Properties

Label 600.1.bj.a
Level $600$
Weight $1$
Character orbit 600.bj
Analytic conductor $0.299$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,1,Mod(221,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.221"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 5, 6])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 600.bj (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.299439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.225000000.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{10} q^{2} + \zeta_{10}^{2} q^{3} + \zeta_{10}^{2} q^{4} - \zeta_{10} q^{5} - \zeta_{10}^{3} q^{6} + ( - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{7} - \zeta_{10}^{3} q^{8} + \zeta_{10}^{4} q^{9} + \zeta_{10}^{2} q^{10} + \cdots + (\zeta_{10}^{4} - \zeta_{10}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 2 q^{7} - q^{8} - q^{9} - q^{10} + 3 q^{11} - q^{12} - 2 q^{14} - q^{15} - q^{16} + 4 q^{18} - q^{20} + 3 q^{21} - 2 q^{22} + 4 q^{24} - q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(\zeta_{10}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
221.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0.309017 0.951057i −0.809017 0.587785i −0.809017 0.587785i 0.309017 0.951057i −0.809017 + 0.587785i −1.61803 −0.809017 + 0.587785i 0.309017 + 0.951057i −0.809017 0.587785i
341.1 −0.809017 0.587785i 0.309017 + 0.951057i 0.309017 + 0.951057i −0.809017 0.587785i 0.309017 0.951057i 0.618034 0.309017 0.951057i −0.809017 + 0.587785i 0.309017 + 0.951057i
461.1 −0.809017 + 0.587785i 0.309017 0.951057i 0.309017 0.951057i −0.809017 + 0.587785i 0.309017 + 0.951057i 0.618034 0.309017 + 0.951057i −0.809017 0.587785i 0.309017 0.951057i
581.1 0.309017 + 0.951057i −0.809017 + 0.587785i −0.809017 + 0.587785i 0.309017 + 0.951057i −0.809017 0.587785i −1.61803 −0.809017 0.587785i 0.309017 0.951057i −0.809017 + 0.587785i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
25.d even 5 1 inner
600.bj odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.1.bj.a 4
3.b odd 2 1 600.1.bj.b yes 4
4.b odd 2 1 2400.1.cp.b 4
5.b even 2 1 3000.1.bj.b 4
5.c odd 4 2 3000.1.z.b 8
8.b even 2 1 600.1.bj.b yes 4
8.d odd 2 1 2400.1.cp.a 4
12.b even 2 1 2400.1.cp.a 4
15.d odd 2 1 3000.1.bj.a 4
15.e even 4 2 3000.1.z.a 8
24.f even 2 1 2400.1.cp.b 4
24.h odd 2 1 CM 600.1.bj.a 4
25.d even 5 1 inner 600.1.bj.a 4
25.e even 10 1 3000.1.bj.b 4
25.f odd 20 2 3000.1.z.b 8
40.f even 2 1 3000.1.bj.a 4
40.i odd 4 2 3000.1.z.a 8
75.h odd 10 1 3000.1.bj.a 4
75.j odd 10 1 600.1.bj.b yes 4
75.l even 20 2 3000.1.z.a 8
100.j odd 10 1 2400.1.cp.b 4
120.i odd 2 1 3000.1.bj.b 4
120.w even 4 2 3000.1.z.b 8
200.n odd 10 1 2400.1.cp.a 4
200.o even 10 1 3000.1.bj.a 4
200.t even 10 1 600.1.bj.b yes 4
200.x odd 20 2 3000.1.z.a 8
300.n even 10 1 2400.1.cp.a 4
600.z odd 10 1 3000.1.bj.b 4
600.bg even 10 1 2400.1.cp.b 4
600.bj odd 10 1 inner 600.1.bj.a 4
600.bp even 20 2 3000.1.z.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.1.bj.a 4 1.a even 1 1 trivial
600.1.bj.a 4 24.h odd 2 1 CM
600.1.bj.a 4 25.d even 5 1 inner
600.1.bj.a 4 600.bj odd 10 1 inner
600.1.bj.b yes 4 3.b odd 2 1
600.1.bj.b yes 4 8.b even 2 1
600.1.bj.b yes 4 75.j odd 10 1
600.1.bj.b yes 4 200.t even 10 1
2400.1.cp.a 4 8.d odd 2 1
2400.1.cp.a 4 12.b even 2 1
2400.1.cp.a 4 200.n odd 10 1
2400.1.cp.a 4 300.n even 10 1
2400.1.cp.b 4 4.b odd 2 1
2400.1.cp.b 4 24.f even 2 1
2400.1.cp.b 4 100.j odd 10 1
2400.1.cp.b 4 600.bg even 10 1
3000.1.z.a 8 15.e even 4 2
3000.1.z.a 8 40.i odd 4 2
3000.1.z.a 8 75.l even 20 2
3000.1.z.a 8 200.x odd 20 2
3000.1.z.b 8 5.c odd 4 2
3000.1.z.b 8 25.f odd 20 2
3000.1.z.b 8 120.w even 4 2
3000.1.z.b 8 600.bp even 20 2
3000.1.bj.a 4 15.d odd 2 1
3000.1.bj.a 4 40.f even 2 1
3000.1.bj.a 4 75.h odd 10 1
3000.1.bj.a 4 200.o even 10 1
3000.1.bj.b 4 5.b even 2 1
3000.1.bj.b 4 25.e even 10 1
3000.1.bj.b 4 120.i odd 2 1
3000.1.bj.b 4 600.z odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} - 3T_{11}^{3} + 4T_{11}^{2} - 2T_{11} + 1 \) acting on \(S_{1}^{\mathrm{new}}(600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less