# Properties

 Label 600.2.a.g Level $600$ Weight $2$ Character orbit 600.a Self dual yes Analytic conductor $4.791$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$600 = 2^{3} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 600.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$4.79102412128$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} - 2q^{7} + q^{9} + O(q^{10})$$ $$q + q^{3} - 2q^{7} + q^{9} + 2q^{11} + 2q^{13} + 6q^{17} + 8q^{19} - 2q^{21} - 4q^{23} + q^{27} + 8q^{29} + 2q^{33} - 10q^{37} + 2q^{39} + 2q^{41} - 12q^{43} - 3q^{49} + 6q^{51} + 10q^{53} + 8q^{57} - 6q^{59} + 2q^{61} - 2q^{63} - 8q^{67} - 4q^{69} - 4q^{71} + 4q^{73} - 4q^{77} - 8q^{79} + q^{81} + 4q^{83} + 8q^{87} + 6q^{89} - 4q^{91} + 8q^{97} + 2q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 −2.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.a.g 1
3.b odd 2 1 1800.2.a.g 1
4.b odd 2 1 1200.2.a.h 1
5.b even 2 1 600.2.a.d 1
5.c odd 4 2 120.2.f.a 2
8.b even 2 1 4800.2.a.k 1
8.d odd 2 1 4800.2.a.ci 1
12.b even 2 1 3600.2.a.bi 1
15.d odd 2 1 1800.2.a.q 1
15.e even 4 2 360.2.f.a 2
20.d odd 2 1 1200.2.a.l 1
20.e even 4 2 240.2.f.c 2
40.e odd 2 1 4800.2.a.n 1
40.f even 2 1 4800.2.a.ch 1
40.i odd 4 2 960.2.f.a 2
40.k even 4 2 960.2.f.b 2
60.h even 2 1 3600.2.a.n 1
60.l odd 4 2 720.2.f.b 2
80.i odd 4 2 3840.2.d.d 2
80.j even 4 2 3840.2.d.m 2
80.s even 4 2 3840.2.d.v 2
80.t odd 4 2 3840.2.d.ba 2
120.q odd 4 2 2880.2.f.r 2
120.w even 4 2 2880.2.f.t 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.f.a 2 5.c odd 4 2
240.2.f.c 2 20.e even 4 2
360.2.f.a 2 15.e even 4 2
600.2.a.d 1 5.b even 2 1
600.2.a.g 1 1.a even 1 1 trivial
720.2.f.b 2 60.l odd 4 2
960.2.f.a 2 40.i odd 4 2
960.2.f.b 2 40.k even 4 2
1200.2.a.h 1 4.b odd 2 1
1200.2.a.l 1 20.d odd 2 1
1800.2.a.g 1 3.b odd 2 1
1800.2.a.q 1 15.d odd 2 1
2880.2.f.r 2 120.q odd 4 2
2880.2.f.t 2 120.w even 4 2
3600.2.a.n 1 60.h even 2 1
3600.2.a.bi 1 12.b even 2 1
3840.2.d.d 2 80.i odd 4 2
3840.2.d.m 2 80.j even 4 2
3840.2.d.v 2 80.s even 4 2
3840.2.d.ba 2 80.t odd 4 2
4800.2.a.k 1 8.b even 2 1
4800.2.a.n 1 40.e odd 2 1
4800.2.a.ch 1 40.f even 2 1
4800.2.a.ci 1 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(600))$$:

 $$T_{7} + 2$$ $$T_{11} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$2 + T$$
$11$ $$-2 + T$$
$13$ $$-2 + T$$
$17$ $$-6 + T$$
$19$ $$-8 + T$$
$23$ $$4 + T$$
$29$ $$-8 + T$$
$31$ $$T$$
$37$ $$10 + T$$
$41$ $$-2 + T$$
$43$ $$12 + T$$
$47$ $$T$$
$53$ $$-10 + T$$
$59$ $$6 + T$$
$61$ $$-2 + T$$
$67$ $$8 + T$$
$71$ $$4 + T$$
$73$ $$-4 + T$$
$79$ $$8 + T$$
$83$ $$-4 + T$$
$89$ $$-6 + T$$
$97$ $$-8 + T$$