Properties

Label 60.3.k
Level $60$
Weight $3$
Character orbit 60.k
Rep. character $\chi_{60}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 60.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(60, [\chi])\).

Total New Old
Modular forms 60 4 56
Cusp forms 36 4 32
Eisenstein series 24 0 24

Trace form

\( 4 q + 12 q^{5} + 20 q^{7} - 16 q^{11} - 24 q^{15} - 40 q^{17} - 24 q^{21} - 40 q^{23} - 16 q^{25} + 16 q^{31} + 60 q^{33} + 56 q^{35} + 200 q^{41} + 120 q^{43} - 12 q^{45} - 24 q^{51} - 200 q^{53} - 108 q^{55}+ \cdots + 300 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(60, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
60.3.k.a 60.k 5.c $4$ $1.635$ \(\Q(i, \sqrt{6})\) None 60.3.k.a \(0\) \(0\) \(12\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{3}+(3+\beta _{1}+\beta _{2}+2\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(60, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)