Properties

Label 6.4
Level 6
Weight 4
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 8
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6\( 6 = 2 \cdot 3 \) \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(6))\).

Total New Old
Modular forms 5 1 4
Cusp forms 1 1 0
Eisenstein series 4 0 4

Trace form

\( q - 2q^{2} - 3q^{3} + 4q^{4} + 6q^{5} + 6q^{6} - 16q^{7} - 8q^{8} + 9q^{9} + O(q^{10}) \) \( q - 2q^{2} - 3q^{3} + 4q^{4} + 6q^{5} + 6q^{6} - 16q^{7} - 8q^{8} + 9q^{9} - 12q^{10} + 12q^{11} - 12q^{12} + 38q^{13} + 32q^{14} - 18q^{15} + 16q^{16} - 126q^{17} - 18q^{18} + 20q^{19} + 24q^{20} + 48q^{21} - 24q^{22} + 168q^{23} + 24q^{24} - 89q^{25} - 76q^{26} - 27q^{27} - 64q^{28} + 30q^{29} + 36q^{30} - 88q^{31} - 32q^{32} - 36q^{33} + 252q^{34} - 96q^{35} + 36q^{36} + 254q^{37} - 40q^{38} - 114q^{39} - 48q^{40} + 42q^{41} - 96q^{42} - 52q^{43} + 48q^{44} + 54q^{45} - 336q^{46} - 96q^{47} - 48q^{48} - 87q^{49} + 178q^{50} + 378q^{51} + 152q^{52} + 198q^{53} + 54q^{54} + 72q^{55} + 128q^{56} - 60q^{57} - 60q^{58} - 660q^{59} - 72q^{60} - 538q^{61} + 176q^{62} - 144q^{63} + 64q^{64} + 228q^{65} + 72q^{66} + 884q^{67} - 504q^{68} - 504q^{69} + 192q^{70} + 792q^{71} - 72q^{72} + 218q^{73} - 508q^{74} + 267q^{75} + 80q^{76} - 192q^{77} + 228q^{78} - 520q^{79} + 96q^{80} + 81q^{81} - 84q^{82} - 492q^{83} + 192q^{84} - 756q^{85} + 104q^{86} - 90q^{87} - 96q^{88} + 810q^{89} - 108q^{90} - 608q^{91} + 672q^{92} + 264q^{93} + 192q^{94} + 120q^{95} + 96q^{96} + 1154q^{97} + 174q^{98} + 108q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.4.a \(\chi_{6}(1, \cdot)\) 6.4.a.a 1 1

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T \)
$3$ \( 1 + 3 T \)
$5$ \( 1 - 6 T + 125 T^{2} \)
$7$ \( 1 + 16 T + 343 T^{2} \)
$11$ \( 1 - 12 T + 1331 T^{2} \)
$13$ \( 1 - 38 T + 2197 T^{2} \)
$17$ \( 1 + 126 T + 4913 T^{2} \)
$19$ \( 1 - 20 T + 6859 T^{2} \)
$23$ \( 1 - 168 T + 12167 T^{2} \)
$29$ \( 1 - 30 T + 24389 T^{2} \)
$31$ \( 1 + 88 T + 29791 T^{2} \)
$37$ \( 1 - 254 T + 50653 T^{2} \)
$41$ \( 1 - 42 T + 68921 T^{2} \)
$43$ \( 1 + 52 T + 79507 T^{2} \)
$47$ \( 1 + 96 T + 103823 T^{2} \)
$53$ \( 1 - 198 T + 148877 T^{2} \)
$59$ \( 1 + 660 T + 205379 T^{2} \)
$61$ \( 1 + 538 T + 226981 T^{2} \)
$67$ \( 1 - 884 T + 300763 T^{2} \)
$71$ \( 1 - 792 T + 357911 T^{2} \)
$73$ \( 1 - 218 T + 389017 T^{2} \)
$79$ \( 1 + 520 T + 493039 T^{2} \)
$83$ \( 1 + 492 T + 571787 T^{2} \)
$89$ \( 1 - 810 T + 704969 T^{2} \)
$97$ \( 1 - 1154 T + 912673 T^{2} \)
show more
show less