Defining parameters
Level: | \( N \) | \(=\) | \( 60 = 2^{2} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 60.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(60, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 12 | 20 |
Cusp forms | 16 | 12 | 4 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(60, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
60.2.j.a | $12$ | $0.479$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{6}q^{2}-\beta _{2}q^{3}+(\beta _{2}+\beta _{4}-\beta _{7})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(60, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)