Properties

Label 600.2.b.c
Level 600
Weight 2
Character orbit 600.b
Analytic conductor 4.791
Analytic rank 0
Dimension 4
CM discriminant -15
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 600.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} + ( \beta_{1} - \beta_{2} ) q^{3} + \beta_{3} q^{4} + ( -2 + \beta_{3} ) q^{6} + ( 2 \beta_{1} - \beta_{2} ) q^{8} -3 q^{9} +O(q^{10})\) \( q -\beta_{2} q^{2} + ( \beta_{1} - \beta_{2} ) q^{3} + \beta_{3} q^{4} + ( -2 + \beta_{3} ) q^{6} + ( 2 \beta_{1} - \beta_{2} ) q^{8} -3 q^{9} + ( 2 \beta_{1} + \beta_{2} ) q^{12} + ( -4 + \beta_{3} ) q^{16} + ( 4 \beta_{1} - 4 \beta_{2} ) q^{17} + 3 \beta_{2} q^{18} -4 q^{19} + ( -4 \beta_{1} - 4 \beta_{2} ) q^{23} + ( -4 - \beta_{3} ) q^{24} + ( -3 \beta_{1} + 3 \beta_{2} ) q^{27} + ( 2 - 4 \beta_{3} ) q^{31} + ( 2 \beta_{1} + 3 \beta_{2} ) q^{32} + ( -8 + 4 \beta_{3} ) q^{34} -3 \beta_{3} q^{36} + 4 \beta_{2} q^{38} + ( 8 + 4 \beta_{3} ) q^{46} + ( -4 \beta_{1} - 4 \beta_{2} ) q^{47} + ( -2 \beta_{1} + 5 \beta_{2} ) q^{48} + 7 q^{49} -12 q^{51} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{53} + ( 6 - 3 \beta_{3} ) q^{54} + ( -4 \beta_{1} + 4 \beta_{2} ) q^{57} + ( -4 + 8 \beta_{3} ) q^{61} + ( -8 \beta_{1} + 2 \beta_{2} ) q^{62} + ( -4 - 3 \beta_{3} ) q^{64} + ( 8 \beta_{1} + 4 \beta_{2} ) q^{68} + ( -4 + 8 \beta_{3} ) q^{69} + ( -6 \beta_{1} + 3 \beta_{2} ) q^{72} -4 \beta_{3} q^{76} + ( 2 - 4 \beta_{3} ) q^{79} + 9 q^{81} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{83} + ( 8 \beta_{1} - 12 \beta_{2} ) q^{92} + ( -6 \beta_{1} - 6 \beta_{2} ) q^{93} + ( 8 + 4 \beta_{3} ) q^{94} + ( 4 - 5 \beta_{3} ) q^{96} -7 \beta_{2} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 6q^{6} - 12q^{9} + O(q^{10}) \) \( 4q + 2q^{4} - 6q^{6} - 12q^{9} - 14q^{16} - 16q^{19} - 18q^{24} - 24q^{34} - 6q^{36} + 40q^{46} + 28q^{49} - 48q^{51} + 18q^{54} - 22q^{64} - 8q^{76} + 36q^{81} + 40q^{94} + 6q^{96} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} + 2 x^{2} + x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} - \nu + 1 \)
\(\beta_{2}\)\(=\)\( \nu^{3} - \nu^{2} + \nu + 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} + 3 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} - \beta_{2}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} - \beta_{2} + 2 \beta_{1} - 2\)\()/2\)
\(\nu^{3}\)\(=\)\(\beta_{2} + \beta_{1} - 2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−0.309017 + 0.535233i
−0.309017 0.535233i
0.809017 1.40126i
0.809017 + 1.40126i
−1.11803 0.866025i 1.73205i 0.500000 + 1.93649i 0 −1.50000 + 1.93649i 0 1.11803 2.59808i −3.00000 0
251.2 −1.11803 + 0.866025i 1.73205i 0.500000 1.93649i 0 −1.50000 1.93649i 0 1.11803 + 2.59808i −3.00000 0
251.3 1.11803 0.866025i 1.73205i 0.500000 1.93649i 0 −1.50000 1.93649i 0 −1.11803 2.59808i −3.00000 0
251.4 1.11803 + 0.866025i 1.73205i 0.500000 + 1.93649i 0 −1.50000 + 1.93649i 0 −1.11803 + 2.59808i −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner
40.e odd 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.b.c 4
3.b odd 2 1 inner 600.2.b.c 4
4.b odd 2 1 2400.2.b.c 4
5.b even 2 1 inner 600.2.b.c 4
5.c odd 4 2 120.2.m.a 4
8.b even 2 1 2400.2.b.c 4
8.d odd 2 1 inner 600.2.b.c 4
12.b even 2 1 2400.2.b.c 4
15.d odd 2 1 CM 600.2.b.c 4
15.e even 4 2 120.2.m.a 4
20.d odd 2 1 2400.2.b.c 4
20.e even 4 2 480.2.m.a 4
24.f even 2 1 inner 600.2.b.c 4
24.h odd 2 1 2400.2.b.c 4
40.e odd 2 1 inner 600.2.b.c 4
40.f even 2 1 2400.2.b.c 4
40.i odd 4 2 480.2.m.a 4
40.k even 4 2 120.2.m.a 4
60.h even 2 1 2400.2.b.c 4
60.l odd 4 2 480.2.m.a 4
120.i odd 2 1 2400.2.b.c 4
120.m even 2 1 inner 600.2.b.c 4
120.q odd 4 2 120.2.m.a 4
120.w even 4 2 480.2.m.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.m.a 4 5.c odd 4 2
120.2.m.a 4 15.e even 4 2
120.2.m.a 4 40.k even 4 2
120.2.m.a 4 120.q odd 4 2
480.2.m.a 4 20.e even 4 2
480.2.m.a 4 40.i odd 4 2
480.2.m.a 4 60.l odd 4 2
480.2.m.a 4 120.w even 4 2
600.2.b.c 4 1.a even 1 1 trivial
600.2.b.c 4 3.b odd 2 1 inner
600.2.b.c 4 5.b even 2 1 inner
600.2.b.c 4 8.d odd 2 1 inner
600.2.b.c 4 15.d odd 2 1 CM
600.2.b.c 4 24.f even 2 1 inner
600.2.b.c 4 40.e odd 2 1 inner
600.2.b.c 4 120.m even 2 1 inner
2400.2.b.c 4 4.b odd 2 1
2400.2.b.c 4 8.b even 2 1
2400.2.b.c 4 12.b even 2 1
2400.2.b.c 4 20.d odd 2 1
2400.2.b.c 4 24.h odd 2 1
2400.2.b.c 4 40.f even 2 1
2400.2.b.c 4 60.h even 2 1
2400.2.b.c 4 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(600, [\chi])\):

\( T_{7} \)
\( T_{11} \)
\( T_{23}^{2} - 80 \)
\( T_{43} \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + 4 T^{4} \)
$3$ \( ( 1 + 3 T^{2} )^{2} \)
$5$ 1
$7$ \( ( 1 - 7 T^{2} )^{4} \)
$11$ \( ( 1 - 11 T^{2} )^{4} \)
$13$ \( ( 1 - 13 T^{2} )^{4} \)
$17$ \( ( 1 + 14 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 + 4 T + 19 T^{2} )^{4} \)
$23$ \( ( 1 - 34 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 + 29 T^{2} )^{4} \)
$31$ \( ( 1 - 8 T + 31 T^{2} )^{2}( 1 + 8 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 37 T^{2} )^{4} \)
$41$ \( ( 1 - 41 T^{2} )^{4} \)
$43$ \( ( 1 + 43 T^{2} )^{4} \)
$47$ \( ( 1 + 14 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 + 86 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 - 59 T^{2} )^{4} \)
$61$ \( ( 1 - 2 T + 61 T^{2} )^{2}( 1 + 2 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 + 67 T^{2} )^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{4} \)
$73$ \( ( 1 + 73 T^{2} )^{4} \)
$79$ \( ( 1 - 16 T + 79 T^{2} )^{2}( 1 + 16 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 - 154 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 - 89 T^{2} )^{4} \)
$97$ \( ( 1 + 97 T^{2} )^{4} \)
show more
show less