Properties

Label 600.2.d.e.349.4
Level 600
Weight 2
Character 600.349
Analytic conductor 4.791
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.4
Root \(1.40680 - 0.144584i\) of \(x^{6} - 2 x^{5} + 3 x^{4} - 6 x^{3} + 6 x^{2} - 8 x + 8\)
Character \(\chi\) \(=\) 600.349
Dual form 600.2.d.e.349.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.144584 + 1.40680i) q^{2} -1.00000 q^{3} +(-1.95819 - 0.406803i) q^{4} +(0.144584 - 1.40680i) q^{6} -3.62721i q^{7} +(0.855416 - 2.69597i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.144584 + 1.40680i) q^{2} -1.00000 q^{3} +(-1.95819 - 0.406803i) q^{4} +(0.144584 - 1.40680i) q^{6} -3.62721i q^{7} +(0.855416 - 2.69597i) q^{8} +1.00000 q^{9} +6.20555i q^{11} +(1.95819 + 0.406803i) q^{12} -0.578337 q^{13} +(5.10278 + 0.524438i) q^{14} +(3.66902 + 1.59320i) q^{16} +1.42166i q^{17} +(-0.144584 + 1.40680i) q^{18} +5.62721i q^{19} +3.62721i q^{21} +(-8.72999 - 0.897225i) q^{22} +5.62721i q^{23} +(-0.855416 + 2.69597i) q^{24} +(0.0836184 - 0.813607i) q^{26} -1.00000 q^{27} +(-1.47556 + 7.10278i) q^{28} -2.00000i q^{29} -2.57834 q^{31} +(-2.77180 + 4.93124i) q^{32} -6.20555i q^{33} +(-2.00000 - 0.205550i) q^{34} +(-1.95819 - 0.406803i) q^{36} +7.83276 q^{37} +(-7.91638 - 0.813607i) q^{38} +0.578337 q^{39} +5.25443 q^{41} +(-5.10278 - 0.524438i) q^{42} -7.25443 q^{43} +(2.52444 - 12.1517i) q^{44} +(-7.91638 - 0.813607i) q^{46} +6.78389i q^{47} +(-3.66902 - 1.59320i) q^{48} -6.15667 q^{49} -1.42166i q^{51} +(1.13249 + 0.235269i) q^{52} -2.00000 q^{53} +(0.144584 - 1.40680i) q^{54} +(-9.77886 - 3.10278i) q^{56} -5.62721i q^{57} +(2.81361 + 0.289169i) q^{58} +2.20555i q^{59} +12.4111i q^{61} +(0.372787 - 3.62721i) q^{62} -3.62721i q^{63} +(-6.53653 - 4.61235i) q^{64} +(8.72999 + 0.897225i) q^{66} -4.00000 q^{67} +(0.578337 - 2.78389i) q^{68} -5.62721i q^{69} +8.41110 q^{71} +(0.855416 - 2.69597i) q^{72} +6.00000i q^{73} +(-1.13249 + 11.0192i) q^{74} +(2.28917 - 11.0192i) q^{76} +22.5089 q^{77} +(-0.0836184 + 0.813607i) q^{78} -5.42166 q^{79} +1.00000 q^{81} +(-0.759707 + 7.39194i) q^{82} +3.25443 q^{83} +(1.47556 - 7.10278i) q^{84} +(1.04888 - 10.2056i) q^{86} +2.00000i q^{87} +(16.7300 + 5.30833i) q^{88} +13.2544 q^{89} +2.09775i q^{91} +(2.28917 - 11.0192i) q^{92} +2.57834 q^{93} +(-9.54359 - 0.980843i) q^{94} +(2.77180 - 4.93124i) q^{96} +4.84333i q^{97} +(0.890158 - 8.66123i) q^{98} +6.20555i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 6q^{3} + 2q^{4} + 6q^{8} + 6q^{9} + O(q^{10}) \) \( 6q - 6q^{3} + 2q^{4} + 6q^{8} + 6q^{9} - 2q^{12} + 16q^{14} + 10q^{16} - 12q^{22} - 6q^{24} + 28q^{26} - 6q^{27} - 20q^{28} - 12q^{31} + 10q^{32} - 12q^{34} + 2q^{36} - 8q^{37} - 20q^{38} - 20q^{41} - 16q^{42} + 8q^{43} + 4q^{44} - 20q^{46} - 10q^{48} - 30q^{49} + 12q^{52} - 12q^{53} + 4q^{56} + 4q^{58} + 28q^{62} - 22q^{64} + 12q^{66} - 24q^{67} - 8q^{71} + 6q^{72} - 12q^{74} + 12q^{76} + 32q^{77} - 28q^{78} - 36q^{79} + 6q^{81} + 16q^{82} - 32q^{83} + 20q^{84} - 16q^{86} + 60q^{88} + 28q^{89} + 12q^{92} + 12q^{93} - 4q^{94} - 10q^{96} + 56q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.144584 + 1.40680i −0.102237 + 0.994760i
\(3\) −1.00000 −0.577350
\(4\) −1.95819 0.406803i −0.979095 0.203402i
\(5\) 0 0
\(6\) 0.144584 1.40680i 0.0590263 0.574325i
\(7\) 3.62721i 1.37096i −0.728093 0.685479i \(-0.759593\pi\)
0.728093 0.685479i \(-0.240407\pi\)
\(8\) 0.855416 2.69597i 0.302435 0.953170i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.20555i 1.87104i 0.353269 + 0.935522i \(0.385070\pi\)
−0.353269 + 0.935522i \(0.614930\pi\)
\(12\) 1.95819 + 0.406803i 0.565281 + 0.117434i
\(13\) −0.578337 −0.160402 −0.0802009 0.996779i \(-0.525556\pi\)
−0.0802009 + 0.996779i \(0.525556\pi\)
\(14\) 5.10278 + 0.524438i 1.36377 + 0.140162i
\(15\) 0 0
\(16\) 3.66902 + 1.59320i 0.917256 + 0.398299i
\(17\) 1.42166i 0.344804i 0.985027 + 0.172402i \(0.0551528\pi\)
−0.985027 + 0.172402i \(0.944847\pi\)
\(18\) −0.144584 + 1.40680i −0.0340788 + 0.331587i
\(19\) 5.62721i 1.29097i 0.763772 + 0.645486i \(0.223345\pi\)
−0.763772 + 0.645486i \(0.776655\pi\)
\(20\) 0 0
\(21\) 3.62721i 0.791523i
\(22\) −8.72999 0.897225i −1.86124 0.191289i
\(23\) 5.62721i 1.17336i 0.809821 + 0.586678i \(0.199564\pi\)
−0.809821 + 0.586678i \(0.800436\pi\)
\(24\) −0.855416 + 2.69597i −0.174611 + 0.550313i
\(25\) 0 0
\(26\) 0.0836184 0.813607i 0.0163989 0.159561i
\(27\) −1.00000 −0.192450
\(28\) −1.47556 + 7.10278i −0.278855 + 1.34230i
\(29\) 2.00000i 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) −2.57834 −0.463083 −0.231542 0.972825i \(-0.574377\pi\)
−0.231542 + 0.972825i \(0.574377\pi\)
\(32\) −2.77180 + 4.93124i −0.489989 + 0.871729i
\(33\) 6.20555i 1.08025i
\(34\) −2.00000 0.205550i −0.342997 0.0352516i
\(35\) 0 0
\(36\) −1.95819 0.406803i −0.326365 0.0678005i
\(37\) 7.83276 1.28770 0.643849 0.765152i \(-0.277336\pi\)
0.643849 + 0.765152i \(0.277336\pi\)
\(38\) −7.91638 0.813607i −1.28421 0.131984i
\(39\) 0.578337 0.0926081
\(40\) 0 0
\(41\) 5.25443 0.820603 0.410302 0.911950i \(-0.365423\pi\)
0.410302 + 0.911950i \(0.365423\pi\)
\(42\) −5.10278 0.524438i −0.787375 0.0809225i
\(43\) −7.25443 −1.10629 −0.553145 0.833085i \(-0.686572\pi\)
−0.553145 + 0.833085i \(0.686572\pi\)
\(44\) 2.52444 12.1517i 0.380573 1.83193i
\(45\) 0 0
\(46\) −7.91638 0.813607i −1.16721 0.119960i
\(47\) 6.78389i 0.989532i 0.869026 + 0.494766i \(0.164746\pi\)
−0.869026 + 0.494766i \(0.835254\pi\)
\(48\) −3.66902 1.59320i −0.529578 0.229958i
\(49\) −6.15667 −0.879525
\(50\) 0 0
\(51\) 1.42166i 0.199073i
\(52\) 1.13249 + 0.235269i 0.157049 + 0.0326260i
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0.144584 1.40680i 0.0196754 0.191442i
\(55\) 0 0
\(56\) −9.77886 3.10278i −1.30676 0.414626i
\(57\) 5.62721i 0.745343i
\(58\) 2.81361 + 0.289169i 0.369445 + 0.0379697i
\(59\) 2.20555i 0.287138i 0.989640 + 0.143569i \(0.0458579\pi\)
−0.989640 + 0.143569i \(0.954142\pi\)
\(60\) 0 0
\(61\) 12.4111i 1.58908i 0.607213 + 0.794539i \(0.292288\pi\)
−0.607213 + 0.794539i \(0.707712\pi\)
\(62\) 0.372787 3.62721i 0.0473440 0.460657i
\(63\) 3.62721i 0.456986i
\(64\) −6.53653 4.61235i −0.817066 0.576544i
\(65\) 0 0
\(66\) 8.72999 + 0.897225i 1.07459 + 0.110441i
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0.578337 2.78389i 0.0701337 0.337596i
\(69\) 5.62721i 0.677437i
\(70\) 0 0
\(71\) 8.41110 0.998214 0.499107 0.866540i \(-0.333661\pi\)
0.499107 + 0.866540i \(0.333661\pi\)
\(72\) 0.855416 2.69597i 0.100812 0.317723i
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) −1.13249 + 11.0192i −0.131650 + 1.28095i
\(75\) 0 0
\(76\) 2.28917 11.0192i 0.262586 1.26398i
\(77\) 22.5089 2.56512
\(78\) −0.0836184 + 0.813607i −0.00946792 + 0.0921228i
\(79\) −5.42166 −0.609985 −0.304992 0.952355i \(-0.598654\pi\)
−0.304992 + 0.952355i \(0.598654\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −0.759707 + 7.39194i −0.0838956 + 0.816304i
\(83\) 3.25443 0.357220 0.178610 0.983920i \(-0.442840\pi\)
0.178610 + 0.983920i \(0.442840\pi\)
\(84\) 1.47556 7.10278i 0.160997 0.774976i
\(85\) 0 0
\(86\) 1.04888 10.2056i 0.113103 1.10049i
\(87\) 2.00000i 0.214423i
\(88\) 16.7300 + 5.30833i 1.78342 + 0.565869i
\(89\) 13.2544 1.40497 0.702483 0.711700i \(-0.252075\pi\)
0.702483 + 0.711700i \(0.252075\pi\)
\(90\) 0 0
\(91\) 2.09775i 0.219904i
\(92\) 2.28917 11.0192i 0.238662 1.14883i
\(93\) 2.57834 0.267361
\(94\) −9.54359 0.980843i −0.984347 0.101166i
\(95\) 0 0
\(96\) 2.77180 4.93124i 0.282895 0.503293i
\(97\) 4.84333i 0.491765i 0.969300 + 0.245883i \(0.0790778\pi\)
−0.969300 + 0.245883i \(0.920922\pi\)
\(98\) 0.890158 8.66123i 0.0899196 0.874916i
\(99\) 6.20555i 0.623681i
\(100\) 0 0
\(101\) 2.00000i 0.199007i −0.995037 0.0995037i \(-0.968274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 2.00000 + 0.205550i 0.198030 + 0.0203525i
\(103\) 2.47054i 0.243429i −0.992565 0.121715i \(-0.961161\pi\)
0.992565 0.121715i \(-0.0388393\pi\)
\(104\) −0.494719 + 1.55918i −0.0485112 + 0.152890i
\(105\) 0 0
\(106\) 0.289169 2.81361i 0.0280865 0.273282i
\(107\) −14.0978 −1.36288 −0.681441 0.731873i \(-0.738646\pi\)
−0.681441 + 0.731873i \(0.738646\pi\)
\(108\) 1.95819 + 0.406803i 0.188427 + 0.0391447i
\(109\) 7.25443i 0.694848i −0.937708 0.347424i \(-0.887056\pi\)
0.937708 0.347424i \(-0.112944\pi\)
\(110\) 0 0
\(111\) −7.83276 −0.743453
\(112\) 5.77886 13.3083i 0.546051 1.25752i
\(113\) 9.08719i 0.854851i 0.904051 + 0.427425i \(0.140579\pi\)
−0.904051 + 0.427425i \(0.859421\pi\)
\(114\) 7.91638 + 0.813607i 0.741437 + 0.0762012i
\(115\) 0 0
\(116\) −0.813607 + 3.91638i −0.0755415 + 0.363627i
\(117\) −0.578337 −0.0534673
\(118\) −3.10278 0.318888i −0.285634 0.0293560i
\(119\) 5.15667 0.472712
\(120\) 0 0
\(121\) −27.5089 −2.50080
\(122\) −17.4600 1.79445i −1.58075 0.162462i
\(123\) −5.25443 −0.473776
\(124\) 5.04888 + 1.04888i 0.453402 + 0.0941918i
\(125\) 0 0
\(126\) 5.10278 + 0.524438i 0.454591 + 0.0467206i
\(127\) 10.4705i 0.929110i −0.885544 0.464555i \(-0.846214\pi\)
0.885544 0.464555i \(-0.153786\pi\)
\(128\) 7.43375 8.52873i 0.657057 0.753841i
\(129\) 7.25443 0.638717
\(130\) 0 0
\(131\) 13.4600i 1.17600i −0.808860 0.588002i \(-0.799915\pi\)
0.808860 0.588002i \(-0.200085\pi\)
\(132\) −2.52444 + 12.1517i −0.219724 + 1.05767i
\(133\) 20.4111 1.76987
\(134\) 0.578337 5.62721i 0.0499607 0.486117i
\(135\) 0 0
\(136\) 3.83276 + 1.21611i 0.328657 + 0.104281i
\(137\) 10.5783i 0.903768i −0.892077 0.451884i \(-0.850752\pi\)
0.892077 0.451884i \(-0.149248\pi\)
\(138\) 7.91638 + 0.813607i 0.673887 + 0.0692588i
\(139\) 12.4705i 1.05774i 0.848704 + 0.528869i \(0.177384\pi\)
−0.848704 + 0.528869i \(0.822616\pi\)
\(140\) 0 0
\(141\) 6.78389i 0.571306i
\(142\) −1.21611 + 11.8328i −0.102054 + 0.992983i
\(143\) 3.58890i 0.300119i
\(144\) 3.66902 + 1.59320i 0.305752 + 0.132766i
\(145\) 0 0
\(146\) −8.44082 0.867506i −0.698567 0.0717953i
\(147\) 6.15667 0.507794
\(148\) −15.3380 3.18639i −1.26078 0.261920i
\(149\) 2.00000i 0.163846i −0.996639 0.0819232i \(-0.973894\pi\)
0.996639 0.0819232i \(-0.0261062\pi\)
\(150\) 0 0
\(151\) 12.6761 1.03157 0.515783 0.856719i \(-0.327501\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(152\) 15.1708 + 4.81361i 1.23051 + 0.390435i
\(153\) 1.42166i 0.114935i
\(154\) −3.25443 + 31.6655i −0.262249 + 2.55168i
\(155\) 0 0
\(156\) −1.13249 0.235269i −0.0906721 0.0188366i
\(157\) 1.32391 0.105660 0.0528298 0.998604i \(-0.483176\pi\)
0.0528298 + 0.998604i \(0.483176\pi\)
\(158\) 0.783887 7.62721i 0.0623627 0.606788i
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) 20.4111 1.60862
\(162\) −0.144584 + 1.40680i −0.0113596 + 0.110529i
\(163\) 15.2544 1.19482 0.597409 0.801936i \(-0.296197\pi\)
0.597409 + 0.801936i \(0.296197\pi\)
\(164\) −10.2892 2.13752i −0.803449 0.166912i
\(165\) 0 0
\(166\) −0.470539 + 4.57834i −0.0365209 + 0.355348i
\(167\) 10.7839i 0.834482i 0.908796 + 0.417241i \(0.137003\pi\)
−0.908796 + 0.417241i \(0.862997\pi\)
\(168\) 9.77886 + 3.10278i 0.754456 + 0.239384i
\(169\) −12.6655 −0.974271
\(170\) 0 0
\(171\) 5.62721i 0.430324i
\(172\) 14.2056 + 2.95112i 1.08316 + 0.225021i
\(173\) 13.6655 1.03897 0.519485 0.854479i \(-0.326124\pi\)
0.519485 + 0.854479i \(0.326124\pi\)
\(174\) −2.81361 0.289169i −0.213299 0.0219218i
\(175\) 0 0
\(176\) −9.88666 + 22.7683i −0.745235 + 1.71623i
\(177\) 2.20555i 0.165779i
\(178\) −1.91638 + 18.6464i −0.143639 + 1.39760i
\(179\) 9.04888i 0.676345i 0.941084 + 0.338172i \(0.109809\pi\)
−0.941084 + 0.338172i \(0.890191\pi\)
\(180\) 0 0
\(181\) 23.2544i 1.72849i −0.503073 0.864244i \(-0.667797\pi\)
0.503073 0.864244i \(-0.332203\pi\)
\(182\) −2.95112 0.303302i −0.218752 0.0224822i
\(183\) 12.4111i 0.917455i
\(184\) 15.1708 + 4.81361i 1.11841 + 0.354864i
\(185\) 0 0
\(186\) −0.372787 + 3.62721i −0.0273341 + 0.265960i
\(187\) −8.82220 −0.645143
\(188\) 2.75971 13.2841i 0.201272 0.968846i
\(189\) 3.62721i 0.263841i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 6.53653 + 4.61235i 0.471733 + 0.332868i
\(193\) 25.6655i 1.84745i −0.383062 0.923723i \(-0.625131\pi\)
0.383062 0.923723i \(-0.374869\pi\)
\(194\) −6.81361 0.700269i −0.489188 0.0502764i
\(195\) 0 0
\(196\) 12.0559 + 2.50456i 0.861139 + 0.178897i
\(197\) −15.1567 −1.07987 −0.539934 0.841707i \(-0.681551\pi\)
−0.539934 + 0.841707i \(0.681551\pi\)
\(198\) −8.72999 0.897225i −0.620413 0.0637630i
\(199\) 20.6761 1.46569 0.732845 0.680396i \(-0.238192\pi\)
0.732845 + 0.680396i \(0.238192\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 2.81361 + 0.289169i 0.197965 + 0.0203458i
\(203\) −7.25443 −0.509161
\(204\) −0.578337 + 2.78389i −0.0404917 + 0.194911i
\(205\) 0 0
\(206\) 3.47556 + 0.357201i 0.242154 + 0.0248874i
\(207\) 5.62721i 0.391118i
\(208\) −2.12193 0.921405i −0.147129 0.0638879i
\(209\) −34.9200 −2.41546
\(210\) 0 0
\(211\) 2.03831i 0.140323i −0.997536 0.0701616i \(-0.977648\pi\)
0.997536 0.0701616i \(-0.0223515\pi\)
\(212\) 3.91638 + 0.813607i 0.268978 + 0.0558787i
\(213\) −8.41110 −0.576319
\(214\) 2.03831 19.8328i 0.139336 1.35574i
\(215\) 0 0
\(216\) −0.855416 + 2.69597i −0.0582037 + 0.183438i
\(217\) 9.35218i 0.634867i
\(218\) 10.2056 + 1.04888i 0.691207 + 0.0710388i
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 0.822200i 0.0553072i
\(222\) 1.13249 11.0192i 0.0760080 0.739557i
\(223\) 7.21611i 0.483227i 0.970373 + 0.241613i \(0.0776766\pi\)
−0.970373 + 0.241613i \(0.922323\pi\)
\(224\) 17.8867 + 10.0539i 1.19510 + 0.671754i
\(225\) 0 0
\(226\) −12.7839 1.31386i −0.850372 0.0873970i
\(227\) −1.15667 −0.0767712 −0.0383856 0.999263i \(-0.512222\pi\)
−0.0383856 + 0.999263i \(0.512222\pi\)
\(228\) −2.28917 + 11.0192i −0.151604 + 0.729761i
\(229\) 14.0978i 0.931606i −0.884889 0.465803i \(-0.845766\pi\)
0.884889 0.465803i \(-0.154234\pi\)
\(230\) 0 0
\(231\) −22.5089 −1.48097
\(232\) −5.39194 1.71083i −0.353998 0.112322i
\(233\) 14.5783i 0.955059i 0.878616 + 0.477529i \(0.158468\pi\)
−0.878616 + 0.477529i \(0.841532\pi\)
\(234\) 0.0836184 0.813607i 0.00546631 0.0531871i
\(235\) 0 0
\(236\) 0.897225 4.31889i 0.0584044 0.281136i
\(237\) 5.42166 0.352175
\(238\) −0.745574 + 7.25443i −0.0483284 + 0.470235i
\(239\) −19.2544 −1.24547 −0.622733 0.782435i \(-0.713978\pi\)
−0.622733 + 0.782435i \(0.713978\pi\)
\(240\) 0 0
\(241\) −13.6655 −0.880274 −0.440137 0.897931i \(-0.645070\pi\)
−0.440137 + 0.897931i \(0.645070\pi\)
\(242\) 3.97735 38.6995i 0.255674 2.48770i
\(243\) −1.00000 −0.0641500
\(244\) 5.04888 24.3033i 0.323221 1.55586i
\(245\) 0 0
\(246\) 0.759707 7.39194i 0.0484372 0.471293i
\(247\) 3.25443i 0.207074i
\(248\) −2.20555 + 6.95112i −0.140053 + 0.441397i
\(249\) −3.25443 −0.206241
\(250\) 0 0
\(251\) 7.14663i 0.451091i −0.974233 0.225546i \(-0.927584\pi\)
0.974233 0.225546i \(-0.0724165\pi\)
\(252\) −1.47556 + 7.10278i −0.0929517 + 0.447433i
\(253\) −34.9200 −2.19540
\(254\) 14.7300 + 1.51388i 0.924242 + 0.0949890i
\(255\) 0 0
\(256\) 10.9234 + 11.6909i 0.682716 + 0.730684i
\(257\) 7.73501i 0.482497i 0.970463 + 0.241248i \(0.0775568\pi\)
−0.970463 + 0.241248i \(0.922443\pi\)
\(258\) −1.04888 + 10.2056i −0.0653002 + 0.635370i
\(259\) 28.4111i 1.76538i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 18.9355 + 1.94610i 1.16984 + 0.120231i
\(263\) 18.7839i 1.15826i 0.815234 + 0.579132i \(0.196608\pi\)
−0.815234 + 0.579132i \(0.803392\pi\)
\(264\) −16.7300 5.30833i −1.02966 0.326705i
\(265\) 0 0
\(266\) −2.95112 + 28.7144i −0.180945 + 1.76059i
\(267\) −13.2544 −0.811158
\(268\) 7.83276 + 1.62721i 0.478462 + 0.0993979i
\(269\) 8.50885i 0.518794i −0.965771 0.259397i \(-0.916476\pi\)
0.965771 0.259397i \(-0.0835238\pi\)
\(270\) 0 0
\(271\) 30.9894 1.88247 0.941237 0.337746i \(-0.109665\pi\)
0.941237 + 0.337746i \(0.109665\pi\)
\(272\) −2.26499 + 5.21611i −0.137335 + 0.316273i
\(273\) 2.09775i 0.126962i
\(274\) 14.8816 + 1.52946i 0.899033 + 0.0923981i
\(275\) 0 0
\(276\) −2.28917 + 11.0192i −0.137792 + 0.663275i
\(277\) −9.51941 −0.571966 −0.285983 0.958235i \(-0.592320\pi\)
−0.285983 + 0.958235i \(0.592320\pi\)
\(278\) −17.5436 1.80304i −1.05219 0.108139i
\(279\) −2.57834 −0.154361
\(280\) 0 0
\(281\) 13.6655 0.815217 0.407608 0.913157i \(-0.366363\pi\)
0.407608 + 0.913157i \(0.366363\pi\)
\(282\) 9.54359 + 0.980843i 0.568313 + 0.0584084i
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) −16.4705 3.42166i −0.977347 0.203038i
\(285\) 0 0
\(286\) 5.04888 + 0.518898i 0.298546 + 0.0306831i
\(287\) 19.0589i 1.12501i
\(288\) −2.77180 + 4.93124i −0.163330 + 0.290576i
\(289\) 14.9789 0.881110
\(290\) 0 0
\(291\) 4.84333i 0.283921i
\(292\) 2.44082 11.7491i 0.142838 0.687567i
\(293\) −4.31335 −0.251989 −0.125994 0.992031i \(-0.540212\pi\)
−0.125994 + 0.992031i \(0.540212\pi\)
\(294\) −0.890158 + 8.66123i −0.0519151 + 0.505133i
\(295\) 0 0
\(296\) 6.70027 21.1169i 0.389445 1.22740i
\(297\) 6.20555i 0.360083i
\(298\) 2.81361 + 0.289169i 0.162988 + 0.0167511i
\(299\) 3.25443i 0.188208i
\(300\) 0 0
\(301\) 26.3133i 1.51668i
\(302\) −1.83276 + 17.8328i −0.105464 + 1.02616i
\(303\) 2.00000i 0.114897i
\(304\) −8.96526 + 20.6464i −0.514193 + 1.18415i
\(305\) 0 0
\(306\) −2.00000 0.205550i −0.114332 0.0117505i
\(307\) −25.5678 −1.45923 −0.729615 0.683858i \(-0.760301\pi\)
−0.729615 + 0.683858i \(0.760301\pi\)
\(308\) −44.0766 9.15667i −2.51150 0.521750i
\(309\) 2.47054i 0.140544i
\(310\) 0 0
\(311\) −20.0766 −1.13844 −0.569221 0.822185i \(-0.692755\pi\)
−0.569221 + 0.822185i \(0.692755\pi\)
\(312\) 0.494719 1.55918i 0.0280079 0.0882712i
\(313\) 7.15667i 0.404519i −0.979332 0.202260i \(-0.935172\pi\)
0.979332 0.202260i \(-0.0648285\pi\)
\(314\) −0.191417 + 1.86248i −0.0108023 + 0.105106i
\(315\) 0 0
\(316\) 10.6167 + 2.20555i 0.597233 + 0.124072i
\(317\) −24.1744 −1.35777 −0.678884 0.734245i \(-0.737536\pi\)
−0.678884 + 0.734245i \(0.737536\pi\)
\(318\) −0.289169 + 2.81361i −0.0162158 + 0.157779i
\(319\) 12.4111 0.694888
\(320\) 0 0
\(321\) 14.0978 0.786860
\(322\) −2.95112 + 28.7144i −0.164460 + 1.60019i
\(323\) −8.00000 −0.445132
\(324\) −1.95819 0.406803i −0.108788 0.0226002i
\(325\) 0 0
\(326\) −2.20555 + 21.4600i −0.122154 + 1.18856i
\(327\) 7.25443i 0.401171i
\(328\) 4.49472 14.1658i 0.248179 0.782175i
\(329\) 24.6066 1.35661
\(330\) 0 0
\(331\) 27.1950i 1.49477i −0.664390 0.747386i \(-0.731309\pi\)
0.664390 0.747386i \(-0.268691\pi\)
\(332\) −6.37279 1.32391i −0.349752 0.0726591i
\(333\) 7.83276 0.429233
\(334\) −15.1708 1.55918i −0.830110 0.0853146i
\(335\) 0 0
\(336\) −5.77886 + 13.3083i −0.315263 + 0.726029i
\(337\) 22.8222i 1.24320i 0.783333 + 0.621602i \(0.213518\pi\)
−0.783333 + 0.621602i \(0.786482\pi\)
\(338\) 1.83124 17.8179i 0.0996061 0.969166i
\(339\) 9.08719i 0.493548i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) −7.91638 0.813607i −0.428069 0.0439948i
\(343\) 3.05892i 0.165166i
\(344\) −6.20555 + 19.5577i −0.334581 + 1.05448i
\(345\) 0 0
\(346\) −1.97582 + 19.2247i −0.106221 + 1.03353i
\(347\) 23.6655 1.27043 0.635216 0.772335i \(-0.280911\pi\)
0.635216 + 0.772335i \(0.280911\pi\)
\(348\) 0.813607 3.91638i 0.0436139 0.209940i
\(349\) 34.9200i 1.86922i 0.355671 + 0.934611i \(0.384252\pi\)
−0.355671 + 0.934611i \(0.615748\pi\)
\(350\) 0 0
\(351\) 0.578337 0.0308694
\(352\) −30.6011 17.2005i −1.63104 0.916791i
\(353\) 15.9305i 0.847896i 0.905687 + 0.423948i \(0.139356\pi\)
−0.905687 + 0.423948i \(0.860644\pi\)
\(354\) 3.10278 + 0.318888i 0.164911 + 0.0169487i
\(355\) 0 0
\(356\) −25.9547 5.39194i −1.37560 0.285772i
\(357\) −5.15667 −0.272920
\(358\) −12.7300 1.30833i −0.672801 0.0691471i
\(359\) −8.41110 −0.443921 −0.221960 0.975056i \(-0.571246\pi\)
−0.221960 + 0.975056i \(0.571246\pi\)
\(360\) 0 0
\(361\) −12.6655 −0.666607
\(362\) 32.7144 + 3.36222i 1.71943 + 0.176715i
\(363\) 27.5089 1.44384
\(364\) 0.853372 4.10780i 0.0447289 0.215307i
\(365\) 0 0
\(366\) 17.4600 + 1.79445i 0.912648 + 0.0937974i
\(367\) 24.4494i 1.27625i −0.769933 0.638124i \(-0.779711\pi\)
0.769933 0.638124i \(-0.220289\pi\)
\(368\) −8.96526 + 20.6464i −0.467346 + 1.07627i
\(369\) 5.25443 0.273534
\(370\) 0 0
\(371\) 7.25443i 0.376631i
\(372\) −5.04888 1.04888i −0.261772 0.0543817i
\(373\) −0.167237 −0.00865920 −0.00432960 0.999991i \(-0.501378\pi\)
−0.00432960 + 0.999991i \(0.501378\pi\)
\(374\) 1.27555 12.4111i 0.0659572 0.641763i
\(375\) 0 0
\(376\) 18.2892 + 5.80304i 0.943192 + 0.299269i
\(377\) 1.15667i 0.0595718i
\(378\) −5.10278 0.524438i −0.262458 0.0269742i
\(379\) 7.72496i 0.396805i −0.980121 0.198402i \(-0.936425\pi\)
0.980121 0.198402i \(-0.0635753\pi\)
\(380\) 0 0
\(381\) 10.4705i 0.536422i
\(382\) 1.15667 11.2544i 0.0591806 0.575827i
\(383\) 1.62721i 0.0831467i 0.999135 + 0.0415734i \(0.0132370\pi\)
−0.999135 + 0.0415734i \(0.986763\pi\)
\(384\) −7.43375 + 8.52873i −0.379352 + 0.435230i
\(385\) 0 0
\(386\) 36.1063 + 3.71083i 1.83776 + 0.188876i
\(387\) −7.25443 −0.368763
\(388\) 1.97028 9.48416i 0.100026 0.481485i
\(389\) 12.3133i 0.624312i −0.950031 0.312156i \(-0.898949\pi\)
0.950031 0.312156i \(-0.101051\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −5.26652 + 16.5982i −0.265999 + 0.838337i
\(393\) 13.4600i 0.678966i
\(394\) 2.19142 21.3225i 0.110402 1.07421i
\(395\) 0 0
\(396\) 2.52444 12.1517i 0.126858 0.610643i
\(397\) 19.0872 0.957959 0.478979 0.877826i \(-0.341007\pi\)
0.478979 + 0.877826i \(0.341007\pi\)
\(398\) −2.98944 + 29.0872i −0.149847 + 1.45801i
\(399\) −20.4111 −1.02183
\(400\) 0 0
\(401\) −14.4111 −0.719656 −0.359828 0.933019i \(-0.617165\pi\)
−0.359828 + 0.933019i \(0.617165\pi\)
\(402\) −0.578337 + 5.62721i −0.0288448 + 0.280660i
\(403\) 1.49115 0.0742794
\(404\) −0.813607 + 3.91638i −0.0404784 + 0.194847i
\(405\) 0 0
\(406\) 1.04888 10.2056i 0.0520548 0.506493i
\(407\) 48.6066i 2.40934i
\(408\) −3.83276 1.21611i −0.189750 0.0602066i
\(409\) 8.31335 0.411069 0.205534 0.978650i \(-0.434107\pi\)
0.205534 + 0.978650i \(0.434107\pi\)
\(410\) 0 0
\(411\) 10.5783i 0.521791i
\(412\) −1.00502 + 4.83779i −0.0495139 + 0.238341i
\(413\) 8.00000 0.393654
\(414\) −7.91638 0.813607i −0.389069 0.0399866i
\(415\) 0 0
\(416\) 1.60303 2.85192i 0.0785952 0.139827i
\(417\) 12.4705i 0.610685i
\(418\) 5.04888 49.1255i 0.246949 2.40281i
\(419\) 7.36222i 0.359668i 0.983697 + 0.179834i \(0.0575561\pi\)
−0.983697 + 0.179834i \(0.942444\pi\)
\(420\) 0 0
\(421\) 30.0978i 1.46687i −0.679757 0.733437i \(-0.737915\pi\)
0.679757 0.733437i \(-0.262085\pi\)
\(422\) 2.86751 + 0.294708i 0.139588 + 0.0143462i
\(423\) 6.78389i 0.329844i
\(424\) −1.71083 + 5.39194i −0.0830853 + 0.261856i
\(425\) 0 0
\(426\) 1.21611 11.8328i 0.0589209 0.573299i
\(427\) 45.0177 2.17856
\(428\) 27.6061 + 5.73501i 1.33439 + 0.277212i
\(429\) 3.58890i 0.173274i
\(430\) 0 0
\(431\) 8.41110 0.405148 0.202574 0.979267i \(-0.435069\pi\)
0.202574 + 0.979267i \(0.435069\pi\)
\(432\) −3.66902 1.59320i −0.176526 0.0766527i
\(433\) 4.31335i 0.207286i 0.994615 + 0.103643i \(0.0330500\pi\)
−0.994615 + 0.103643i \(0.966950\pi\)
\(434\) −13.1567 1.35218i −0.631541 0.0649066i
\(435\) 0 0
\(436\) −2.95112 + 14.2056i −0.141333 + 0.680322i
\(437\) −31.6655 −1.51477
\(438\) 8.44082 + 0.867506i 0.403318 + 0.0414510i
\(439\) −9.83276 −0.469292 −0.234646 0.972081i \(-0.575393\pi\)
−0.234646 + 0.972081i \(0.575393\pi\)
\(440\) 0 0
\(441\) −6.15667 −0.293175
\(442\) 1.15667 + 0.118877i 0.0550174 + 0.00565441i
\(443\) 21.3522 1.01447 0.507236 0.861807i \(-0.330667\pi\)
0.507236 + 0.861807i \(0.330667\pi\)
\(444\) 15.3380 + 3.18639i 0.727911 + 0.151220i
\(445\) 0 0
\(446\) −10.1517 1.04334i −0.480695 0.0494034i
\(447\) 2.00000i 0.0945968i
\(448\) −16.7300 + 23.7094i −0.790418 + 1.12016i
\(449\) 20.3133 0.958646 0.479323 0.877639i \(-0.340882\pi\)
0.479323 + 0.877639i \(0.340882\pi\)
\(450\) 0 0
\(451\) 32.6066i 1.53539i
\(452\) 3.69670 17.7944i 0.173878 0.836981i
\(453\) −12.6761 −0.595575
\(454\) 0.167237 1.62721i 0.00784882 0.0763689i
\(455\) 0 0
\(456\) −15.1708 4.81361i −0.710438 0.225418i
\(457\) 3.35218i 0.156808i −0.996922 0.0784041i \(-0.975018\pi\)
0.996922 0.0784041i \(-0.0249825\pi\)
\(458\) 19.8328 + 2.03831i 0.926724 + 0.0952441i
\(459\) 1.42166i 0.0663575i
\(460\) 0 0
\(461\) 28.5089i 1.32779i 0.747826 + 0.663895i \(0.231098\pi\)
−0.747826 + 0.663895i \(0.768902\pi\)
\(462\) 3.25443 31.6655i 0.151410 1.47321i
\(463\) 23.6272i 1.09805i −0.835806 0.549025i \(-0.814999\pi\)
0.835806 0.549025i \(-0.185001\pi\)
\(464\) 3.18639 7.33804i 0.147925 0.340660i
\(465\) 0 0
\(466\) −20.5089 2.10780i −0.950054 0.0976419i
\(467\) 29.5678 1.36823 0.684117 0.729373i \(-0.260188\pi\)
0.684117 + 0.729373i \(0.260188\pi\)
\(468\) 1.13249 + 0.235269i 0.0523496 + 0.0108753i
\(469\) 14.5089i 0.669957i
\(470\) 0 0
\(471\) −1.32391 −0.0610026
\(472\) 5.94610 + 1.88666i 0.273691 + 0.0868407i
\(473\) 45.0177i 2.06992i
\(474\) −0.783887 + 7.62721i −0.0360051 + 0.350329i
\(475\) 0 0
\(476\) −10.0978 2.09775i −0.462830 0.0961503i
\(477\) −2.00000 −0.0915737
\(478\) 2.78389 27.0872i 0.127332 1.23894i
\(479\) 22.0978 1.00967 0.504836 0.863215i \(-0.331553\pi\)
0.504836 + 0.863215i \(0.331553\pi\)
\(480\) 0 0
\(481\) −4.52998 −0.206549
\(482\) 1.97582 19.2247i 0.0899961 0.875661i
\(483\) −20.4111 −0.928737
\(484\) 53.8676 + 11.1907i 2.44853 + 0.508668i
\(485\) 0 0
\(486\) 0.144584 1.40680i 0.00655848 0.0638139i
\(487\) 4.03831i 0.182993i 0.995805 + 0.0914967i \(0.0291651\pi\)
−0.995805 + 0.0914967i \(0.970835\pi\)
\(488\) 33.4600 + 10.6167i 1.51466 + 0.480593i
\(489\) −15.2544 −0.689829
\(490\) 0 0
\(491\) 18.2056i 0.821605i 0.911724 + 0.410802i \(0.134751\pi\)
−0.911724 + 0.410802i \(0.865249\pi\)
\(492\) 10.2892 + 2.13752i 0.463872 + 0.0963667i
\(493\) 2.84333 0.128057
\(494\) 4.57834 + 0.470539i 0.205989 + 0.0211705i
\(495\) 0 0
\(496\) −9.45998 4.10780i −0.424765 0.184446i
\(497\) 30.5089i 1.36851i
\(498\) 0.470539 4.57834i 0.0210853 0.205160i
\(499\) 0.0594386i 0.00266084i −0.999999 0.00133042i \(-0.999577\pi\)
0.999999 0.00133042i \(-0.000423486\pi\)
\(500\) 0 0
\(501\) 10.7839i 0.481789i
\(502\) 10.0539 + 1.03329i 0.448727 + 0.0461180i
\(503\) 2.03831i 0.0908839i −0.998967 0.0454419i \(-0.985530\pi\)
0.998967 0.0454419i \(-0.0144696\pi\)
\(504\) −9.77886 3.10278i −0.435585 0.138209i
\(505\) 0 0
\(506\) 5.04888 49.1255i 0.224450 2.18389i
\(507\) 12.6655 0.562496
\(508\) −4.25945 + 20.5033i −0.188983 + 0.909687i
\(509\) 40.7044i 1.80419i 0.431539 + 0.902094i \(0.357971\pi\)
−0.431539 + 0.902094i \(0.642029\pi\)
\(510\) 0 0
\(511\) 21.7633 0.962751
\(512\) −18.0262 + 13.6768i −0.796654 + 0.604436i
\(513\) 5.62721i 0.248448i
\(514\) −10.8816 1.11836i −0.479969 0.0493288i
\(515\) 0 0
\(516\) −14.2056 2.95112i −0.625364 0.129916i
\(517\) −42.0978 −1.85146
\(518\) 39.9688 + 4.10780i 1.75613 + 0.180486i
\(519\) −13.6655 −0.599850
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 2.81361 + 0.289169i 0.123148 + 0.0126566i
\(523\) 35.3311 1.54492 0.772460 0.635064i \(-0.219026\pi\)
0.772460 + 0.635064i \(0.219026\pi\)
\(524\) −5.47556 + 26.3572i −0.239201 + 1.15142i
\(525\) 0 0
\(526\) −26.4252 2.71585i −1.15219 0.118417i
\(527\) 3.66553i 0.159673i
\(528\) 9.88666 22.7683i 0.430262 0.990863i
\(529\) −8.66553 −0.376762
\(530\) 0 0
\(531\) 2.20555i 0.0957127i
\(532\) −39.9688 8.30330i −1.73287 0.359994i
\(533\) −3.03883 −0.131626
\(534\) 1.91638 18.6464i 0.0829299 0.806907i
\(535\) 0 0
\(536\) −3.42166 + 10.7839i −0.147793 + 0.465793i
\(537\) 9.04888i 0.390488i
\(538\) 11.9703 + 1.23025i 0.516075 + 0.0530397i
\(539\) 38.2056i 1.64563i
\(540\) 0 0
\(541\) 3.05892i 0.131513i 0.997836 + 0.0657567i \(0.0209461\pi\)
−0.997836 + 0.0657567i \(0.979054\pi\)
\(542\) −4.48059 + 43.5960i −0.192458 + 1.87261i
\(543\) 23.2544i 0.997943i
\(544\) −7.01056 3.94056i −0.300575 0.168950i
\(545\) 0 0
\(546\) 2.95112 + 0.303302i 0.126296 + 0.0129801i
\(547\) 32.0766 1.37150 0.685749 0.727838i \(-0.259475\pi\)
0.685749 + 0.727838i \(0.259475\pi\)
\(548\) −4.30330 + 20.7144i −0.183828 + 0.884875i
\(549\) 12.4111i 0.529693i
\(550\) 0 0
\(551\) 11.2544 0.479455
\(552\) −15.1708 4.81361i −0.645712 0.204881i
\(553\) 19.6655i 0.836263i
\(554\) 1.37636 13.3919i 0.0584758 0.568969i
\(555\) 0 0
\(556\) 5.07306 24.4197i 0.215145 1.03563i
\(557\) 33.6655 1.42645 0.713227 0.700933i \(-0.247233\pi\)
0.713227 + 0.700933i \(0.247233\pi\)
\(558\) 0.372787 3.62721i 0.0157813 0.153552i
\(559\) 4.19550 0.177451
\(560\) 0 0
\(561\) 8.82220 0.372474
\(562\) −1.97582 + 19.2247i −0.0833449 + 0.810945i
\(563\) −5.35218 −0.225567 −0.112784 0.993620i \(-0.535977\pi\)
−0.112784 + 0.993620i \(0.535977\pi\)
\(564\) −2.75971 + 13.2841i −0.116205 + 0.559363i
\(565\) 0 0
\(566\) 2.89169 28.1361i 0.121547 1.18265i
\(567\) 3.62721i 0.152329i
\(568\) 7.19499 22.6761i 0.301895 0.951468i
\(569\) −5.58890 −0.234299 −0.117149 0.993114i \(-0.537376\pi\)
−0.117149 + 0.993114i \(0.537376\pi\)
\(570\) 0 0
\(571\) 10.3728i 0.434088i −0.976162 0.217044i \(-0.930359\pi\)
0.976162 0.217044i \(-0.0696414\pi\)
\(572\) −1.45998 + 7.02775i −0.0610447 + 0.293845i
\(573\) 8.00000 0.334205
\(574\) 26.8122 + 2.75562i 1.11912 + 0.115017i
\(575\) 0 0
\(576\) −6.53653 4.61235i −0.272355 0.192181i
\(577\) 21.6655i 0.901948i 0.892537 + 0.450974i \(0.148923\pi\)
−0.892537 + 0.450974i \(0.851077\pi\)
\(578\) −2.16571 + 21.0723i −0.0900816 + 0.876493i
\(579\) 25.6655i 1.06662i
\(580\) 0 0
\(581\) 11.8045i 0.489733i
\(582\) 6.81361 + 0.700269i 0.282433 + 0.0290271i
\(583\) 12.4111i 0.514015i
\(584\) 16.1758 + 5.13249i 0.669361 + 0.212384i
\(585\) 0 0
\(586\) 0.623642 6.06803i 0.0257624 0.250668i
\(587\) −1.90225 −0.0785142 −0.0392571 0.999229i \(-0.512499\pi\)
−0.0392571 + 0.999229i \(0.512499\pi\)
\(588\) −12.0559 2.50456i −0.497179 0.103286i
\(589\) 14.5089i 0.597827i
\(590\) 0 0
\(591\) 15.1567 0.623462
\(592\) 28.7386 + 12.4791i 1.18115 + 0.512889i
\(593\) 2.57834i 0.105880i 0.998598 + 0.0529398i \(0.0168591\pi\)
−0.998598 + 0.0529398i \(0.983141\pi\)
\(594\) 8.72999 + 0.897225i 0.358196 + 0.0368136i
\(595\) 0 0
\(596\) −0.813607 + 3.91638i −0.0333266 + 0.160421i
\(597\) −20.6761 −0.846216
\(598\) 4.57834 + 0.470539i 0.187222 + 0.0192418i
\(599\) −26.7244 −1.09193 −0.545966 0.837808i \(-0.683837\pi\)
−0.545966 + 0.837808i \(0.683837\pi\)
\(600\) 0 0
\(601\) 33.3311 1.35960 0.679801 0.733397i \(-0.262066\pi\)
0.679801 + 0.733397i \(0.262066\pi\)
\(602\) −37.0177 3.80450i −1.50873 0.155060i
\(603\) −4.00000 −0.162893
\(604\) −24.8222 5.15667i −1.01000 0.209822i
\(605\) 0 0
\(606\) −2.81361 0.289169i −0.114295 0.0117467i
\(607\) 21.9406i 0.890540i −0.895396 0.445270i \(-0.853108\pi\)
0.895396 0.445270i \(-0.146892\pi\)
\(608\) −27.7491 15.5975i −1.12538 0.632562i
\(609\) 7.25443 0.293964
\(610\) 0 0
\(611\) 3.92337i 0.158723i
\(612\) 0.578337 2.78389i 0.0233779 0.112532i
\(613\) −3.42166 −0.138200 −0.0690998 0.997610i \(-0.522013\pi\)
−0.0690998 + 0.997610i \(0.522013\pi\)
\(614\) 3.69670 35.9688i 0.149187 1.45158i
\(615\) 0 0
\(616\) 19.2544 60.6832i 0.775783 2.44500i
\(617\) 19.7350i 0.794502i 0.917710 + 0.397251i \(0.130036\pi\)
−0.917710 + 0.397251i \(0.869964\pi\)
\(618\) −3.47556 0.357201i −0.139808 0.0143687i
\(619\) 20.4705i 0.822780i 0.911459 + 0.411390i \(0.134957\pi\)
−0.911459 + 0.411390i \(0.865043\pi\)
\(620\) 0 0
\(621\) 5.62721i 0.225812i
\(622\) 2.90276 28.2439i 0.116390 1.13248i
\(623\) 48.0766i 1.92615i
\(624\) 2.12193 + 0.921405i 0.0849452 + 0.0368857i
\(625\) 0 0
\(626\) 10.0680 + 1.03474i 0.402400 + 0.0413566i
\(627\) 34.9200 1.39457
\(628\) −2.59247 0.538571i −0.103451 0.0214913i
\(629\) 11.1355i 0.444003i
\(630\) 0 0
\(631\) 1.08719 0.0432803 0.0216402 0.999766i \(-0.493111\pi\)
0.0216402 + 0.999766i \(0.493111\pi\)
\(632\) −4.63778 + 14.6167i −0.184481 + 0.581419i
\(633\) 2.03831i 0.0810157i
\(634\) 3.49523 34.0086i 0.138814 1.35065i
\(635\) 0 0
\(636\) −3.91638 0.813607i −0.155295 0.0322616i
\(637\) 3.56063 0.141077
\(638\) −1.79445 + 17.4600i −0.0710430 + 0.691247i
\(639\) 8.41110 0.332738
\(640\) 0 0
\(641\) −27.9789 −1.10510 −0.552550 0.833480i \(-0.686345\pi\)
−0.552550 + 0.833480i \(0.686345\pi\)
\(642\) −2.03831 + 19.8328i −0.0804458 + 0.782737i
\(643\) −4.94108 −0.194857 −0.0974285 0.995243i \(-0.531062\pi\)
−0.0974285 + 0.995243i \(0.531062\pi\)
\(644\) −39.9688 8.30330i −1.57499 0.327196i
\(645\) 0 0
\(646\) 1.15667 11.2544i 0.0455087 0.442799i
\(647\) 49.3694i 1.94091i −0.241282 0.970455i \(-0.577568\pi\)
0.241282 0.970455i \(-0.422432\pi\)
\(648\) 0.855416 2.69597i 0.0336039 0.105908i
\(649\) −13.6867 −0.537248
\(650\) 0 0
\(651\) 9.35218i 0.366541i
\(652\) −29.8711 6.20555i −1.16984 0.243028i
\(653\) −40.1744 −1.57214 −0.786072 0.618134i \(-0.787889\pi\)
−0.786072 + 0.618134i \(0.787889\pi\)
\(654\) −10.2056 1.04888i −0.399069 0.0410143i
\(655\) 0 0
\(656\) 19.2786 + 8.37133i 0.752703 + 0.326846i
\(657\) 6.00000i 0.234082i
\(658\) −3.55773 + 34.6167i −0.138695 + 1.34950i
\(659\) 21.1255i 0.822933i −0.911425 0.411466i \(-0.865017\pi\)
0.911425 0.411466i \(-0.134983\pi\)
\(660\) 0 0
\(661\) 10.9200i 0.424737i 0.977190 + 0.212368i \(0.0681177\pi\)
−0.977190 + 0.212368i \(0.931882\pi\)
\(662\) 38.2580 + 3.93197i 1.48694 + 0.152820i
\(663\) 0.822200i 0.0319316i
\(664\) 2.78389 8.77384i 0.108036 0.340491i
\(665\) 0 0
\(666\) −1.13249 + 11.0192i −0.0438833 + 0.426984i
\(667\) 11.2544 0.435773
\(668\) 4.38692 21.1169i 0.169735 0.817038i
\(669\) 7.21611i 0.278991i
\(670\) 0 0
\(671\) −77.0177 −2.97324
\(672\) −17.8867 10.0539i −0.689993 0.387838i
\(673\) 18.0000i 0.693849i 0.937893 + 0.346925i \(0.112774\pi\)
−0.937893 + 0.346925i \(0.887226\pi\)
\(674\) −32.1063 3.29973i −1.23669 0.127101i
\(675\) 0 0
\(676\) 24.8015 + 5.15238i 0.953904 + 0.198168i
\(677\) 30.4877 1.17174 0.585869 0.810406i \(-0.300753\pi\)
0.585869 + 0.810406i \(0.300753\pi\)
\(678\) 12.7839 + 1.31386i 0.490962 + 0.0504587i
\(679\) 17.5678 0.674189
\(680\) 0 0
\(681\) 1.15667 0.0443239
\(682\) 22.5089 + 2.31335i 0.861908 + 0.0885827i
\(683\) 35.2544 1.34897 0.674487 0.738287i \(-0.264365\pi\)
0.674487 + 0.738287i \(0.264365\pi\)
\(684\) 2.28917 11.0192i 0.0875285 0.421328i
\(685\) 0 0
\(686\) 4.30330 + 0.442272i 0.164301 + 0.0168860i
\(687\) 14.0978i 0.537863i
\(688\) −26.6167 11.5577i −1.01475 0.440634i
\(689\) 1.15667 0.0440658
\(690\) 0 0
\(691\) 28.1361i 1.07035i 0.844742 + 0.535173i \(0.179754\pi\)
−0.844742 + 0.535173i \(0.820246\pi\)
\(692\) −26.7597 5.55918i −1.01725 0.211328i
\(693\) 22.5089 0.855041
\(694\) −3.42166 + 33.2927i −0.129885 + 1.26378i
\(695\) 0 0
\(696\) 5.39194 + 1.71083i 0.204381 + 0.0648489i
\(697\) 7.47002i 0.282947i
\(698\) −49.1255 5.04888i −1.85943 0.191103i
\(699\) 14.5783i 0.551403i
\(700\) 0 0
\(701\) 34.8222i 1.31522i 0.753360 + 0.657608i \(0.228432\pi\)
−0.753360 + 0.657608i \(0.771568\pi\)
\(702\) −0.0836184 + 0.813607i −0.00315597 + 0.0307076i
\(703\) 44.0766i 1.66238i
\(704\) 28.6222 40.5628i 1.07874 1.52877i
\(705\) 0 0
\(706\) −22.4111 2.30330i −0.843453 0.0866859i
\(707\) −7.25443 −0.272831
\(708\) −0.897225 + 4.31889i −0.0337198 + 0.162314i
\(709\) 7.58890i 0.285007i −0.989794 0.142504i \(-0.954485\pi\)
0.989794 0.142504i \(-0.0455152\pi\)
\(710\) 0 0
\(711\) −5.42166 −0.203328
\(712\) 11.3380 35.7336i 0.424911 1.33917i
\(713\) 14.5089i 0.543361i
\(714\) 0.745574 7.25443i 0.0279024 0.271490i
\(715\) 0 0
\(716\) 3.68111 17.7194i 0.137570 0.662206i
\(717\) 19.2544 0.719070
\(718\) 1.21611 11.8328i 0.0453849 0.441595i
\(719\) 3.66553 0.136701 0.0683505 0.997661i \(-0.478226\pi\)
0.0683505 + 0.997661i \(0.478226\pi\)
\(720\) 0 0
\(721\) −8.96117 −0.333731
\(722\) 1.83124 17.8179i 0.0681515 0.663114i
\(723\) 13.6655 0.508226
\(724\) −9.45998 + 45.5366i −0.351577 + 1.69235i
\(725\) 0 0
\(726\) −3.97735 + 38.6995i −0.147613 + 1.43627i
\(727\) 36.1149i 1.33943i −0.742619 0.669714i \(-0.766416\pi\)
0.742619 0.669714i \(-0.233584\pi\)
\(728\) 5.65548 + 1.79445i 0.209606 + 0.0665067i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 10.3133i 0.381453i
\(732\) −5.04888 + 24.3033i −0.186612 + 0.898276i
\(733\) 34.0071 1.25608 0.628041 0.778180i \(-0.283857\pi\)
0.628041 + 0.778180i \(0.283857\pi\)
\(734\) 34.3955 + 3.53500i 1.26956 + 0.130479i
\(735\) 0 0
\(736\) −27.7491 15.5975i −1.02285 0.574931i
\(737\) 24.8222i 0.914338i
\(738\) −0.759707 + 7.39194i −0.0279652 + 0.272101i
\(739\) 52.0172i 1.91348i −0.290939 0.956742i \(-0.593968\pi\)
0.290939 0.956742i \(-0.406032\pi\)
\(740\) 0 0
\(741\) 3.25443i 0.119554i
\(742\) −10.2056 1.04888i −0.374658 0.0385054i
\(743\) 23.3139i 0.855303i 0.903944 + 0.427651i \(0.140659\pi\)
−0.903944 + 0.427651i \(0.859341\pi\)
\(744\) 2.20555 6.95112i 0.0808594 0.254841i
\(745\) 0 0
\(746\) 0.0241798 0.235269i 0.000885286 0.00861383i
\(747\) 3.25443 0.119073
\(748\) 17.2756 + 3.58890i 0.631657 + 0.131223i
\(749\) 51.1355i 1.86845i
\(750\) 0 0
\(751\) 11.1083 0.405348 0.202674 0.979246i \(-0.435037\pi\)
0.202674 + 0.979246i \(0.435037\pi\)
\(752\) −10.8081 + 24.8902i −0.394130 + 0.907653i
\(753\) 7.14663i 0.260438i
\(754\) −1.62721 0.167237i −0.0592596 0.00609041i
\(755\) 0 0
\(756\) 1.47556 7.10278i 0.0536657 0.258325i
\(757\) −13.3239 −0.484266 −0.242133 0.970243i \(-0.577847\pi\)
−0.242133 + 0.970243i \(0.577847\pi\)
\(758\) 10.8675 + 1.11691i 0.394726 + 0.0405679i
\(759\) 34.9200 1.26751
\(760\) 0 0
\(761\) −17.1355 −0.621163 −0.310582 0.950547i \(-0.600524\pi\)
−0.310582 + 0.950547i \(0.600524\pi\)
\(762\) −14.7300 1.51388i −0.533611 0.0548419i
\(763\) −26.3133 −0.952607
\(764\) 15.6655 + 3.25443i 0.566759 + 0.117741i
\(765\) 0 0
\(766\) −2.28917 0.235269i −0.0827110 0.00850063i
\(767\) 1.27555i 0.0460575i
\(768\) −10.9234 11.6909i −0.394166 0.421861i
\(769\) −5.47002 −0.197254 −0.0986270 0.995124i \(-0.531445\pi\)
−0.0986270 + 0.995124i \(0.531445\pi\)
\(770\) 0 0
\(771\) 7.73501i 0.278570i
\(772\) −10.4408 + 50.2580i −0.375773 + 1.80882i
\(773\) −3.15667 −0.113538 −0.0567688 0.998387i \(-0.518080\pi\)
−0.0567688 + 0.998387i \(0.518080\pi\)
\(774\) 1.04888 10.2056i 0.0377011 0.366831i
\(775\) 0 0
\(776\) 13.0575 + 4.14306i 0.468736 + 0.148727i
\(777\) 28.4111i 1.01924i
\(778\) 17.3225 + 1.78032i 0.621040 + 0.0638274i
\(779\) 29.5678i 1.05938i
\(780\) 0 0
\(781\) 52.1955i 1.86770i
\(782\) 1.15667 11.2544i 0.0413626 0.402457i
\(783\) 2.00000i 0.0714742i
\(784\) −22.5890 9.80879i −0.806749 0.350314i
\(785\) 0 0
\(786\) −18.9355 1.94610i −0.675408 0.0694151i
\(787\) −31.1355 −1.10986 −0.554931 0.831896i \(-0.687255\pi\)
−0.554931 + 0.831896i \(0.687255\pi\)
\(788\) 29.6797 + 6.16578i 1.05729 + 0.219647i
\(789\) 18.7839i 0.668724i
\(790\) 0 0
\(791\)