Properties

Label 60.4.a.a
Level $60$
Weight $4$
Character orbit 60.a
Self dual yes
Analytic conductor $3.540$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,4,Mod(1,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 60.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.54011460034\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} - 5 q^{5} - 28 q^{7} + 9 q^{9} - 24 q^{11} - 70 q^{13} + 15 q^{15} + 102 q^{17} + 20 q^{19} + 84 q^{21} - 72 q^{23} + 25 q^{25} - 27 q^{27} + 306 q^{29} - 136 q^{31} + 72 q^{33} + 140 q^{35}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 −5.00000 0 −28.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 60.4.a.a 1
3.b odd 2 1 180.4.a.d 1
4.b odd 2 1 240.4.a.i 1
5.b even 2 1 300.4.a.i 1
5.c odd 4 2 300.4.d.b 2
8.b even 2 1 960.4.a.bc 1
8.d odd 2 1 960.4.a.r 1
9.c even 3 2 1620.4.i.l 2
9.d odd 6 2 1620.4.i.f 2
12.b even 2 1 720.4.a.bb 1
15.d odd 2 1 900.4.a.q 1
15.e even 4 2 900.4.d.h 2
20.d odd 2 1 1200.4.a.a 1
20.e even 4 2 1200.4.f.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.4.a.a 1 1.a even 1 1 trivial
180.4.a.d 1 3.b odd 2 1
240.4.a.i 1 4.b odd 2 1
300.4.a.i 1 5.b even 2 1
300.4.d.b 2 5.c odd 4 2
720.4.a.bb 1 12.b even 2 1
900.4.a.q 1 15.d odd 2 1
900.4.d.h 2 15.e even 4 2
960.4.a.r 1 8.d odd 2 1
960.4.a.bc 1 8.b even 2 1
1200.4.a.a 1 20.d odd 2 1
1200.4.f.n 2 20.e even 4 2
1620.4.i.f 2 9.d odd 6 2
1620.4.i.l 2 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 28 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(60))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 28 \) Copy content Toggle raw display
$11$ \( T + 24 \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T - 102 \) Copy content Toggle raw display
$19$ \( T - 20 \) Copy content Toggle raw display
$23$ \( T + 72 \) Copy content Toggle raw display
$29$ \( T - 306 \) Copy content Toggle raw display
$31$ \( T + 136 \) Copy content Toggle raw display
$37$ \( T + 214 \) Copy content Toggle raw display
$41$ \( T + 150 \) Copy content Toggle raw display
$43$ \( T + 292 \) Copy content Toggle raw display
$47$ \( T + 72 \) Copy content Toggle raw display
$53$ \( T + 414 \) Copy content Toggle raw display
$59$ \( T + 744 \) Copy content Toggle raw display
$61$ \( T + 418 \) Copy content Toggle raw display
$67$ \( T - 188 \) Copy content Toggle raw display
$71$ \( T - 480 \) Copy content Toggle raw display
$73$ \( T - 434 \) Copy content Toggle raw display
$79$ \( T - 1352 \) Copy content Toggle raw display
$83$ \( T + 612 \) Copy content Toggle raw display
$89$ \( T + 30 \) Copy content Toggle raw display
$97$ \( T + 286 \) Copy content Toggle raw display
show more
show less