Defining parameters
Level: | \( N \) | \(=\) | \( 60 = 2^{2} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 60.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 60 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(60, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 16 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(60, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
60.2.h.a | $4$ | $0.479$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}-\beta _{1}q^{3}-2q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{6}+\cdots\) |
60.2.h.b | $4$ | $0.479$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Q(\sqrt{-15}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+\beta _{3}q^{4}+\cdots\) |