0.782757 0.622328i \(-0.786187\pi\)
0.782757 0.622328i \(-0.213813\pi\)
\(662\) −4.00000 + 4.00000i −0.155464 + 0.155464i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −4.00000 + 4.00000i −0.154997 + 0.154997i
\(667\) 24.0000i 0.929284i
\(668\) 48.0000i 1.85718i
\(669\) 10.0000i 0.386622i
\(670\) 0 0
\(671\) 32.0000 1.23535
\(672\) 8.00000 8.00000i 0.308607 0.308607i
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) 30.0000 + 30.0000i 1.15556 + 1.15556i
\(675\) 0 0
\(676\) 26.0000i 1.00000i
\(677\) 38.0000i 1.46046i −0.683202 0.730229i \(-0.739413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(678\) −6.00000 + 6.00000i −0.230429 + 0.230429i
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) −40.0000 + 40.0000i −1.53168 + 1.53168i
\(683\) 48.0000i 1.83667i 0.395805 + 0.918334i \(0.370466\pi\)
−0.395805 + 0.918334i \(0.629534\pi\)
\(684\) −8.00000 −0.305888
\(685\) 0 0
\(686\) −20.0000 20.0000i −0.763604 0.763604i
\(687\) −4.00000 −0.152610
\(688\) 16.0000i 0.609994i
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000i 0.456502i −0.973602 0.228251i \(-0.926699\pi\)
0.973602 0.228251i \(-0.0733006\pi\)
\(692\) 20.0000 0.760286
\(693\) 8.00000i 0.303895i
\(694\) 16.0000 16.0000i 0.607352 0.607352i
\(695\) 0 0
\(696\) −12.0000 + 12.0000i −0.454859 + 0.454859i
\(697\) 60.0000 2.27266
\(698\) −8.00000 + 8.00000i −0.302804 + 0.302804i
\(699\) 6.00000i 0.226941i
\(700\) 0 0
\(701\) 22.0000i 0.830929i 0.909610 + 0.415464i \(0.136381\pi\)
−0.909610 + 0.415464i \(0.863619\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) −32.0000 −1.20605
\(705\) 0 0
\(706\) −18.0000 18.0000i −0.677439 0.677439i
\(707\) 28.0000i 1.05305i
\(708\) 16.0000i 0.601317i
\(709\) 44.0000i 1.65245i −0.563337 0.826227i \(-0.690483\pi\)
0.563337 0.826227i \(-0.309517\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 28.0000 28.0000i 1.04934 1.04934i
\(713\) 40.0000 1.49801
\(714\) −12.0000 + 12.0000i −0.449089 + 0.449089i
\(715\) 0 0
\(716\) 0 0
\(717\) 16.0000i 0.597531i
\(718\) −12.0000 12.0000i −0.447836 0.447836i
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) −3.00000 3.00000i −0.111648 0.111648i
\(723\) 30.0000i 1.11571i
\(724\) −40.0000 −1.48659
\(725\) 0 0
\(726\) −5.00000 + 5.00000i −0.185567 + 0.185567i
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 16.0000i 0.591377i
\(733\) 24.0000i 0.886460i −0.896408 0.443230i \(-0.853832\pi\)
0.896408 0.443230i \(-0.146168\pi\)
\(734\) −18.0000 18.0000i −0.664392 0.664392i
\(735\) 0 0
\(736\) 16.0000 + 16.0000i 0.589768 + 0.589768i
\(737\) −48.0000 −1.76810
\(738\) 10.0000 + 10.0000i 0.368105 + 0.368105i
\(739\) 12.0000i 0.441427i −0.975339 0.220714i \(-0.929161\pi\)
0.975339 0.220714i \(-0.0708386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 20.0000 20.0000i 0.734223 0.734223i
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 20.0000 + 20.0000i 0.733236 + 0.733236i
\(745\) 0 0
\(746\) 20.0000 20.0000i 0.732252 0.732252i
\(747\) 0 0
\(748\) 48.0000 1.75505
\(749\) 8.00000i 0.292314i
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) −16.0000 −0.583460
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) −4.00000 −0.145479
\(757\) 8.00000i 0.290765i −0.989376 0.145382i \(-0.953559\pi\)
0.989376 0.145382i \(-0.0464413\pi\)
\(758\) 36.0000 36.0000i 1.30758 1.30758i
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 6.00000 6.00000i 0.217357 0.217357i
\(763\) 8.00000i 0.289619i
\(764\) 16.0000i 0.578860i
\(765\) 0 0
\(766\) 24.0000 + 24.0000i 0.867155 + 0.867155i
\(767\) 0 0
\(768\) 16.0000i 0.577350i
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) 2.00000i 0.0720282i
\(772\) 28.0000i 1.00774i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 4.00000 4.00000i 0.143777 0.143777i
\(775\) 0 0
\(776\) 20.0000 20.0000i 0.717958 0.717958i
\(777\) 8.00000 0.286998
\(778\) −10.0000 + 10.0000i −0.358517 + 0.358517i
\(779\) 40.0000i 1.43315i
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) −24.0000 24.0000i −0.858238 0.858238i
\(783\) 6.00000 0.214423
\(784\) 12.0000 0.428571
\(785\) 0 0
\(786\) 0 0