Defining parameters
Level: | \( N \) | \(=\) | \( 60 = 2^{2} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 60.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(60, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 2 | 16 |
Cusp forms | 6 | 2 | 4 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(60, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
60.2.d.a | $2$ | $0.479$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+i q^{3}+(2 i+1)q^{5}-4 i q^{7}-q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(60, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)