Properties

Label 600.2.k
Level $600$
Weight $2$
Character orbit 600.k
Rep. character $\chi_{600}(301,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $6$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(600, [\chi])\).

Total New Old
Modular forms 132 38 94
Cusp forms 108 38 70
Eisenstein series 24 0 24

Trace form

\( 38 q - 2 q^{2} + 4 q^{4} + 2 q^{6} - 4 q^{7} - 8 q^{8} - 38 q^{9} + O(q^{10}) \) \( 38 q - 2 q^{2} + 4 q^{4} + 2 q^{6} - 4 q^{7} - 8 q^{8} - 38 q^{9} - 4 q^{12} + 12 q^{16} + 4 q^{17} + 2 q^{18} + 12 q^{22} + 8 q^{23} - 8 q^{24} - 12 q^{26} + 28 q^{28} - 4 q^{31} - 12 q^{32} + 4 q^{34} - 4 q^{36} - 8 q^{38} + 8 q^{39} - 4 q^{41} - 16 q^{42} - 56 q^{44} + 24 q^{47} - 16 q^{48} + 30 q^{49} - 8 q^{52} - 2 q^{54} + 56 q^{56} + 8 q^{57} + 24 q^{58} - 20 q^{62} + 4 q^{63} + 4 q^{64} - 16 q^{66} + 16 q^{68} - 40 q^{71} + 8 q^{72} + 28 q^{73} + 16 q^{74} - 16 q^{76} - 16 q^{78} - 36 q^{79} + 38 q^{81} - 44 q^{82} + 32 q^{84} - 28 q^{86} - 12 q^{87} - 28 q^{88} + 20 q^{89} + 24 q^{92} + 16 q^{94} - 28 q^{96} - 12 q^{97} + 6 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
600.2.k.a 600.k 8.b $2$ $4.791$ \(\Q(\sqrt{-1}) \) None 120.2.k.a \(-2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-i q^{3}-2 i q^{4}+(i+1)q^{6}+\cdots\)
600.2.k.b 600.k 8.b $2$ $4.791$ \(\Q(\sqrt{-1}) \) None 24.2.d.a \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+i q^{3}+2 i q^{4}+(i-1)q^{6}+\cdots\)
600.2.k.c 600.k 8.b $6$ $4.791$ 6.0.399424.1 None 120.2.k.b \(-2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{3}q^{3}+(\beta _{2}-\beta _{3})q^{4}+\beta _{4}q^{6}+\cdots\)
600.2.k.d 600.k 8.b $8$ $4.791$ 8.0.214798336.3 None 600.2.k.d \(-2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+\beta _{2}q^{3}+(-\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)
600.2.k.e 600.k 8.b $8$ $4.791$ 8.0.214798336.3 None 600.2.k.d \(2\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{2}q^{3}+(-\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)
600.2.k.f 600.k 8.b $12$ $4.791$ 12.0.\(\cdots\).1 None 120.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+\beta _{2}q^{4}-\beta _{5}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)