Properties

Label 60.2.j
Level $60$
Weight $2$
Character orbit 60.j
Rep. character $\chi_{60}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 60.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(60, [\chi])\).

Total New Old
Modular forms 32 12 20
Cusp forms 16 12 4
Eisenstein series 16 0 16

Trace form

\( 12 q - 4 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{16} - 20 q^{17} + 20 q^{20} + 12 q^{22} - 20 q^{25} + 16 q^{26} - 4 q^{28} + 8 q^{30} + 20 q^{32} + 8 q^{33} + 4 q^{36} + 4 q^{37} + 16 q^{38}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(60, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
60.2.j.a 60.j 20.e $12$ $0.479$ 12.0.\(\cdots\).1 None 60.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}-\beta _{2}q^{3}+(\beta _{2}+\beta _{4}-\beta _{7})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(60, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)