Properties

Label 6.29.b.a.5.9
Level $6$
Weight $29$
Character 6.5
Analytic conductor $29.801$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,29,Mod(5,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 29, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.5");
 
S:= CuspForms(chi, 29);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 29 \)
Character orbit: \([\chi]\) \(=\) 6.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8010845489\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{85}\cdot 3^{50}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5.9
Root \(-3.05333e8i\) of defining polynomial
Character \(\chi\) \(=\) 6.5
Dual form 6.29.b.a.5.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11585.2i q^{2} +(1.23098e6 + 4.62185e6i) q^{3} -1.34218e8 q^{4} -3.66400e9i q^{5} +(-5.35452e10 + 1.42612e10i) q^{6} +1.09838e12 q^{7} -1.55494e12i q^{8} +(-1.98462e13 + 1.13788e13i) q^{9} +O(q^{10})\) \(q+11585.2i q^{2} +(1.23098e6 + 4.62185e6i) q^{3} -1.34218e8 q^{4} -3.66400e9i q^{5} +(-5.35452e10 + 1.42612e10i) q^{6} +1.09838e12 q^{7} -1.55494e12i q^{8} +(-1.98462e13 + 1.13788e13i) q^{9} +4.24483e13 q^{10} +7.13577e14i q^{11} +(-1.65220e14 - 6.20334e14i) q^{12} -5.47598e15 q^{13} +1.27250e16i q^{14} +(1.69344e16 - 4.51032e15i) q^{15} +1.80144e16 q^{16} +1.36813e17i q^{17} +(-1.31827e17 - 2.29922e17i) q^{18} -1.19960e17 q^{19} +4.91773e17i q^{20} +(1.35208e18 + 5.07653e18i) q^{21} -8.26696e18 q^{22} -9.88762e18i q^{23} +(7.18671e18 - 1.91411e18i) q^{24} +2.38280e19 q^{25} -6.34406e19i q^{26} +(-7.70215e19 - 7.77187e19i) q^{27} -1.47422e20 q^{28} +7.51680e19i q^{29} +(5.22531e19 + 1.96189e20i) q^{30} -5.84712e20 q^{31} +2.08701e20i q^{32} +(-3.29804e21 + 8.78401e20i) q^{33} -1.58501e21 q^{34} -4.02445e21i q^{35} +(2.66371e21 - 1.52724e21i) q^{36} -1.46417e22 q^{37} -1.38976e21i q^{38} +(-6.74084e21 - 2.53092e22i) q^{39} -5.69731e21 q^{40} +3.27052e22i q^{41} +(-5.88128e22 + 1.56642e22i) q^{42} -5.08348e21 q^{43} -9.57747e22i q^{44} +(4.16920e22 + 7.27162e22i) q^{45} +1.14550e23 q^{46} +4.16191e22i q^{47} +(2.21754e22 + 8.32598e22i) q^{48} +7.46446e23 q^{49} +2.76054e23i q^{50} +(-6.32328e23 + 1.68414e23i) q^{51} +7.34974e23 q^{52} +3.94998e23i q^{53} +(9.00390e23 - 8.92313e23i) q^{54} +2.61454e24 q^{55} -1.70792e24i q^{56} +(-1.47668e23 - 5.54435e23i) q^{57} -8.70839e23 q^{58} +3.88384e24i q^{59} +(-2.27290e24 + 6.05365e23i) q^{60} -3.03902e24 q^{61} -6.77403e24i q^{62} +(-2.17986e25 + 1.24983e25i) q^{63} -2.41785e24 q^{64} +2.00640e25i q^{65} +(-1.01765e25 - 3.82086e25i) q^{66} -4.60298e25 q^{67} -1.83627e25i q^{68} +(4.56991e25 - 1.21715e25i) q^{69} +4.66242e25 q^{70} -4.64902e25i q^{71} +(1.76935e25 + 3.08597e25i) q^{72} -9.93420e25 q^{73} -1.69628e26i q^{74} +(2.93319e25 + 1.10130e26i) q^{75} +1.61007e25 q^{76} +7.83776e26i q^{77} +(2.93213e26 - 7.80943e25i) q^{78} +4.12927e26 q^{79} -6.60047e25i q^{80} +(2.64392e26 - 4.51652e26i) q^{81} -3.78897e26 q^{82} +6.50901e25i q^{83} +(-1.81474e26 - 6.81361e26i) q^{84} +5.01282e26 q^{85} -5.88933e25i q^{86} +(-3.47415e26 + 9.25305e25i) q^{87} +1.10957e27 q^{88} +3.06844e25i q^{89} +(-8.42435e26 + 4.83012e26i) q^{90} -6.01469e27 q^{91} +1.32709e27i q^{92} +(-7.19771e26 - 2.70245e27i) q^{93} -4.82167e26 q^{94} +4.39531e26i q^{95} +(-9.64585e26 + 2.56908e26i) q^{96} +5.86519e27 q^{97} +8.64775e27i q^{98} +(-8.11967e27 - 1.41618e28i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9} - 27967405817856 q^{10} + 11\!\cdots\!48 q^{12}+ \cdots - 23\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11585.2i 0.707107i
\(3\) 1.23098e6 + 4.62185e6i 0.257368 + 0.966313i
\(4\) −1.34218e8 −0.500000
\(5\) 3.66400e9i 0.600309i −0.953891 0.300154i \(-0.902962\pi\)
0.953891 0.300154i \(-0.0970382\pi\)
\(6\) −5.35452e10 + 1.42612e10i −0.683287 + 0.181987i
\(7\) 1.09838e12 1.61949 0.809746 0.586780i \(-0.199605\pi\)
0.809746 + 0.586780i \(0.199605\pi\)
\(8\) 1.55494e12i 0.353553i
\(9\) −1.98462e13 + 1.13788e13i −0.867523 + 0.497396i
\(10\) 4.24483e13 0.424483
\(11\) 7.13577e14i 1.87907i 0.342452 + 0.939535i \(0.388743\pi\)
−0.342452 + 0.939535i \(0.611257\pi\)
\(12\) −1.65220e14 6.20334e14i −0.128684 0.483157i
\(13\) −5.47598e15 −1.39077 −0.695385 0.718638i \(-0.744766\pi\)
−0.695385 + 0.718638i \(0.744766\pi\)
\(14\) 1.27250e16i 1.14515i
\(15\) 1.69344e16 4.51032e15i 0.580087 0.154500i
\(16\) 1.80144e16 0.250000
\(17\) 1.36813e17i 0.812535i 0.913754 + 0.406267i \(0.133170\pi\)
−0.913754 + 0.406267i \(0.866830\pi\)
\(18\) −1.31827e17 2.29922e17i −0.351712 0.613432i
\(19\) −1.19960e17 −0.150136 −0.0750679 0.997178i \(-0.523917\pi\)
−0.0750679 + 0.997178i \(0.523917\pi\)
\(20\) 4.91773e17i 0.300154i
\(21\) 1.35208e18 + 5.07653e18i 0.416806 + 1.56494i
\(22\) −8.26696e18 −1.32870
\(23\) 9.88762e18i 0.852908i −0.904509 0.426454i \(-0.859763\pi\)
0.904509 0.426454i \(-0.140237\pi\)
\(24\) 7.18671e18 1.91411e18i 0.341643 0.0909933i
\(25\) 2.38280e19 0.639629
\(26\) 6.34406e19i 0.983423i
\(27\) −7.70215e19 7.77187e19i −0.703914 0.710286i
\(28\) −1.47422e20 −0.809746
\(29\) 7.51680e19i 0.252616i 0.991991 + 0.126308i \(0.0403128\pi\)
−0.991991 + 0.126308i \(0.959687\pi\)
\(30\) 5.22531e19 + 1.96189e20i 0.109248 + 0.410183i
\(31\) −5.84712e20 −0.772465 −0.386232 0.922402i \(-0.626224\pi\)
−0.386232 + 0.922402i \(0.626224\pi\)
\(32\) 2.08701e20i 0.176777i
\(33\) −3.29804e21 + 8.78401e20i −1.81577 + 0.483613i
\(34\) −1.58501e21 −0.574549
\(35\) 4.02445e21i 0.972196i
\(36\) 2.66371e21 1.52724e21i 0.433762 0.248698i
\(37\) −1.46417e22 −1.62468 −0.812341 0.583183i \(-0.801807\pi\)
−0.812341 + 0.583183i \(0.801807\pi\)
\(38\) 1.38976e21i 0.106162i
\(39\) −6.74084e21 2.53092e22i −0.357940 1.34392i
\(40\) −5.69731e21 −0.212241
\(41\) 3.27052e22i 0.862269i 0.902288 + 0.431134i \(0.141887\pi\)
−0.902288 + 0.431134i \(0.858113\pi\)
\(42\) −5.88128e22 + 1.56642e22i −1.10658 + 0.294726i
\(43\) −5.08348e21 −0.0688023 −0.0344011 0.999408i \(-0.510952\pi\)
−0.0344011 + 0.999408i \(0.510952\pi\)
\(44\) 9.57747e22i 0.939535i
\(45\) 4.16920e22 + 7.27162e22i 0.298592 + 0.520782i
\(46\) 1.14550e23 0.603097
\(47\) 4.16191e22i 0.162152i 0.996708 + 0.0810760i \(0.0258357\pi\)
−0.996708 + 0.0810760i \(0.974164\pi\)
\(48\) 2.21754e22 + 8.32598e22i 0.0643420 + 0.241578i
\(49\) 7.46446e23 1.62276
\(50\) 2.76054e23i 0.452286i
\(51\) −6.32328e23 + 1.68414e23i −0.785163 + 0.209121i
\(52\) 7.34974e23 0.695385
\(53\) 3.94998e23i 0.286241i 0.989705 + 0.143121i \(0.0457137\pi\)
−0.989705 + 0.143121i \(0.954286\pi\)
\(54\) 9.00390e23 8.92313e23i 0.502248 0.497742i
\(55\) 2.61454e24 1.12802
\(56\) 1.70792e24i 0.572577i
\(57\) −1.47668e23 5.54435e23i −0.0386402 0.145078i
\(58\) −8.70839e23 −0.178626
\(59\) 3.88384e24i 0.627095i 0.949573 + 0.313547i \(0.101517\pi\)
−0.949573 + 0.313547i \(0.898483\pi\)
\(60\) −2.27290e24 + 6.05365e23i −0.290043 + 0.0772502i
\(61\) −3.03902e24 −0.307692 −0.153846 0.988095i \(-0.549166\pi\)
−0.153846 + 0.988095i \(0.549166\pi\)
\(62\) 6.77403e24i 0.546215i
\(63\) −2.17986e25 + 1.24983e25i −1.40495 + 0.805530i
\(64\) −2.41785e24 −0.125000
\(65\) 2.00640e25i 0.834891i
\(66\) −1.01765e25 3.82086e25i −0.341966 1.28394i
\(67\) −4.60298e25 −1.25312 −0.626559 0.779374i \(-0.715537\pi\)
−0.626559 + 0.779374i \(0.715537\pi\)
\(68\) 1.83627e25i 0.406267i
\(69\) 4.56991e25 1.21715e25i 0.824177 0.219511i
\(70\) 4.66242e25 0.687446
\(71\) 4.64902e25i 0.562011i −0.959706 0.281005i \(-0.909332\pi\)
0.959706 0.281005i \(-0.0906679\pi\)
\(72\) 1.76935e25 + 3.08597e25i 0.175856 + 0.306716i
\(73\) −9.93420e25 −0.813978 −0.406989 0.913433i \(-0.633421\pi\)
−0.406989 + 0.913433i \(0.633421\pi\)
\(74\) 1.69628e26i 1.14882i
\(75\) 2.93319e25 + 1.10130e26i 0.164620 + 0.618082i
\(76\) 1.61007e25 0.0750679
\(77\) 7.83776e26i 3.04314i
\(78\) 2.93213e26 7.80943e25i 0.950294 0.253102i
\(79\) 4.12927e26 1.11968 0.559840 0.828601i \(-0.310863\pi\)
0.559840 + 0.828601i \(0.310863\pi\)
\(80\) 6.60047e25i 0.150077i
\(81\) 2.64392e26 4.51652e26i 0.505194 0.863006i
\(82\) −3.78897e26 −0.609716
\(83\) 6.50901e25i 0.0883938i 0.999023 + 0.0441969i \(0.0140729\pi\)
−0.999023 + 0.0441969i \(0.985927\pi\)
\(84\) −1.81474e26 6.81361e26i −0.208403 0.782469i
\(85\) 5.01282e26 0.487772
\(86\) 5.88933e25i 0.0486505i
\(87\) −3.47415e26 + 9.25305e25i −0.244106 + 0.0650153i
\(88\) 1.10957e27 0.664352
\(89\) 3.06844e25i 0.0156840i 0.999969 + 0.00784202i \(0.00249622\pi\)
−0.999969 + 0.00784202i \(0.997504\pi\)
\(90\) −8.42435e26 + 4.83012e26i −0.368249 + 0.211136i
\(91\) −6.01469e27 −2.25234
\(92\) 1.32709e27i 0.426454i
\(93\) −7.19771e26 2.70245e27i −0.198808 0.746443i
\(94\) −4.82167e26 −0.114659
\(95\) 4.39531e26i 0.0901279i
\(96\) −9.64585e26 + 2.56908e26i −0.170822 + 0.0454967i
\(97\) 5.86519e27 0.898417 0.449209 0.893427i \(-0.351706\pi\)
0.449209 + 0.893427i \(0.351706\pi\)
\(98\) 8.64775e27i 1.14746i
\(99\) −8.11967e27 1.41618e28i −0.934643 1.63014i
\(100\) −3.19815e27 −0.319815
\(101\) 8.58961e27i 0.747264i 0.927577 + 0.373632i \(0.121888\pi\)
−0.927577 + 0.373632i \(0.878112\pi\)
\(102\) −1.95112e27 7.32567e27i −0.147871 0.555194i
\(103\) 2.18592e28 1.44515 0.722576 0.691292i \(-0.242958\pi\)
0.722576 + 0.691292i \(0.242958\pi\)
\(104\) 8.51485e27i 0.491711i
\(105\) 1.86004e28 4.95403e27i 0.939446 0.250212i
\(106\) −4.57614e27 −0.202403
\(107\) 1.45967e27i 0.0566086i 0.999599 + 0.0283043i \(0.00901075\pi\)
−0.999599 + 0.0283043i \(0.990989\pi\)
\(108\) 1.03377e28 + 1.04312e28i 0.351957 + 0.355143i
\(109\) 1.80787e28 0.540998 0.270499 0.962720i \(-0.412811\pi\)
0.270499 + 0.962720i \(0.412811\pi\)
\(110\) 3.02901e28i 0.797633i
\(111\) −1.80237e28 6.76719e28i −0.418141 1.56995i
\(112\) 1.97866e28 0.404873
\(113\) 5.98855e28i 1.08199i 0.841026 + 0.540995i \(0.181952\pi\)
−0.841026 + 0.540995i \(0.818048\pi\)
\(114\) 6.42326e27 1.71077e27i 0.102586 0.0273227i
\(115\) −3.62282e28 −0.512008
\(116\) 1.00889e28i 0.126308i
\(117\) 1.08677e29 6.23103e28i 1.20653 0.691764i
\(118\) −4.49952e28 −0.443423
\(119\) 1.50272e29i 1.31589i
\(120\) −7.01329e27 2.63321e28i −0.0546241 0.205092i
\(121\) −3.64982e29 −2.53091
\(122\) 3.52078e28i 0.217571i
\(123\) −1.51158e29 + 4.02595e28i −0.833222 + 0.221920i
\(124\) 7.84788e28 0.386232
\(125\) 2.23800e29i 0.984284i
\(126\) −1.44795e29 2.52541e29i −0.569596 0.993448i
\(127\) 4.38953e29 1.54584 0.772922 0.634501i \(-0.218794\pi\)
0.772922 + 0.634501i \(0.218794\pi\)
\(128\) 2.80114e28i 0.0883883i
\(129\) −6.25768e27 2.34951e28i −0.0177075 0.0664846i
\(130\) −2.32446e29 −0.590357
\(131\) 5.48900e29i 1.25226i 0.779718 + 0.626131i \(0.215363\pi\)
−0.779718 + 0.626131i \(0.784637\pi\)
\(132\) 4.42656e29 1.17897e29i 0.907886 0.241806i
\(133\) −1.31761e29 −0.243144
\(134\) 5.33266e29i 0.886088i
\(135\) −2.84761e29 + 2.82206e29i −0.426391 + 0.422566i
\(136\) 2.12736e29 0.287274
\(137\) 1.36787e30i 1.66708i 0.552456 + 0.833542i \(0.313691\pi\)
−0.552456 + 0.833542i \(0.686309\pi\)
\(138\) 1.41010e29 + 5.29435e29i 0.155218 + 0.582781i
\(139\) 1.29192e30 1.28537 0.642685 0.766130i \(-0.277820\pi\)
0.642685 + 0.766130i \(0.277820\pi\)
\(140\) 5.40152e29i 0.486098i
\(141\) −1.92357e29 + 5.12324e28i −0.156690 + 0.0417328i
\(142\) 5.38600e29 0.397402
\(143\) 3.90753e30i 2.61335i
\(144\) −3.57516e29 + 2.04983e29i −0.216881 + 0.124349i
\(145\) 2.75415e29 0.151648
\(146\) 1.15090e30i 0.575570i
\(147\) 9.18862e29 + 3.44996e30i 0.417645 + 1.56809i
\(148\) 1.96518e30 0.812341
\(149\) 2.43293e30i 0.915213i −0.889155 0.457607i \(-0.848707\pi\)
0.889155 0.457607i \(-0.151293\pi\)
\(150\) −1.27588e30 + 3.39817e29i −0.437050 + 0.116404i
\(151\) −2.42875e30 −0.758063 −0.379032 0.925384i \(-0.623743\pi\)
−0.379032 + 0.925384i \(0.623743\pi\)
\(152\) 1.86530e29i 0.0530810i
\(153\) −1.55677e30 2.71521e30i −0.404152 0.704893i
\(154\) −9.08024e30 −2.15183
\(155\) 2.14238e30i 0.463717i
\(156\) 9.04741e29 + 3.39694e30i 0.178970 + 0.671960i
\(157\) 7.20044e29 0.130246 0.0651229 0.997877i \(-0.479256\pi\)
0.0651229 + 0.997877i \(0.479256\pi\)
\(158\) 4.78385e30i 0.791733i
\(159\) −1.82562e30 + 4.86236e29i −0.276599 + 0.0736694i
\(160\) 7.64680e29 0.106121
\(161\) 1.08603e31i 1.38128i
\(162\) 5.23250e30 + 3.06304e30i 0.610237 + 0.357226i
\(163\) −6.07467e30 −0.649974 −0.324987 0.945718i \(-0.605360\pi\)
−0.324987 + 0.945718i \(0.605360\pi\)
\(164\) 4.38962e30i 0.431134i
\(165\) 3.21846e30 + 1.20840e31i 0.290317 + 1.09002i
\(166\) −7.54084e29 −0.0625038
\(167\) 2.17069e31i 1.65412i −0.562114 0.827060i \(-0.690012\pi\)
0.562114 0.827060i \(-0.309988\pi\)
\(168\) 7.89372e30 2.10242e30i 0.553289 0.147363i
\(169\) 1.44835e31 0.934240
\(170\) 5.80747e30i 0.344907i
\(171\) 2.38073e30 1.36500e30i 0.130246 0.0746770i
\(172\) 6.82293e29 0.0344011
\(173\) 1.83592e31i 0.853511i 0.904367 + 0.426756i \(0.140344\pi\)
−0.904367 + 0.426756i \(0.859656\pi\)
\(174\) −1.07199e30 4.02488e30i −0.0459727 0.172609i
\(175\) 2.61722e31 1.03587
\(176\) 1.28547e31i 0.469768i
\(177\) −1.79505e31 + 4.78094e30i −0.605970 + 0.161394i
\(178\) −3.55486e29 −0.0110903
\(179\) 4.92795e31i 1.42143i 0.703482 + 0.710713i \(0.251627\pi\)
−0.703482 + 0.710713i \(0.748373\pi\)
\(180\) −5.59580e30 9.75980e30i −0.149296 0.260391i
\(181\) 3.63021e31 0.896256 0.448128 0.893969i \(-0.352091\pi\)
0.448128 + 0.893969i \(0.352091\pi\)
\(182\) 6.96817e31i 1.59265i
\(183\) −3.74099e30 1.40459e31i −0.0791901 0.297327i
\(184\) −1.53747e31 −0.301549
\(185\) 5.36472e31i 0.975311i
\(186\) 3.13085e31 8.33872e30i 0.527815 0.140578i
\(187\) −9.76265e31 −1.52681
\(188\) 5.58602e30i 0.0810760i
\(189\) −8.45987e31 8.53645e31i −1.13998 1.15030i
\(190\) −5.09207e30 −0.0637300
\(191\) 7.96600e30i 0.0926346i 0.998927 + 0.0463173i \(0.0147485\pi\)
−0.998927 + 0.0463173i \(0.985251\pi\)
\(192\) −2.97634e30 1.11749e31i −0.0321710 0.120789i
\(193\) 5.49449e31 0.552236 0.276118 0.961124i \(-0.410952\pi\)
0.276118 + 0.961124i \(0.410952\pi\)
\(194\) 6.79496e31i 0.635277i
\(195\) −9.27326e31 + 2.46984e31i −0.806767 + 0.214874i
\(196\) −1.00186e32 −0.811378
\(197\) 6.19271e31i 0.467040i 0.972352 + 0.233520i \(0.0750244\pi\)
−0.972352 + 0.233520i \(0.924976\pi\)
\(198\) 1.64067e32 9.40683e31i 1.15268 0.660892i
\(199\) 6.34877e31 0.415668 0.207834 0.978164i \(-0.433359\pi\)
0.207834 + 0.978164i \(0.433359\pi\)
\(200\) 3.70513e31i 0.226143i
\(201\) −5.66619e31 2.12743e32i −0.322512 1.21090i
\(202\) −9.95127e31 −0.528396
\(203\) 8.25628e31i 0.409110i
\(204\) 8.48696e31 2.26042e31i 0.392582 0.104560i
\(205\) 1.19832e32 0.517628
\(206\) 2.53244e32i 1.02188i
\(207\) 1.12510e32 + 1.96231e32i 0.424233 + 0.739918i
\(208\) −9.86465e31 −0.347692
\(209\) 8.56003e31i 0.282116i
\(210\) 5.73936e31 + 2.15490e32i 0.176927 + 0.664289i
\(211\) 6.30653e32 1.81901 0.909507 0.415688i \(-0.136459\pi\)
0.909507 + 0.415688i \(0.136459\pi\)
\(212\) 5.30157e31i 0.143121i
\(213\) 2.14871e32 5.72287e31i 0.543079 0.144644i
\(214\) −1.69107e31 −0.0400283
\(215\) 1.86258e31i 0.0413026i
\(216\) −1.20848e32 + 1.19764e32i −0.251124 + 0.248871i
\(217\) −6.42235e32 −1.25100
\(218\) 2.09446e32i 0.382543i
\(219\) −1.22288e32 4.59144e32i −0.209492 0.786558i
\(220\) −3.50918e32 −0.564012
\(221\) 7.49185e32i 1.13005i
\(222\) 7.83995e32 2.08809e32i 1.11012 0.295671i
\(223\) 5.13642e32 0.682955 0.341478 0.939890i \(-0.389073\pi\)
0.341478 + 0.939890i \(0.389073\pi\)
\(224\) 2.29232e32i 0.286289i
\(225\) −4.72895e32 + 2.71135e32i −0.554893 + 0.318149i
\(226\) −6.93788e32 −0.765083
\(227\) 2.02364e32i 0.209783i −0.994484 0.104892i \(-0.966550\pi\)
0.994484 0.104892i \(-0.0334495\pi\)
\(228\) 1.98197e31 + 7.44149e31i 0.0193201 + 0.0725391i
\(229\) 6.08798e32 0.558183 0.279091 0.960265i \(-0.409967\pi\)
0.279091 + 0.960265i \(0.409967\pi\)
\(230\) 4.19712e32i 0.362045i
\(231\) −3.62250e33 + 9.64816e32i −2.94063 + 0.783207i
\(232\) 1.16882e32 0.0893132
\(233\) 2.00104e33i 1.43970i −0.694127 0.719852i \(-0.744210\pi\)
0.694127 0.719852i \(-0.255790\pi\)
\(234\) 7.21880e32 + 1.25905e33i 0.489151 + 0.853142i
\(235\) 1.52492e32 0.0973414
\(236\) 5.21280e32i 0.313547i
\(237\) 5.08306e32 + 1.90848e33i 0.288170 + 1.08196i
\(238\) −1.74094e33 −0.930478
\(239\) 3.61406e33i 1.82148i 0.412980 + 0.910740i \(0.364488\pi\)
−0.412980 + 0.910740i \(0.635512\pi\)
\(240\) 3.05064e32 8.12507e31i 0.145022 0.0386251i
\(241\) 1.13193e33 0.507668 0.253834 0.967248i \(-0.418308\pi\)
0.253834 + 0.967248i \(0.418308\pi\)
\(242\) 4.22840e33i 1.78962i
\(243\) 2.41293e33 + 6.66003e32i 0.963955 + 0.266065i
\(244\) 4.07891e32 0.153846
\(245\) 2.73497e33i 0.974155i
\(246\) −4.66416e32 1.75121e33i −0.156921 0.589177i
\(247\) 6.56896e32 0.208804
\(248\) 9.09195e32i 0.273107i
\(249\) −3.00836e32 + 8.01248e31i −0.0854161 + 0.0227497i
\(250\) 2.59278e33 0.695994
\(251\) 6.13332e32i 0.155691i −0.996965 0.0778455i \(-0.975196\pi\)
0.996965 0.0778455i \(-0.0248041\pi\)
\(252\) 2.92575e33 1.67749e33i 0.702474 0.402765i
\(253\) 7.05558e33 1.60267
\(254\) 5.08537e33i 1.09308i
\(255\) 6.17069e32 + 2.31685e33i 0.125537 + 0.471341i
\(256\) 3.24519e32 0.0625000
\(257\) 4.72984e33i 0.862547i 0.902221 + 0.431273i \(0.141936\pi\)
−0.902221 + 0.431273i \(0.858064\pi\)
\(258\) 2.72196e32 7.24967e31i 0.0470117 0.0125211i
\(259\) −1.60821e34 −2.63116
\(260\) 2.69294e33i 0.417446i
\(261\) −8.55324e32 1.49179e33i −0.125650 0.219150i
\(262\) −6.35914e33 −0.885483
\(263\) 3.25330e33i 0.429481i 0.976671 + 0.214740i \(0.0688905\pi\)
−0.976671 + 0.214740i \(0.931109\pi\)
\(264\) 1.36586e33 + 5.12827e33i 0.170983 + 0.641972i
\(265\) 1.44727e33 0.171833
\(266\) 1.52648e33i 0.171929i
\(267\) −1.41819e32 + 3.77720e31i −0.0151557 + 0.00403657i
\(268\) 6.17801e33 0.626559
\(269\) 1.31083e34i 1.26186i −0.775838 0.630932i \(-0.782673\pi\)
0.775838 0.630932i \(-0.217327\pi\)
\(270\) −3.26943e33 3.29902e33i −0.298799 0.301504i
\(271\) 1.04769e34 0.909207 0.454603 0.890694i \(-0.349781\pi\)
0.454603 + 0.890694i \(0.349781\pi\)
\(272\) 2.46460e33i 0.203134i
\(273\) −7.40399e33 2.77990e34i −0.579681 2.17647i
\(274\) −1.58471e34 −1.17881
\(275\) 1.70031e34i 1.20191i
\(276\) −6.13363e33 + 1.63363e33i −0.412088 + 0.109756i
\(277\) −1.11299e34 −0.710841 −0.355421 0.934706i \(-0.615662\pi\)
−0.355421 + 0.934706i \(0.615662\pi\)
\(278\) 1.49672e34i 0.908894i
\(279\) 1.16043e34 6.65335e33i 0.670131 0.384221i
\(280\) −6.25779e33 −0.343723
\(281\) 1.07604e34i 0.562264i −0.959669 0.281132i \(-0.909290\pi\)
0.959669 0.281132i \(-0.0907099\pi\)
\(282\) −5.93540e32 2.22850e33i −0.0295095 0.110796i
\(283\) −8.63341e32 −0.0408481 −0.0204241 0.999791i \(-0.506502\pi\)
−0.0204241 + 0.999791i \(0.506502\pi\)
\(284\) 6.23981e33i 0.281005i
\(285\) −2.03145e33 + 5.41055e32i −0.0870918 + 0.0231960i
\(286\) 4.52697e34 1.84792
\(287\) 3.59226e34i 1.39644i
\(288\) −2.37478e33 4.14191e33i −0.0879281 0.153358i
\(289\) 9.63334e33 0.339787
\(290\) 3.19075e33i 0.107231i
\(291\) 7.21995e33 + 2.71080e34i 0.231224 + 0.868152i
\(292\) 1.33335e34 0.406989
\(293\) 4.43941e34i 1.29175i −0.763443 0.645875i \(-0.776493\pi\)
0.763443 0.645875i \(-0.223507\pi\)
\(294\) −3.99686e34 + 1.06452e34i −1.10881 + 0.295320i
\(295\) 1.42304e34 0.376450
\(296\) 2.27671e34i 0.574412i
\(297\) 5.54583e34 5.49608e34i 1.33468 1.32270i
\(298\) 2.81861e34 0.647154
\(299\) 5.41445e34i 1.18620i
\(300\) −3.93686e33 1.47813e34i −0.0823101 0.309041i
\(301\) −5.58358e33 −0.111425
\(302\) 2.81376e34i 0.536032i
\(303\) −3.96999e34 + 1.05737e34i −0.722091 + 0.192322i
\(304\) −2.16100e33 −0.0375339
\(305\) 1.11350e34i 0.184710i
\(306\) 3.14563e34 1.80356e34i 0.498435 0.285779i
\(307\) −9.16606e34 −1.38754 −0.693770 0.720196i \(-0.744052\pi\)
−0.693770 + 0.720196i \(0.744052\pi\)
\(308\) 1.05197e35i 1.52157i
\(309\) 2.69083e34 + 1.01030e35i 0.371936 + 1.39647i
\(310\) −2.48200e34 −0.327898
\(311\) 3.28284e34i 0.414576i −0.978280 0.207288i \(-0.933536\pi\)
0.978280 0.207288i \(-0.0664636\pi\)
\(312\) −3.93543e34 + 1.04816e34i −0.475147 + 0.126551i
\(313\) −5.95564e34 −0.687555 −0.343778 0.939051i \(-0.611707\pi\)
−0.343778 + 0.939051i \(0.611707\pi\)
\(314\) 8.34188e33i 0.0920977i
\(315\) 4.57935e34 + 7.98698e34i 0.483567 + 0.843403i
\(316\) −5.54221e34 −0.559840
\(317\) 1.15310e35i 1.11439i −0.830383 0.557194i \(-0.811878\pi\)
0.830383 0.557194i \(-0.188122\pi\)
\(318\) −5.63316e33 2.11502e34i −0.0520921 0.195585i
\(319\) −5.36381e34 −0.474683
\(320\) 8.85900e33i 0.0750386i
\(321\) −6.74639e33 + 1.79683e33i −0.0547017 + 0.0145693i
\(322\) 1.25820e35 0.976711
\(323\) 1.64120e34i 0.121991i
\(324\) −3.54861e34 + 6.06197e34i −0.252597 + 0.431503i
\(325\) −1.30482e35 −0.889577
\(326\) 7.03765e34i 0.459601i
\(327\) 2.22545e34 + 8.35568e34i 0.139236 + 0.522773i
\(328\) 5.08547e34 0.304858
\(329\) 4.57135e34i 0.262604i
\(330\) −1.39996e35 + 3.72866e34i −0.770763 + 0.205285i
\(331\) −7.41386e34 −0.391248 −0.195624 0.980679i \(-0.562673\pi\)
−0.195624 + 0.980679i \(0.562673\pi\)
\(332\) 8.73625e33i 0.0441969i
\(333\) 2.90582e35 1.66606e35i 1.40945 0.808111i
\(334\) 2.51479e35 1.16964
\(335\) 1.68653e35i 0.752258i
\(336\) 2.43570e34 + 9.14507e34i 0.104201 + 0.391234i
\(337\) 4.05523e35 1.66417 0.832084 0.554649i \(-0.187147\pi\)
0.832084 + 0.554649i \(0.187147\pi\)
\(338\) 1.67794e35i 0.660607i
\(339\) −2.76782e35 + 7.37181e34i −1.04554 + 0.278470i
\(340\) −6.72809e34 −0.243886
\(341\) 4.17237e35i 1.45152i
\(342\) 1.58138e34 + 2.75814e34i 0.0528046 + 0.0920981i
\(343\) 3.14640e35 1.00855
\(344\) 7.90453e33i 0.0243253i
\(345\) −4.45963e34 1.67441e35i −0.131775 0.494761i
\(346\) −2.12696e35 −0.603523
\(347\) 5.70947e35i 1.55591i −0.628322 0.777953i \(-0.716258\pi\)
0.628322 0.777953i \(-0.283742\pi\)
\(348\) 4.66292e34 1.24192e34i 0.122053 0.0325076i
\(349\) 5.57835e34 0.140265 0.0701326 0.997538i \(-0.477658\pi\)
0.0701326 + 0.997538i \(0.477658\pi\)
\(350\) 3.03211e35i 0.732474i
\(351\) 4.21769e35 + 4.25586e35i 0.978982 + 0.987843i
\(352\) −1.48924e35 −0.332176
\(353\) 5.51281e35i 1.18175i 0.806761 + 0.590877i \(0.201218\pi\)
−0.806761 + 0.590877i \(0.798782\pi\)
\(354\) −5.53883e34 2.07961e35i −0.114123 0.428485i
\(355\) −1.70340e35 −0.337380
\(356\) 4.11839e33i 0.00784202i
\(357\) −6.94535e35 + 1.84982e35i −1.27157 + 0.338669i
\(358\) −5.70915e35 −1.00510
\(359\) 3.97393e35i 0.672818i 0.941716 + 0.336409i \(0.109212\pi\)
−0.941716 + 0.336409i \(0.890788\pi\)
\(360\) 1.13070e35 6.48287e34i 0.184124 0.105568i
\(361\) −6.24021e35 −0.977459
\(362\) 4.20569e35i 0.633749i
\(363\) −4.49287e35 1.68689e36i −0.651375 2.44565i
\(364\) 8.07279e35 1.12617
\(365\) 3.63989e35i 0.488639i
\(366\) 1.62725e35 4.33402e34i 0.210242 0.0559958i
\(367\) 1.68599e35 0.209667 0.104833 0.994490i \(-0.466569\pi\)
0.104833 + 0.994490i \(0.466569\pi\)
\(368\) 1.78120e35i 0.213227i
\(369\) −3.72147e35 6.49072e35i −0.428889 0.748038i
\(370\) −6.21516e35 −0.689649
\(371\) 4.33857e35i 0.463566i
\(372\) 9.66061e34 + 3.62717e35i 0.0994039 + 0.373221i
\(373\) −2.54308e35 −0.252021 −0.126010 0.992029i \(-0.540217\pi\)
−0.126010 + 0.992029i \(0.540217\pi\)
\(374\) 1.13103e36i 1.07962i
\(375\) 1.03437e36 2.75494e35i 0.951127 0.253323i
\(376\) 6.47154e34 0.0573294
\(377\) 4.11618e35i 0.351331i
\(378\) 9.88968e35 9.80096e35i 0.813386 0.806090i
\(379\) −7.20174e35 −0.570806 −0.285403 0.958408i \(-0.592127\pi\)
−0.285403 + 0.958408i \(0.592127\pi\)
\(380\) 5.89929e34i 0.0450639i
\(381\) 5.40343e35 + 2.02877e36i 0.397851 + 1.49377i
\(382\) −9.22880e34 −0.0655026
\(383\) 2.70532e36i 1.85113i 0.378591 + 0.925564i \(0.376409\pi\)
−0.378591 + 0.925564i \(0.623591\pi\)
\(384\) 1.29464e35 3.44816e34i 0.0854108 0.0227483i
\(385\) 2.87175e36 1.82682
\(386\) 6.36550e35i 0.390490i
\(387\) 1.00888e35 5.78441e34i 0.0596876 0.0342220i
\(388\) −7.87213e35 −0.449209
\(389\) 9.65921e35i 0.531676i 0.964018 + 0.265838i \(0.0856486\pi\)
−0.964018 + 0.265838i \(0.914351\pi\)
\(390\) −2.86137e35 1.07433e36i −0.151939 0.570470i
\(391\) 1.35275e36 0.693018
\(392\) 1.16068e36i 0.573731i
\(393\) −2.53693e36 + 6.75687e35i −1.21008 + 0.322292i
\(394\) −7.17440e35 −0.330247
\(395\) 1.51296e36i 0.672153i
\(396\) 1.08980e36 + 1.90076e36i 0.467322 + 0.815069i
\(397\) −4.39924e35 −0.182100 −0.0910502 0.995846i \(-0.529022\pi\)
−0.0910502 + 0.995846i \(0.529022\pi\)
\(398\) 7.35520e35i 0.293921i
\(399\) −1.62195e35 6.08978e35i −0.0625774 0.234953i
\(400\) 4.29248e35 0.159907
\(401\) 7.56520e35i 0.272144i 0.990699 + 0.136072i \(0.0434479\pi\)
−0.990699 + 0.136072i \(0.956552\pi\)
\(402\) 2.46467e36 6.56442e35i 0.856239 0.228051i
\(403\) 3.20188e36 1.07432
\(404\) 1.15288e36i 0.373632i
\(405\) −1.65485e36 9.68731e35i −0.518070 0.303272i
\(406\) −9.56509e35 −0.289284
\(407\) 1.04480e37i 3.05289i
\(408\) 2.61875e35 + 9.83235e35i 0.0739353 + 0.277597i
\(409\) −2.45828e36 −0.670665 −0.335332 0.942100i \(-0.608849\pi\)
−0.335332 + 0.942100i \(0.608849\pi\)
\(410\) 1.38828e36i 0.366018i
\(411\) −6.32210e36 + 1.68383e36i −1.61093 + 0.429054i
\(412\) −2.93389e36 −0.722576
\(413\) 4.26592e36i 1.01557i
\(414\) −2.27339e36 + 1.30345e36i −0.523201 + 0.299978i
\(415\) 2.38490e35 0.0530636
\(416\) 1.14284e36i 0.245856i
\(417\) 1.59033e36 + 5.97106e36i 0.330813 + 1.24207i
\(418\) 9.91700e35 0.199486
\(419\) 8.80782e36i 1.71345i −0.515772 0.856726i \(-0.672495\pi\)
0.515772 0.856726i \(-0.327505\pi\)
\(420\) −2.49650e36 + 6.64919e35i −0.469723 + 0.125106i
\(421\) −2.04908e36 −0.372915 −0.186457 0.982463i \(-0.559701\pi\)
−0.186457 + 0.982463i \(0.559701\pi\)
\(422\) 7.30626e36i 1.28624i
\(423\) −4.73577e35 8.25979e35i −0.0806539 0.140671i
\(424\) 6.14200e35 0.101202
\(425\) 3.25998e36i 0.519721i
\(426\) 6.63008e35 + 2.48933e36i 0.102279 + 0.384015i
\(427\) −3.33799e36 −0.498305
\(428\) 1.95914e35i 0.0283043i
\(429\) 1.80600e37 4.81011e36i 2.52532 0.672594i
\(430\) −2.15785e35 −0.0292054
\(431\) 2.61055e36i 0.342020i −0.985269 0.171010i \(-0.945297\pi\)
0.985269 0.171010i \(-0.0547030\pi\)
\(432\) −1.38750e36 1.40006e36i −0.175978 0.177571i
\(433\) 6.96750e35 0.0855552 0.0427776 0.999085i \(-0.486379\pi\)
0.0427776 + 0.999085i \(0.486379\pi\)
\(434\) 7.44044e36i 0.884591i
\(435\) 3.39031e35 + 1.27293e36i 0.0390293 + 0.146539i
\(436\) −2.42648e36 −0.270499
\(437\) 1.18611e36i 0.128052i
\(438\) 5.31929e36 1.41674e36i 0.556181 0.148133i
\(439\) 1.66834e37 1.68959 0.844793 0.535093i \(-0.179723\pi\)
0.844793 + 0.535093i \(0.179723\pi\)
\(440\) 4.06547e36i 0.398816i
\(441\) −1.48141e37 + 8.49368e36i −1.40778 + 0.807153i
\(442\) 8.67948e36 0.799065
\(443\) 8.18446e36i 0.730025i 0.931003 + 0.365012i \(0.118935\pi\)
−0.931003 + 0.365012i \(0.881065\pi\)
\(444\) 2.41910e36 + 9.08276e36i 0.209071 + 0.784976i
\(445\) 1.12428e35 0.00941527
\(446\) 5.95066e36i 0.482922i
\(447\) 1.12446e37 2.99490e36i 0.884383 0.235547i
\(448\) −2.65571e36 −0.202437
\(449\) 1.20927e37i 0.893456i −0.894670 0.446728i \(-0.852589\pi\)
0.894670 0.446728i \(-0.147411\pi\)
\(450\) −3.14117e36 5.47860e36i −0.224965 0.392369i
\(451\) −2.33377e37 −1.62026
\(452\) 8.03770e36i 0.540995i
\(453\) −2.98975e36 1.12253e37i −0.195101 0.732527i
\(454\) 2.34443e36 0.148339
\(455\) 2.20378e37i 1.35210i
\(456\) −8.62115e35 + 2.29616e35i −0.0512929 + 0.0136614i
\(457\) −2.89674e36 −0.167141 −0.0835705 0.996502i \(-0.526632\pi\)
−0.0835705 + 0.996502i \(0.526632\pi\)
\(458\) 7.05307e36i 0.394695i
\(459\) 1.06329e37 1.05375e37i 0.577132 0.571954i
\(460\) 4.86247e36 0.256004
\(461\) 3.73081e37i 1.90542i 0.303885 + 0.952709i \(0.401716\pi\)
−0.303885 + 0.952709i \(0.598284\pi\)
\(462\) −1.11776e37 4.19675e37i −0.553811 2.07934i
\(463\) −3.75803e36 −0.180645 −0.0903227 0.995913i \(-0.528790\pi\)
−0.0903227 + 0.995913i \(0.528790\pi\)
\(464\) 1.35411e36i 0.0631540i
\(465\) −9.90177e36 + 2.63724e36i −0.448096 + 0.119346i
\(466\) 2.31825e37 1.01802
\(467\) 1.01778e37i 0.433728i −0.976202 0.216864i \(-0.930417\pi\)
0.976202 0.216864i \(-0.0695827\pi\)
\(468\) −1.45864e37 + 8.36315e36i −0.603263 + 0.345882i
\(469\) −5.05581e37 −2.02941
\(470\) 1.76666e36i 0.0688307i
\(471\) 8.86362e35 + 3.32793e36i 0.0335211 + 0.125858i
\(472\) 6.03915e36 0.221711
\(473\) 3.62745e36i 0.129284i
\(474\) −2.21102e37 + 5.88884e36i −0.765062 + 0.203767i
\(475\) −2.85840e36 −0.0960312
\(476\) 2.01692e37i 0.657947i
\(477\) −4.49462e36 7.83919e36i −0.142375 0.248321i
\(478\) −4.18697e37 −1.28798
\(479\) 7.21284e36i 0.215481i 0.994179 + 0.107741i \(0.0343616\pi\)
−0.994179 + 0.107741i \(0.965638\pi\)
\(480\) 9.41308e35 + 3.53423e36i 0.0273121 + 0.102546i
\(481\) 8.01779e37 2.25956
\(482\) 1.31136e37i 0.358975i
\(483\) 5.01948e37 1.33689e37i 1.33475 0.355497i
\(484\) 4.89871e37 1.26545
\(485\) 2.14900e37i 0.539328i
\(486\) −7.71580e36 + 2.79544e37i −0.188137 + 0.681619i
\(487\) −1.52282e37 −0.360781 −0.180390 0.983595i \(-0.557736\pi\)
−0.180390 + 0.983595i \(0.557736\pi\)
\(488\) 4.72551e36i 0.108786i
\(489\) −7.47782e36 2.80762e37i −0.167283 0.628079i
\(490\) 3.16853e37 0.688831
\(491\) 3.09297e37i 0.653483i 0.945114 + 0.326742i \(0.105951\pi\)
−0.945114 + 0.326742i \(0.894049\pi\)
\(492\) 2.02881e37 5.40354e36i 0.416611 0.110960i
\(493\) −1.02839e37 −0.205259
\(494\) 7.61030e36i 0.147647i
\(495\) −5.18886e37 + 2.97504e37i −0.978586 + 0.561075i
\(496\) −1.05332e37 −0.193116
\(497\) 5.10638e37i 0.910173i
\(498\) −9.28265e35 3.48526e36i −0.0160865 0.0603983i
\(499\) 2.68468e36 0.0452361 0.0226181 0.999744i \(-0.492800\pi\)
0.0226181 + 0.999744i \(0.492800\pi\)
\(500\) 3.00380e37i 0.492142i
\(501\) 1.00326e38 2.67208e37i 1.59840 0.425718i
\(502\) 7.10559e36 0.110090
\(503\) 2.07679e37i 0.312925i 0.987684 + 0.156462i \(0.0500090\pi\)
−0.987684 + 0.156462i \(0.949991\pi\)
\(504\) 1.94341e37 + 3.38955e37i 0.284798 + 0.496724i
\(505\) 3.14723e37 0.448589
\(506\) 8.17406e37i 1.13326i
\(507\) 1.78289e37 + 6.69403e37i 0.240443 + 0.902768i
\(508\) −5.89152e37 −0.772922
\(509\) 8.36963e37i 1.06821i −0.845418 0.534106i \(-0.820648\pi\)
0.845418 0.534106i \(-0.179352\pi\)
\(510\) −2.68412e37 + 7.14890e36i −0.333288 + 0.0887680i
\(511\) −1.09115e38 −1.31823
\(512\) 3.75962e36i 0.0441942i
\(513\) 9.23946e36 + 9.32310e36i 0.105683 + 0.106639i
\(514\) −5.47963e37 −0.609913
\(515\) 8.00921e37i 0.867538i
\(516\) 8.39892e35 + 3.15345e36i 0.00885375 + 0.0332423i
\(517\) −2.96984e37 −0.304695
\(518\) 1.86315e38i 1.86051i
\(519\) −8.48536e37 + 2.25999e37i −0.824759 + 0.219666i
\(520\) 3.11984e37 0.295179
\(521\) 1.27657e37i 0.117575i 0.998271 + 0.0587876i \(0.0187235\pi\)
−0.998271 + 0.0587876i \(0.981277\pi\)
\(522\) 1.72828e37 9.90913e36i 0.154963 0.0888482i
\(523\) 2.50358e37 0.218543 0.109272 0.994012i \(-0.465148\pi\)
0.109272 + 0.994012i \(0.465148\pi\)
\(524\) 7.36722e37i 0.626131i
\(525\) 3.22175e37 + 1.20964e38i 0.266601 + 1.00098i
\(526\) −3.76903e37 −0.303689
\(527\) 7.99962e37i 0.627654i
\(528\) −5.94123e37 + 1.58239e37i −0.453943 + 0.120903i
\(529\) 3.66287e37 0.272548
\(530\) 1.67670e37i 0.121505i
\(531\) −4.41936e37 7.70793e37i −0.311915 0.544019i
\(532\) 1.76846e37 0.121572
\(533\) 1.79093e38i 1.19922i
\(534\) −4.37598e35 1.64300e36i −0.00285429 0.0107167i
\(535\) 5.34823e36 0.0339827
\(536\) 7.15738e37i 0.443044i
\(537\) −2.27762e38 + 6.06623e37i −1.37354 + 0.365830i
\(538\) 1.51862e38 0.892273
\(539\) 5.32646e38i 3.04927i
\(540\) 3.82200e37 3.78771e37i 0.213195 0.211283i
\(541\) −1.95753e38 −1.06401 −0.532006 0.846741i \(-0.678561\pi\)
−0.532006 + 0.846741i \(0.678561\pi\)
\(542\) 1.21377e38i 0.642906i
\(543\) 4.46873e37 + 1.67783e38i 0.230668 + 0.866064i
\(544\) −2.85530e37 −0.143637
\(545\) 6.62402e37i 0.324766i
\(546\) 3.22058e38 8.57770e37i 1.53899 0.409896i
\(547\) 4.18199e38 1.94787 0.973935 0.226828i \(-0.0728355\pi\)
0.973935 + 0.226828i \(0.0728355\pi\)
\(548\) 1.83593e38i 0.833542i
\(549\) 6.03129e37 3.45805e37i 0.266930 0.153045i
\(550\) −1.96985e38 −0.849878
\(551\) 9.01711e36i 0.0379267i
\(552\) −1.89260e37 7.10595e37i −0.0776090 0.291390i
\(553\) 4.53549e38 1.81331
\(554\) 1.28942e38i 0.502641i
\(555\) −2.47949e38 + 6.60389e37i −0.942456 + 0.251014i
\(556\) −1.73399e38 −0.642685
\(557\) 1.15367e38i 0.416973i −0.978025 0.208487i \(-0.933146\pi\)
0.978025 0.208487i \(-0.0668537\pi\)
\(558\) 7.70806e37 + 1.34438e38i 0.271685 + 0.473854i
\(559\) 2.78370e37 0.0956881
\(560\) 7.24980e37i 0.243049i
\(561\) −1.20177e38 4.51215e38i −0.392952 1.47538i
\(562\) 1.24662e38 0.397581
\(563\) 3.30770e38i 1.02898i 0.857495 + 0.514492i \(0.172019\pi\)
−0.857495 + 0.514492i \(0.827981\pi\)
\(564\) 2.58177e37 6.87630e36i 0.0783449 0.0208664i
\(565\) 2.19420e38 0.649529
\(566\) 1.00020e37i 0.0288840i
\(567\) 2.90402e38 4.96084e38i 0.818157 1.39763i
\(568\) −7.22897e37 −0.198701
\(569\) 4.81727e38i 1.29190i 0.763379 + 0.645951i \(0.223539\pi\)
−0.763379 + 0.645951i \(0.776461\pi\)
\(570\) −6.26826e36 2.35348e37i −0.0164021 0.0615832i
\(571\) −3.55952e38 −0.908836 −0.454418 0.890789i \(-0.650153\pi\)
−0.454418 + 0.890789i \(0.650153\pi\)
\(572\) 5.24460e38i 1.30668i
\(573\) −3.68176e37 + 9.80602e36i −0.0895141 + 0.0238412i
\(574\) −4.16172e38 −0.987431
\(575\) 2.35603e38i 0.545545i
\(576\) 4.79851e37 2.75123e37i 0.108440 0.0621746i
\(577\) −7.66112e38 −1.68978 −0.844892 0.534938i \(-0.820335\pi\)
−0.844892 + 0.534938i \(0.820335\pi\)
\(578\) 1.11604e38i 0.240266i
\(579\) 6.76362e37 + 2.53947e38i 0.142128 + 0.533633i
\(580\) −3.69656e37 −0.0758238
\(581\) 7.14935e37i 0.143153i
\(582\) −3.14053e38 + 8.36449e37i −0.613876 + 0.163500i
\(583\) −2.81861e38 −0.537868
\(584\) 1.54471e38i 0.287785i
\(585\) −2.28305e38 3.98193e38i −0.415272 0.724288i
\(586\) 5.14316e38 0.913406
\(587\) 6.16052e38i 1.06828i −0.845397 0.534138i \(-0.820636\pi\)
0.845397 0.534138i \(-0.179364\pi\)
\(588\) −1.23328e38 4.63046e38i −0.208823 0.784045i
\(589\) 7.01418e37 0.115975
\(590\) 1.64862e38i 0.266191i
\(591\) −2.86218e38 + 7.62313e37i −0.451307 + 0.120201i
\(592\) −2.63762e38 −0.406171
\(593\) 2.79930e38i 0.421001i −0.977594 0.210501i \(-0.932491\pi\)
0.977594 0.210501i \(-0.0675094\pi\)
\(594\) 6.36734e38 + 6.42497e38i 0.935293 + 0.943759i
\(595\) 5.50596e38 0.789943
\(596\) 3.26543e38i 0.457607i
\(597\) 7.81523e37 + 2.93430e38i 0.106980 + 0.401665i
\(598\) −6.27276e38 −0.838769
\(599\) 1.07262e39i 1.40110i −0.713604 0.700549i \(-0.752938\pi\)
0.713604 0.700549i \(-0.247062\pi\)
\(600\) 1.71245e38 4.56095e37i 0.218525 0.0582020i
\(601\) 9.44393e38 1.17736 0.588681 0.808365i \(-0.299647\pi\)
0.588681 + 0.808365i \(0.299647\pi\)
\(602\) 6.46871e37i 0.0787892i
\(603\) 9.13514e38 5.23765e38i 1.08711 0.623296i
\(604\) 3.25981e38 0.379032
\(605\) 1.33729e39i 1.51933i
\(606\) −1.22498e38 4.59932e38i −0.135992 0.510596i
\(607\) −1.28830e39 −1.39757 −0.698787 0.715330i \(-0.746277\pi\)
−0.698787 + 0.715330i \(0.746277\pi\)
\(608\) 2.50357e37i 0.0265405i
\(609\) −3.81593e38 + 1.01633e38i −0.395328 + 0.105292i
\(610\) −1.29001e38 −0.130610
\(611\) 2.27905e38i 0.225516i
\(612\) 2.08946e38 + 3.64429e38i 0.202076 + 0.352446i
\(613\) 1.60791e39 1.51990 0.759952 0.649979i \(-0.225222\pi\)
0.759952 + 0.649979i \(0.225222\pi\)
\(614\) 1.06191e39i 0.981139i
\(615\) 1.47511e38 + 5.53844e38i 0.133221 + 0.500191i
\(616\) 1.21873e39 1.07591
\(617\) 2.07882e39i 1.79401i 0.442018 + 0.897006i \(0.354263\pi\)
−0.442018 + 0.897006i \(0.645737\pi\)
\(618\) −1.17046e39 + 3.11739e38i −0.987453 + 0.262998i
\(619\) 6.27890e38 0.517863 0.258931 0.965896i \(-0.416630\pi\)
0.258931 + 0.965896i \(0.416630\pi\)
\(620\) 2.87546e38i 0.231859i
\(621\) −7.68454e38 + 7.61560e38i −0.605808 + 0.600374i
\(622\) 3.80324e38 0.293149
\(623\) 3.37031e37i 0.0254002i
\(624\) −1.21432e38 4.55929e38i −0.0894849 0.335980i
\(625\) 6.76605e37 0.0487546
\(626\) 6.89975e38i 0.486175i
\(627\) 3.95632e38 1.05373e38i 0.272612 0.0726076i
\(628\) −9.66427e37 −0.0651229
\(629\) 2.00318e39i 1.32011i
\(630\) −9.25311e38 + 5.30529e38i −0.596376 + 0.341933i
\(631\) −2.08681e38 −0.131544 −0.0657722 0.997835i \(-0.520951\pi\)
−0.0657722 + 0.997835i \(0.520951\pi\)
\(632\) 6.42078e38i 0.395866i
\(633\) 7.76323e38 + 2.91478e39i 0.468156 + 1.75774i
\(634\) 1.33589e39 0.787991
\(635\) 1.60832e39i 0.927984i
\(636\) 2.45031e38 6.52615e37i 0.138299 0.0368347i
\(637\) −4.08752e39 −2.25688
\(638\) 6.21410e38i 0.335652i
\(639\) 5.29005e38 + 9.22652e38i 0.279542 + 0.487558i
\(640\) −1.02634e38 −0.0530603
\(641\) 2.91357e39i 1.47372i −0.676048 0.736858i \(-0.736309\pi\)
0.676048 0.736858i \(-0.263691\pi\)
\(642\) −2.08167e37 7.81585e37i −0.0103020 0.0386799i
\(643\) −2.74812e39 −1.33071 −0.665354 0.746528i \(-0.731719\pi\)
−0.665354 + 0.746528i \(0.731719\pi\)
\(644\) 1.45765e39i 0.690639i
\(645\) −8.60858e37 + 2.29281e37i −0.0399113 + 0.0106300i
\(646\) 1.90137e38 0.0862604
\(647\) 2.18990e39i 0.972220i 0.873898 + 0.486110i \(0.161585\pi\)
−0.873898 + 0.486110i \(0.838415\pi\)
\(648\) −7.02294e38 4.11115e38i −0.305119 0.178613i
\(649\) −2.77142e39 −1.17836
\(650\) 1.51166e39i 0.629026i
\(651\) −7.90580e38 2.96831e39i −0.321968 1.20886i
\(652\) 8.15328e38 0.324987
\(653\) 4.05184e39i 1.58077i 0.612612 + 0.790384i \(0.290119\pi\)
−0.612612 + 0.790384i \(0.709881\pi\)
\(654\) −9.68026e38 + 2.57824e38i −0.369657 + 0.0984544i
\(655\) 2.01117e39 0.751744
\(656\) 5.89164e38i 0.215567i
\(657\) 1.97156e39 1.13040e39i 0.706145 0.404870i
\(658\) −5.29601e38 −0.185689
\(659\) 2.53757e39i 0.871008i −0.900187 0.435504i \(-0.856570\pi\)
0.900187 0.435504i \(-0.143430\pi\)
\(660\) −4.31974e38 1.62189e39i −0.145159 0.545012i
\(661\) 2.66323e39 0.876168 0.438084 0.898934i \(-0.355657\pi\)
0.438084 + 0.898934i \(0.355657\pi\)
\(662\) 8.58913e38i 0.276654i
\(663\) 3.46262e39 9.22234e38i 1.09198 0.290838i
\(664\) 1.01211e38 0.0312519
\(665\) 4.82771e38i 0.145961i
\(666\) 1.93017e39 + 3.36646e39i 0.571421 + 0.996631i
\(667\) 7.43233e38 0.215458
\(668\) 2.91345e39i 0.827060i
\(669\) 6.32284e38 + 2.37397e39i 0.175771 + 0.659949i
\(670\) −1.95388e39 −0.531926
\(671\) 2.16858e39i 0.578175i
\(672\) −1.05948e39 + 2.82181e38i −0.276644 + 0.0736815i
\(673\) −1.05870e39 −0.270745 −0.135373 0.990795i \(-0.543223\pi\)
−0.135373 + 0.990795i \(0.543223\pi\)
\(674\) 4.69809e39i 1.17675i
\(675\) −1.83527e39 1.85189e39i −0.450244 0.454319i
\(676\) −1.94394e39 −0.467120
\(677\) 4.09319e38i 0.0963430i 0.998839 + 0.0481715i \(0.0153394\pi\)
−0.998839 + 0.0481715i \(0.984661\pi\)
\(678\) −8.54041e38 3.20658e39i −0.196908 0.739310i
\(679\) 6.44219e39 1.45498
\(680\) 7.79465e38i 0.172453i
\(681\) 9.35294e38 2.49106e38i 0.202716 0.0539915i
\(682\) 4.83379e39 1.02638
\(683\) 6.84805e39i 1.42455i 0.701901 + 0.712274i \(0.252335\pi\)
−0.701901 + 0.712274i \(0.747665\pi\)
\(684\) −3.19537e38 + 1.83207e38i −0.0651232 + 0.0373385i
\(685\) 5.01188e39 1.00077
\(686\) 3.64518e39i 0.713151i
\(687\) 7.49420e38 + 2.81377e39i 0.143658 + 0.539380i
\(688\) −9.15758e37 −0.0172006
\(689\) 2.16300e39i 0.398096i
\(690\) 1.93985e39 5.16659e38i 0.349849 0.0931787i
\(691\) −9.99115e39 −1.76572 −0.882862 0.469633i \(-0.844386\pi\)
−0.882862 + 0.469633i \(0.844386\pi\)
\(692\) 2.46413e39i 0.426756i
\(693\) −8.91846e39 1.55549e40i −1.51365 2.64000i
\(694\) 6.61456e39 1.10019
\(695\) 4.73359e39i 0.771619i
\(696\) 1.43880e38 + 5.40211e38i 0.0229864 + 0.0863046i
\(697\) −4.47449e39 −0.700623
\(698\) 6.46265e38i 0.0991824i
\(699\) 9.24851e39 2.46325e39i 1.39121 0.370534i
\(700\) −3.51277e39 −0.517937
\(701\) 2.12852e38i 0.0307628i 0.999882 + 0.0153814i \(0.00489624\pi\)
−0.999882 + 0.0153814i \(0.995104\pi\)
\(702\) −4.93052e39 + 4.88629e39i −0.698511 + 0.692245i
\(703\) 1.75642e39 0.243923
\(704\) 1.72532e39i 0.234884i
\(705\) 1.87715e38 + 7.04795e38i 0.0250526 + 0.0940623i
\(706\) −6.38672e39 −0.835627
\(707\) 9.43463e39i 1.21019i
\(708\) 2.40928e39 6.41687e38i 0.302985 0.0806970i
\(709\) 5.05202e39 0.622900 0.311450 0.950263i \(-0.399185\pi\)
0.311450 + 0.950263i \(0.399185\pi\)
\(710\) 1.97343e39i 0.238564i
\(711\) −8.19500e39 + 4.69862e39i −0.971348 + 0.556924i
\(712\) 4.77126e37 0.00554514
\(713\) 5.78142e39i 0.658841i
\(714\) −2.14307e39 8.04635e39i −0.239475 0.899133i
\(715\) −1.43172e40 −1.56882
\(716\) 6.61419e39i 0.710713i
\(717\) −1.67036e40 + 4.44885e39i −1.76012 + 0.468791i
\(718\) −4.60389e39 −0.475754
\(719\) 2.95353e39i 0.299320i 0.988737 + 0.149660i \(0.0478180\pi\)
−0.988737 + 0.149660i \(0.952182\pi\)
\(720\) 7.51056e38 + 1.30994e39i 0.0746479 + 0.130196i
\(721\) 2.40097e40 2.34041
\(722\) 7.22944e39i 0.691168i
\(723\) 1.39338e39 + 5.23159e39i 0.130658 + 0.490566i
\(724\) −4.87239e39 −0.448128
\(725\) 1.79111e39i 0.161581i
\(726\) 1.95430e40 5.20509e39i 1.72934 0.460591i
\(727\) −1.38473e40 −1.20195 −0.600973 0.799269i \(-0.705220\pi\)
−0.600973 + 0.799269i \(0.705220\pi\)
\(728\) 9.35251e39i 0.796323i
\(729\) −1.07886e38 + 1.19720e40i −0.00901115 + 0.999959i
\(730\) −4.21689e39 −0.345520
\(731\) 6.95485e38i 0.0559042i
\(732\) 5.02107e38 + 1.88521e39i 0.0395950 + 0.148663i
\(733\) 2.45542e40 1.89964 0.949819 0.312800i \(-0.101267\pi\)
0.949819 + 0.312800i \(0.101267\pi\)
\(734\) 1.95326e39i 0.148257i
\(735\) 1.26406e40 3.36671e39i 0.941339 0.250716i
\(736\) 2.06356e39 0.150774
\(737\) 3.28458e40i 2.35470i
\(738\) 7.51965e39 4.31141e39i 0.528943 0.303271i
\(739\) 1.37159e39 0.0946675 0.0473338 0.998879i \(-0.484928\pi\)
0.0473338 + 0.998879i \(0.484928\pi\)
\(740\) 7.20041e39i 0.487656i
\(741\) 8.08628e38 + 3.03607e39i 0.0537396 + 0.201770i
\(742\) −5.02633e39 −0.327791
\(743\) 5.17409e39i 0.331124i 0.986199 + 0.165562i \(0.0529437\pi\)
−0.986199 + 0.165562i \(0.947056\pi\)
\(744\) −4.20216e39 + 1.11920e39i −0.263907 + 0.0702891i
\(745\) −8.91426e39 −0.549411
\(746\) 2.94622e39i 0.178206i
\(747\) −7.40649e38 1.29179e39i −0.0439667 0.0766837i
\(748\) 1.31032e40 0.763405
\(749\) 1.60327e39i 0.0916772i
\(750\) 3.19167e39 + 1.19834e40i 0.179127 + 0.672548i