Properties

Label 60.7.c
Level $60$
Weight $7$
Character orbit 60.c
Rep. character $\chi_{60}(31,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 60.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(60, [\chi])\).

Total New Old
Modular forms 76 24 52
Cusp forms 68 24 44
Eisenstein series 8 0 8

Trace form

\( 24q + 20q^{2} - 246q^{4} + 162q^{6} - 340q^{8} - 5832q^{9} + O(q^{10}) \) \( 24q + 20q^{2} - 246q^{4} + 162q^{6} - 340q^{8} - 5832q^{9} - 750q^{10} + 5040q^{13} - 2596q^{14} + 4194q^{16} - 4860q^{18} + 7000q^{20} + 19440q^{21} + 45780q^{22} + 24786q^{24} + 75000q^{25} + 75852q^{26} + 54300q^{28} + 132800q^{29} - 10700q^{32} - 173484q^{34} + 59778q^{36} - 69840q^{37} + 215800q^{38} - 14250q^{40} - 70448q^{41} - 189540q^{42} - 395668q^{44} - 158760q^{46} + 252720q^{48} - 642984q^{49} + 62500q^{50} - 210240q^{52} - 644320q^{53} - 39366q^{54} - 917708q^{56} + 408240q^{57} - 1345020q^{58} + 222750q^{60} - 222864q^{61} + 1948520q^{62} + 935922q^{64} + 266000q^{65} - 640548q^{66} + 572680q^{68} - 541728q^{69} + 220500q^{70} + 82620q^{72} + 771120q^{73} - 589164q^{74} - 191544q^{76} + 1383840q^{77} - 693360q^{78} - 946000q^{80} + 1417176q^{81} + 2672520q^{82} + 1256796q^{84} - 372000q^{85} + 1781528q^{86} + 956940q^{88} - 1566224q^{89} + 182250q^{90} - 3040560q^{92} + 1496880q^{93} - 3788352q^{94} - 413262q^{96} - 1666800q^{97} - 2709660q^{98} + O(q^{100}) \)

Decomposition of \(S_{7}^{\mathrm{new}}(60, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
60.7.c.a \(24\) \(13.803\) None \(20\) \(0\) \(0\) \(0\)

Decomposition of \(S_{7}^{\mathrm{old}}(60, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(60, [\chi]) \cong \) \(S_{7}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)