Defining parameters
| Level: | \( N \) | \(=\) | \( 60 = 2^{2} \cdot 3 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 60.k (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(60, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 60 | 4 | 56 |
| Cusp forms | 36 | 4 | 32 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(60, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 60.3.k.a | $4$ | $1.635$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(12\) | \(20\) | \(q+\beta _{1}q^{3}+(3+\beta _{1}+\beta _{2}+2\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(60, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)