Properties

Label 60.4
Level 60
Weight 4
Dimension 108
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 768
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(768\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(60))\).

Total New Old
Modular forms 328 116 212
Cusp forms 248 108 140
Eisenstein series 80 8 72

Trace form

\( 108 q - 10 q^{3} + 8 q^{4} - 20 q^{5} + 32 q^{6} + 16 q^{7} + 84 q^{8} + 16 q^{9} + 60 q^{10} - 16 q^{11} - 164 q^{12} - 76 q^{13} + 50 q^{15} + 64 q^{16} + 284 q^{17} + 256 q^{18} + 400 q^{19} - 380 q^{20}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
60.4.a \(\chi_{60}(1, \cdot)\) 60.4.a.a 1 1
60.4.a.b 1
60.4.d \(\chi_{60}(49, \cdot)\) 60.4.d.a 2 1
60.4.e \(\chi_{60}(11, \cdot)\) 60.4.e.a 24 1
60.4.h \(\chi_{60}(59, \cdot)\) 60.4.h.a 4 1
60.4.h.b 4
60.4.h.c 24
60.4.i \(\chi_{60}(17, \cdot)\) 60.4.i.a 4 2
60.4.i.b 8
60.4.j \(\chi_{60}(7, \cdot)\) 60.4.j.a 8 2
60.4.j.b 28

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(60))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(60)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 1}\)