Properties

Label 6.29.b.a.5.7
Level $6$
Weight $29$
Character 6.5
Analytic conductor $29.801$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,29,Mod(5,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 29, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.5");
 
S:= CuspForms(chi, 29);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 29 \)
Character orbit: \([\chi]\) \(=\) 6.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8010845489\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{85}\cdot 3^{50}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5.7
Root \(-9.36298e8i\) of defining polynomial
Character \(\chi\) \(=\) 6.5
Dual form 6.29.b.a.5.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11585.2i q^{2} +(-4.35859e6 + 1.96965e6i) q^{3} -1.34218e8 q^{4} -1.12356e10i q^{5} +(-2.28189e10 - 5.04953e10i) q^{6} -1.18961e12 q^{7} -1.55494e12i q^{8} +(1.51177e13 - 1.71698e13i) q^{9} +O(q^{10})\) \(q+11585.2i q^{2} +(-4.35859e6 + 1.96965e6i) q^{3} -1.34218e8 q^{4} -1.12356e10i q^{5} +(-2.28189e10 - 5.04953e10i) q^{6} -1.18961e12 q^{7} -1.55494e12i q^{8} +(1.51177e13 - 1.71698e13i) q^{9} +1.30167e14 q^{10} -7.26184e13i q^{11} +(5.84999e14 - 2.64362e14i) q^{12} +6.18816e13 q^{13} -1.37819e16i q^{14} +(2.21302e16 + 4.89712e16i) q^{15} +1.80144e16 q^{16} -1.78815e16i q^{17} +(1.98916e17 + 1.75143e17i) q^{18} -6.53439e17 q^{19} +1.50801e18i q^{20} +(5.18502e18 - 2.34312e18i) q^{21} +8.41301e17 q^{22} -4.84413e18i q^{23} +(3.06270e18 + 6.77736e18i) q^{24} -8.89854e19 q^{25} +7.16913e17i q^{26} +(-3.20736e19 + 1.04613e20i) q^{27} +1.59667e20 q^{28} +7.23820e19i q^{29} +(-5.67344e20 + 2.56383e20i) q^{30} +5.33611e20 q^{31} +2.08701e20i q^{32} +(1.43033e20 + 3.16513e20i) q^{33} +2.07161e20 q^{34} +1.33660e22i q^{35} +(-2.02907e21 + 2.30449e21i) q^{36} -1.51306e22 q^{37} -7.57025e21i q^{38} +(-2.69716e20 + 1.21885e20i) q^{39} -1.74707e22 q^{40} +1.91635e22i q^{41} +(2.71456e22 + 6.00697e22i) q^{42} +6.04146e22 q^{43} +9.74667e21i q^{44} +(-1.92912e23 - 1.69857e23i) q^{45} +5.61204e22 q^{46} +1.56986e23i q^{47} +(-7.85173e22 + 3.54821e22i) q^{48} +9.55188e23 q^{49} -1.03092e24i q^{50} +(3.52203e22 + 7.79380e22i) q^{51} -8.30560e21 q^{52} -2.41519e24i q^{53} +(-1.21196e24 - 3.71580e23i) q^{54} -8.15910e23 q^{55} +1.84978e24i q^{56} +(2.84807e24 - 1.28705e24i) q^{57} -8.38562e23 q^{58} +7.50433e24i q^{59} +(-2.97026e24 - 6.57281e24i) q^{60} +1.13291e25 q^{61} +6.18202e24i q^{62} +(-1.79842e25 + 2.04254e25i) q^{63} -2.41785e24 q^{64} -6.95275e23i q^{65} +(-3.66688e24 + 1.65707e24i) q^{66} +3.22479e25 q^{67} +2.40001e24i q^{68} +(9.54125e24 + 2.11136e25i) q^{69} -1.54848e26 q^{70} +9.01137e25i q^{71} +(-2.66980e25 - 2.35073e25i) q^{72} -3.71878e25 q^{73} -1.75292e26i q^{74} +(3.87851e26 - 1.75270e26i) q^{75} +8.77032e25 q^{76} +8.63876e25i q^{77} +(-1.41207e24 - 3.12472e24i) q^{78} +3.19573e26 q^{79} -2.02402e26i q^{80} +(-6.62549e25 - 5.19137e26i) q^{81} -2.22014e26 q^{82} -7.54394e25i q^{83} +(-6.95922e26 + 3.14488e26i) q^{84} -2.00909e26 q^{85} +6.99918e26i q^{86} +(-1.42567e26 - 3.15483e26i) q^{87} -1.12918e26 q^{88} +2.01092e27i q^{89} +(1.96783e27 - 2.23494e27i) q^{90} -7.36150e25 q^{91} +6.50169e26i q^{92} +(-2.32579e27 + 1.05103e27i) q^{93} -1.81872e27 q^{94} +7.34177e27i q^{95} +(-4.11068e26 - 9.09642e26i) q^{96} -6.38716e26 q^{97} +1.10661e28i q^{98} +(-1.24684e27 - 1.09783e27i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9} - 27967405817856 q^{10} + 11\!\cdots\!48 q^{12}+ \cdots - 23\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11585.2i 0.707107i
\(3\) −4.35859e6 + 1.96965e6i −0.911272 + 0.411805i
\(4\) −1.34218e8 −0.500000
\(5\) 1.12356e10i 1.84084i −0.390934 0.920419i \(-0.627848\pi\)
0.390934 0.920419i \(-0.372152\pi\)
\(6\) −2.28189e10 5.04953e10i −0.291190 0.644367i
\(7\) −1.18961e12 −1.75401 −0.877006 0.480480i \(-0.840463\pi\)
−0.877006 + 0.480480i \(0.840463\pi\)
\(8\) 1.55494e12i 0.353553i
\(9\) 1.51177e13 1.71698e13i 0.660833 0.750533i
\(10\) 1.30167e14 1.30167
\(11\) 7.26184e13i 0.191227i −0.995419 0.0956135i \(-0.969519\pi\)
0.995419 0.0956135i \(-0.0304813\pi\)
\(12\) 5.84999e14 2.64362e14i 0.455636 0.205902i
\(13\) 6.18816e13 0.0157164 0.00785822 0.999969i \(-0.497499\pi\)
0.00785822 + 0.999969i \(0.497499\pi\)
\(14\) 1.37819e16i 1.24027i
\(15\) 2.21302e16 + 4.89712e16i 0.758066 + 1.67750i
\(16\) 1.80144e16 0.250000
\(17\) 1.78815e16i 0.106199i −0.998589 0.0530993i \(-0.983090\pi\)
0.998589 0.0530993i \(-0.0169100\pi\)
\(18\) 1.98916e17 + 1.75143e17i 0.530707 + 0.467280i
\(19\) −6.53439e17 −0.817815 −0.408907 0.912576i \(-0.634090\pi\)
−0.408907 + 0.912576i \(0.634090\pi\)
\(20\) 1.50801e18i 0.920419i
\(21\) 5.18502e18 2.34312e18i 1.59838 0.722311i
\(22\) 8.41301e17 0.135218
\(23\) 4.84413e18i 0.417856i −0.977931 0.208928i \(-0.933003\pi\)
0.977931 0.208928i \(-0.0669974\pi\)
\(24\) 3.06270e18 + 6.77736e18i 0.145595 + 0.322183i
\(25\) −8.89854e19 −2.38868
\(26\) 7.16913e17i 0.0111132i
\(27\) −3.20736e19 + 1.04613e20i −0.293126 + 0.956074i
\(28\) 1.59667e20 0.877006
\(29\) 7.23820e19i 0.243253i 0.992576 + 0.121627i \(0.0388110\pi\)
−0.992576 + 0.121627i \(0.961189\pi\)
\(30\) −5.67344e20 + 2.56383e20i −1.18617 + 0.536034i
\(31\) 5.33611e20 0.704955 0.352478 0.935820i \(-0.385339\pi\)
0.352478 + 0.935820i \(0.385339\pi\)
\(32\) 2.08701e20i 0.176777i
\(33\) 1.43033e20 + 3.16513e20i 0.0787482 + 0.174260i
\(34\) 2.07161e20 0.0750937
\(35\) 1.33660e22i 3.22885i
\(36\) −2.02907e21 + 2.30449e21i −0.330417 + 0.375266i
\(37\) −1.51306e22 −1.67893 −0.839464 0.543416i \(-0.817131\pi\)
−0.839464 + 0.543416i \(0.817131\pi\)
\(38\) 7.57025e21i 0.578282i
\(39\) −2.69716e20 + 1.21885e20i −0.0143220 + 0.00647211i
\(40\) −1.74707e22 −0.650834
\(41\) 1.91635e22i 0.505245i 0.967565 + 0.252622i \(0.0812930\pi\)
−0.967565 + 0.252622i \(0.918707\pi\)
\(42\) 2.71456e22 + 6.00697e22i 0.510751 + 1.13023i
\(43\) 6.04146e22 0.817681 0.408840 0.912606i \(-0.365933\pi\)
0.408840 + 0.912606i \(0.365933\pi\)
\(44\) 9.74667e21i 0.0956135i
\(45\) −1.92912e23 1.69857e23i −1.38161 1.21649i
\(46\) 5.61204e22 0.295469
\(47\) 1.56986e23i 0.611632i 0.952091 + 0.305816i \(0.0989293\pi\)
−0.952091 + 0.305816i \(0.901071\pi\)
\(48\) −7.85173e22 + 3.54821e22i −0.227818 + 0.102951i
\(49\) 9.55188e23 2.07656
\(50\) 1.03092e24i 1.68905i
\(51\) 3.52203e22 + 7.79380e22i 0.0437331 + 0.0967758i
\(52\) −8.30560e21 −0.00785822
\(53\) 2.41519e24i 1.75021i −0.483937 0.875103i \(-0.660794\pi\)
0.483937 0.875103i \(-0.339206\pi\)
\(54\) −1.21196e24 3.71580e23i −0.676046 0.207271i
\(55\) −8.15910e23 −0.352018
\(56\) 1.84978e24i 0.620137i
\(57\) 2.84807e24 1.28705e24i 0.745252 0.336780i
\(58\) −8.38562e23 −0.172006
\(59\) 7.50433e24i 1.21167i 0.795591 + 0.605834i \(0.207161\pi\)
−0.795591 + 0.605834i \(0.792839\pi\)
\(60\) −2.97026e24 6.57281e24i −0.379033 0.838752i
\(61\) 1.13291e25 1.14704 0.573520 0.819191i \(-0.305577\pi\)
0.573520 + 0.819191i \(0.305577\pi\)
\(62\) 6.18202e24i 0.498478i
\(63\) −1.79842e25 + 2.04254e25i −1.15911 + 1.31644i
\(64\) −2.41785e24 −0.125000
\(65\) 6.95275e23i 0.0289314i
\(66\) −3.66688e24 + 1.65707e24i −0.123220 + 0.0556834i
\(67\) 3.22479e25 0.877919 0.438960 0.898507i \(-0.355347\pi\)
0.438960 + 0.898507i \(0.355347\pi\)
\(68\) 2.40001e24i 0.0530993i
\(69\) 9.54125e24 + 2.11136e25i 0.172075 + 0.380780i
\(70\) −1.54848e26 −2.28314
\(71\) 9.01137e25i 1.08937i 0.838642 + 0.544683i \(0.183350\pi\)
−0.838642 + 0.544683i \(0.816650\pi\)
\(72\) −2.66980e25 2.35073e25i −0.265353 0.233640i
\(73\) −3.71878e25 −0.304705 −0.152353 0.988326i \(-0.548685\pi\)
−0.152353 + 0.988326i \(0.548685\pi\)
\(74\) 1.75292e26i 1.18718i
\(75\) 3.87851e26 1.75270e26i 2.17674 0.983672i
\(76\) 8.77032e25 0.408907
\(77\) 8.63876e25i 0.335414i
\(78\) −1.41207e24 3.12472e24i −0.00457647 0.0101272i
\(79\) 3.19573e26 0.866544 0.433272 0.901263i \(-0.357359\pi\)
0.433272 + 0.901263i \(0.357359\pi\)
\(80\) 2.02402e26i 0.460209i
\(81\) −6.62549e25 5.19137e26i −0.126598 0.991954i
\(82\) −2.22014e26 −0.357262
\(83\) 7.54394e25i 0.102448i −0.998687 0.0512242i \(-0.983688\pi\)
0.998687 0.0512242i \(-0.0163123\pi\)
\(84\) −6.95922e26 + 3.14488e26i −0.799191 + 0.361155i
\(85\) −2.00909e26 −0.195494
\(86\) 6.99918e26i 0.578188i
\(87\) −1.42567e26 3.15483e26i −0.100173 0.221670i
\(88\) −1.12918e26 −0.0676089
\(89\) 2.01092e27i 1.02786i 0.857832 + 0.513930i \(0.171811\pi\)
−0.857832 + 0.513930i \(0.828189\pi\)
\(90\) 1.96783e27 2.23494e27i 0.860186 0.976945i
\(91\) −7.36150e25 −0.0275668
\(92\) 6.50169e26i 0.208928i
\(93\) −2.32579e27 + 1.05103e27i −0.642406 + 0.290304i
\(94\) −1.81872e27 −0.432489
\(95\) 7.34177e27i 1.50546i
\(96\) −4.11068e26 9.09642e26i −0.0727975 0.161092i
\(97\) −6.38716e26 −0.0978371 −0.0489185 0.998803i \(-0.515577\pi\)
−0.0489185 + 0.998803i \(0.515577\pi\)
\(98\) 1.10661e28i 1.46835i
\(99\) −1.24684e27 1.09783e27i −0.143522 0.126369i
\(100\) 1.19434e28 1.19434
\(101\) 1.50287e28i 1.30744i −0.756737 0.653720i \(-0.773207\pi\)
0.756737 0.653720i \(-0.226793\pi\)
\(102\) −9.02930e26 + 4.08035e26i −0.0684308 + 0.0309240i
\(103\) −5.77006e27 −0.381469 −0.190734 0.981642i \(-0.561087\pi\)
−0.190734 + 0.981642i \(0.561087\pi\)
\(104\) 9.62224e25i 0.00555660i
\(105\) −2.63263e28 5.82567e28i −1.32966 2.94236i
\(106\) 2.79806e28 1.23758
\(107\) 3.90697e28i 1.51519i 0.652726 + 0.757594i \(0.273625\pi\)
−0.652726 + 0.757594i \(0.726375\pi\)
\(108\) 4.30484e27 1.40409e28i 0.146563 0.478037i
\(109\) −5.36045e27 −0.160410 −0.0802048 0.996778i \(-0.525557\pi\)
−0.0802048 + 0.996778i \(0.525557\pi\)
\(110\) 9.45251e27i 0.248914i
\(111\) 6.59480e28 2.98020e28i 1.52996 0.691391i
\(112\) −2.14301e28 −0.438503
\(113\) 4.13550e28i 0.747188i 0.927592 + 0.373594i \(0.121875\pi\)
−0.927592 + 0.373594i \(0.878125\pi\)
\(114\) 1.49107e28 + 3.29956e28i 0.238140 + 0.526973i
\(115\) −5.44267e28 −0.769205
\(116\) 9.71495e27i 0.121627i
\(117\) 9.35510e26 1.06249e27i 0.0103860 0.0117957i
\(118\) −8.69395e28 −0.856779
\(119\) 2.12720e28i 0.186273i
\(120\) 7.61476e28 3.44112e28i 0.593087 0.268017i
\(121\) 1.38937e29 0.963432
\(122\) 1.31251e29i 0.811080i
\(123\) −3.77455e28 8.35259e28i −0.208062 0.460415i
\(124\) −7.16201e28 −0.352478
\(125\) 5.81245e29i 2.55634i
\(126\) −2.36633e29 2.08352e29i −0.930866 0.819614i
\(127\) −2.33569e29 −0.822551 −0.411276 0.911511i \(-0.634917\pi\)
−0.411276 + 0.911511i \(0.634917\pi\)
\(128\) 2.80114e28i 0.0883883i
\(129\) −2.63322e29 + 1.18996e29i −0.745130 + 0.336725i
\(130\) 8.05493e27 0.0204576
\(131\) 7.14747e29i 1.63063i −0.579021 0.815313i \(-0.696565\pi\)
0.579021 0.815313i \(-0.303435\pi\)
\(132\) −1.91975e28 4.24817e28i −0.0393741 0.0871299i
\(133\) 7.77339e29 1.43446
\(134\) 3.73600e29i 0.620783i
\(135\) 1.17538e30 + 3.60365e29i 1.75998 + 0.539597i
\(136\) −2.78047e28 −0.0375469
\(137\) 5.49591e29i 0.669810i −0.942252 0.334905i \(-0.891296\pi\)
0.942252 0.334905i \(-0.108704\pi\)
\(138\) −2.44606e29 + 1.10538e29i −0.269252 + 0.121675i
\(139\) 3.73371e29 0.371478 0.185739 0.982599i \(-0.440532\pi\)
0.185739 + 0.982599i \(0.440532\pi\)
\(140\) 1.79395e30i 1.61443i
\(141\) −3.09207e29 6.84236e29i −0.251873 0.557363i
\(142\) −1.04399e30 −0.770298
\(143\) 4.49374e27i 0.00300541i
\(144\) 2.72337e29 3.09303e29i 0.165208 0.187633i
\(145\) 8.13254e29 0.447790
\(146\) 4.30829e29i 0.215459i
\(147\) −4.16327e30 + 1.88139e30i −1.89231 + 0.855136i
\(148\) 2.03079e30 0.839464
\(149\) 2.20879e29i 0.0830898i −0.999137 0.0415449i \(-0.986772\pi\)
0.999137 0.0415449i \(-0.0132280\pi\)
\(150\) 2.03055e30 + 4.49334e30i 0.695561 + 1.53919i
\(151\) −1.58187e30 −0.493735 −0.246868 0.969049i \(-0.579401\pi\)
−0.246868 + 0.969049i \(0.579401\pi\)
\(152\) 1.01606e30i 0.289141i
\(153\) −3.07021e29 2.70328e29i −0.0797055 0.0701795i
\(154\) −1.00082e30 −0.237174
\(155\) 5.99544e30i 1.29771i
\(156\) 3.62007e28 1.63591e28i 0.00716098 0.00323605i
\(157\) −2.40704e30 −0.435400 −0.217700 0.976016i \(-0.569855\pi\)
−0.217700 + 0.976016i \(0.569855\pi\)
\(158\) 3.70233e30i 0.612739i
\(159\) 4.75708e30 + 1.05268e31i 0.720743 + 1.59491i
\(160\) 2.34488e30 0.325417
\(161\) 5.76263e30i 0.732924i
\(162\) 6.01432e30 7.67579e29i 0.701417 0.0895186i
\(163\) −1.12567e31 −1.20444 −0.602218 0.798332i \(-0.705716\pi\)
−0.602218 + 0.798332i \(0.705716\pi\)
\(164\) 2.57209e30i 0.252622i
\(165\) 3.55621e30 1.60706e30i 0.320784 0.144963i
\(166\) 8.73983e29 0.0724419
\(167\) 1.74273e31i 1.32801i −0.747729 0.664004i \(-0.768856\pi\)
0.747729 0.664004i \(-0.231144\pi\)
\(168\) −3.64342e30 8.06242e30i −0.255375 0.565113i
\(169\) −1.54991e31 −0.999753
\(170\) 2.32758e30i 0.138235i
\(171\) −9.87853e30 + 1.12194e31i −0.540439 + 0.613797i
\(172\) −8.10871e30 −0.408840
\(173\) 2.02028e31i 0.939218i −0.882874 0.469609i \(-0.844395\pi\)
0.882874 0.469609i \(-0.155605\pi\)
\(174\) 3.65495e30 1.65167e30i 0.156744 0.0708329i
\(175\) 1.05858e32 4.18978
\(176\) 1.30818e30i 0.0478067i
\(177\) −1.47809e31 3.27083e31i −0.498971 1.10416i
\(178\) −2.32969e31 −0.726806
\(179\) 2.01141e31i 0.580174i −0.957000 0.290087i \(-0.906316\pi\)
0.957000 0.290087i \(-0.0936843\pi\)
\(180\) 2.58923e31 + 2.27978e31i 0.690804 + 0.608244i
\(181\) −2.30163e31 −0.568245 −0.284122 0.958788i \(-0.591702\pi\)
−0.284122 + 0.958788i \(0.591702\pi\)
\(182\) 8.52847e29i 0.0194927i
\(183\) −4.93790e31 + 2.23144e31i −1.04527 + 0.472357i
\(184\) −7.53236e30 −0.147734
\(185\) 1.70001e32i 3.09063i
\(186\) −1.21764e31 2.69448e31i −0.205276 0.454250i
\(187\) −1.29852e30 −0.0203080
\(188\) 2.10703e31i 0.305816i
\(189\) 3.81551e31 1.24448e32i 0.514146 1.67696i
\(190\) −8.50562e31 −1.06452
\(191\) 1.50815e32i 1.75379i 0.480682 + 0.876895i \(0.340389\pi\)
−0.480682 + 0.876895i \(0.659611\pi\)
\(192\) 1.05384e31 4.76232e30i 0.113909 0.0514756i
\(193\) 1.17307e32 1.17902 0.589511 0.807760i \(-0.299320\pi\)
0.589511 + 0.807760i \(0.299320\pi\)
\(194\) 7.39968e30i 0.0691813i
\(195\) 1.36945e30 + 3.03042e30i 0.0119141 + 0.0263644i
\(196\) −1.28203e32 −1.03828
\(197\) 8.64009e31i 0.651615i −0.945436 0.325808i \(-0.894364\pi\)
0.945436 0.325808i \(-0.105636\pi\)
\(198\) 1.27186e31 1.44450e31i 0.0893565 0.101485i
\(199\) −1.14537e32 −0.749902 −0.374951 0.927045i \(-0.622340\pi\)
−0.374951 + 0.927045i \(0.622340\pi\)
\(200\) 1.38367e32i 0.844527i
\(201\) −1.40555e32 + 6.35171e31i −0.800023 + 0.361531i
\(202\) 1.74111e32 0.924500
\(203\) 8.61064e31i 0.426669i
\(204\) −4.72718e30 1.04607e31i −0.0218665 0.0483879i
\(205\) 2.15313e32 0.930073
\(206\) 6.68475e31i 0.269739i
\(207\) −8.31727e31 7.32324e31i −0.313614 0.276133i
\(208\) 1.11476e30 0.00392911
\(209\) 4.74517e31i 0.156388i
\(210\) 6.74918e32 3.04996e32i 2.08056 0.940209i
\(211\) 1.97044e32 0.568342 0.284171 0.958774i \(-0.408282\pi\)
0.284171 + 0.958774i \(0.408282\pi\)
\(212\) 3.24161e32i 0.875103i
\(213\) −1.77492e32 3.92768e32i −0.448606 0.992709i
\(214\) −4.52631e32 −1.07140
\(215\) 6.78794e32i 1.50522i
\(216\) 1.62667e32 + 4.98726e31i 0.338023 + 0.103636i
\(217\) −6.34790e32 −1.23650
\(218\) 6.21021e31i 0.113427i
\(219\) 1.62086e32 7.32469e31i 0.277669 0.125479i
\(220\) 1.09510e32 0.176009
\(221\) 1.10653e30i 0.00166906i
\(222\) 3.45263e32 + 7.64023e32i 0.488887 + 1.08184i
\(223\) 1.54709e32 0.205706 0.102853 0.994697i \(-0.467203\pi\)
0.102853 + 0.994697i \(0.467203\pi\)
\(224\) 2.48273e32i 0.310068i
\(225\) −1.34526e33 + 1.52786e33i −1.57852 + 1.79278i
\(226\) −4.79108e32 −0.528342
\(227\) 1.07480e33i 1.11421i 0.830442 + 0.557105i \(0.188088\pi\)
−0.830442 + 0.557105i \(0.811912\pi\)
\(228\) −3.82262e32 + 1.72745e32i −0.372626 + 0.168390i
\(229\) 1.15263e33 1.05680 0.528398 0.848997i \(-0.322793\pi\)
0.528398 + 0.848997i \(0.322793\pi\)
\(230\) 6.30546e32i 0.543910i
\(231\) −1.70153e32 3.76528e32i −0.138125 0.305654i
\(232\) 1.12550e32 0.0860030
\(233\) 1.22762e31i 0.00883241i 0.999990 + 0.00441621i \(0.00140573\pi\)
−0.999990 + 0.00441621i \(0.998594\pi\)
\(234\) 1.23092e31 + 1.08381e31i 0.00834082 + 0.00734398i
\(235\) 1.76383e33 1.12592
\(236\) 1.00721e33i 0.605834i
\(237\) −1.39289e33 + 6.29447e32i −0.789658 + 0.356847i
\(238\) −2.46441e32 −0.131715
\(239\) 1.04695e33i 0.527662i 0.964569 + 0.263831i \(0.0849861\pi\)
−0.964569 + 0.263831i \(0.915014\pi\)
\(240\) 3.98662e32 + 8.82188e32i 0.189517 + 0.419376i
\(241\) 4.90866e32 0.220153 0.110077 0.993923i \(-0.464890\pi\)
0.110077 + 0.993923i \(0.464890\pi\)
\(242\) 1.60961e33i 0.681249i
\(243\) 1.31130e33 + 2.13220e33i 0.523857 + 0.851806i
\(244\) −1.52057e33 −0.573520
\(245\) 1.07321e34i 3.82260i
\(246\) 9.67668e32 4.37290e32i 0.325563 0.147122i
\(247\) −4.04358e31 −0.0128531
\(248\) 8.29736e32i 0.249239i
\(249\) 1.48589e32 + 3.28809e32i 0.0421887 + 0.0933583i
\(250\) −6.73386e33 −1.80761
\(251\) 3.88273e33i 0.985611i 0.870140 + 0.492805i \(0.164029\pi\)
−0.870140 + 0.492805i \(0.835971\pi\)
\(252\) 2.41380e33 2.74145e33i 0.579555 0.658221i
\(253\) −3.51773e32 −0.0799053
\(254\) 2.70595e33i 0.581632i
\(255\) 8.75678e32 3.95720e32i 0.178148 0.0805055i
\(256\) 3.24519e32 0.0625000
\(257\) 1.26561e33i 0.230801i 0.993319 + 0.115400i \(0.0368151\pi\)
−0.993319 + 0.115400i \(0.963185\pi\)
\(258\) −1.37859e33 3.05065e33i −0.238100 0.526886i
\(259\) 1.79995e34 2.94486
\(260\) 9.33183e31i 0.0144657i
\(261\) 1.24278e33 + 1.09425e33i 0.182569 + 0.160750i
\(262\) 8.28051e33 1.15303
\(263\) 9.29154e33i 1.22661i 0.789845 + 0.613306i \(0.210161\pi\)
−0.789845 + 0.613306i \(0.789839\pi\)
\(264\) 4.92161e32 2.22408e32i 0.0616101 0.0278417i
\(265\) −2.71361e34 −3.22185
\(266\) 9.00566e33i 1.01431i
\(267\) −3.96080e33 8.76475e33i −0.423278 0.936659i
\(268\) −4.32824e33 −0.438960
\(269\) 5.33998e31i 0.00514053i −0.999997 0.00257027i \(-0.999182\pi\)
0.999997 0.00257027i \(-0.000818142\pi\)
\(270\) −4.17491e33 + 1.36171e34i −0.381553 + 1.24449i
\(271\) −6.49866e32 −0.0563967 −0.0281983 0.999602i \(-0.508977\pi\)
−0.0281983 + 0.999602i \(0.508977\pi\)
\(272\) 3.22124e32i 0.0265496i
\(273\) 3.20857e32 1.44996e32i 0.0251209 0.0113522i
\(274\) 6.36714e33 0.473627
\(275\) 6.46198e33i 0.456781i
\(276\) −1.28060e33 2.83382e33i −0.0860375 0.190390i
\(277\) −1.45602e34 −0.929934 −0.464967 0.885328i \(-0.653934\pi\)
−0.464967 + 0.885328i \(0.653934\pi\)
\(278\) 4.32559e33i 0.262675i
\(279\) 8.06700e33 9.16199e33i 0.465858 0.529092i
\(280\) 2.07833e34 1.14157
\(281\) 2.36139e34i 1.23390i 0.787004 + 0.616948i \(0.211631\pi\)
−0.787004 + 0.616948i \(0.788369\pi\)
\(282\) 7.92704e33 3.58224e33i 0.394115 0.178101i
\(283\) −1.69012e34 −0.799666 −0.399833 0.916588i \(-0.630932\pi\)
−0.399833 + 0.916588i \(0.630932\pi\)
\(284\) 1.20949e34i 0.544683i
\(285\) −1.44607e34 3.19997e34i −0.619958 1.37189i
\(286\) 5.20610e31 0.00212514
\(287\) 2.27972e34i 0.886205i
\(288\) 3.58335e33 + 3.15509e33i 0.132677 + 0.116820i
\(289\) 2.80313e34 0.988722
\(290\) 9.42174e33i 0.316635i
\(291\) 2.78390e33 1.25805e33i 0.0891562 0.0402898i
\(292\) 4.99126e33 0.152353
\(293\) 1.15438e34i 0.335894i 0.985796 + 0.167947i \(0.0537137\pi\)
−0.985796 + 0.167947i \(0.946286\pi\)
\(294\) −2.17963e34 4.82325e34i −0.604673 1.33806i
\(295\) 8.43155e34 2.23049
\(296\) 2.35272e34i 0.593591i
\(297\) 7.59680e33 + 2.32913e33i 0.182827 + 0.0560536i
\(298\) 2.55894e33 0.0587533
\(299\) 2.99762e32i 0.00656721i
\(300\) −5.20564e34 + 2.35244e34i −1.08837 + 0.491836i
\(301\) −7.18699e34 −1.43422
\(302\) 1.83264e34i 0.349123i
\(303\) 2.96013e34 + 6.55038e34i 0.538410 + 1.19143i
\(304\) −1.17713e34 −0.204454
\(305\) 1.27289e35i 2.11152i
\(306\) 3.13181e33 3.55691e33i 0.0496244 0.0563603i
\(307\) −7.77942e34 −1.17763 −0.588816 0.808267i \(-0.700406\pi\)
−0.588816 + 0.808267i \(0.700406\pi\)
\(308\) 1.15948e34i 0.167707i
\(309\) 2.51493e34 1.13650e34i 0.347622 0.157091i
\(310\) 6.94585e34 0.917618
\(311\) 4.60627e34i 0.581707i 0.956768 + 0.290854i \(0.0939393\pi\)
−0.956768 + 0.290854i \(0.906061\pi\)
\(312\) 1.89524e32 + 4.19393e32i 0.00228824 + 0.00506358i
\(313\) −1.01682e35 −1.17388 −0.586940 0.809630i \(-0.699668\pi\)
−0.586940 + 0.809630i \(0.699668\pi\)
\(314\) 2.78861e34i 0.307874i
\(315\) 2.29491e35 + 2.02063e35i 2.42336 + 2.13373i
\(316\) −4.28924e34 −0.433272
\(317\) 1.77674e35i 1.71709i 0.512735 + 0.858547i \(0.328632\pi\)
−0.512735 + 0.858547i \(0.671368\pi\)
\(318\) −1.21956e35 + 5.51119e34i −1.12777 + 0.509643i
\(319\) 5.25626e33 0.0465166
\(320\) 2.71660e34i 0.230105i
\(321\) −7.69536e34 1.70288e35i −0.623962 1.38075i
\(322\) −6.67615e34 −0.518255
\(323\) 1.16845e34i 0.0868507i
\(324\) 8.89259e33 + 6.96774e34i 0.0632992 + 0.495977i
\(325\) −5.50656e33 −0.0375416
\(326\) 1.30411e35i 0.851664i
\(327\) 2.33640e34 1.05582e34i 0.146177 0.0660575i
\(328\) 2.97982e34 0.178631
\(329\) 1.86752e35i 1.07281i
\(330\) 1.86181e34 + 4.11996e34i 0.102504 + 0.226828i
\(331\) 3.00578e35 1.58622 0.793112 0.609076i \(-0.208459\pi\)
0.793112 + 0.609076i \(0.208459\pi\)
\(332\) 1.01253e34i 0.0512242i
\(333\) −2.28741e35 + 2.59789e35i −1.10949 + 1.26009i
\(334\) 2.01900e35 0.939043
\(335\) 3.62324e35i 1.61611i
\(336\) 9.34051e34 4.22099e34i 0.399595 0.180578i
\(337\) 7.94950e34 0.326228 0.163114 0.986607i \(-0.447846\pi\)
0.163114 + 0.986607i \(0.447846\pi\)
\(338\) 1.79561e35i 0.706932i
\(339\) −8.14549e34 1.80249e35i −0.307696 0.680891i
\(340\) 2.69655e34 0.0977471
\(341\) 3.87500e34i 0.134806i
\(342\) −1.29980e35 1.14445e35i −0.434020 0.382148i
\(343\) −5.89098e35 −1.88829
\(344\) 9.39414e34i 0.289094i
\(345\) 2.37223e35 1.07201e35i 0.700955 0.316762i
\(346\) 2.34055e35 0.664128
\(347\) 1.09794e35i 0.299203i 0.988746 + 0.149601i \(0.0477990\pi\)
−0.988746 + 0.149601i \(0.952201\pi\)
\(348\) 1.91350e34 + 4.23434e34i 0.0500864 + 0.110835i
\(349\) −5.32192e35 −1.33817 −0.669087 0.743184i \(-0.733315\pi\)
−0.669087 + 0.743184i \(0.733315\pi\)
\(350\) 1.22639e36i 2.96262i
\(351\) −1.98476e33 + 6.47359e33i −0.00460690 + 0.0150261i
\(352\) 1.51555e34 0.0338045
\(353\) 1.09696e35i 0.235150i −0.993064 0.117575i \(-0.962488\pi\)
0.993064 0.117575i \(-0.0375121\pi\)
\(354\) 3.78933e35 1.71240e35i 0.780759 0.352826i
\(355\) 1.01248e36 2.00535
\(356\) 2.69900e35i 0.513930i
\(357\) −4.18984e34 9.27159e34i −0.0767083 0.169746i
\(358\) 2.33027e35 0.410245
\(359\) 1.82069e35i 0.308258i 0.988051 + 0.154129i \(0.0492572\pi\)
−0.988051 + 0.154129i \(0.950743\pi\)
\(360\) −2.64118e35 + 2.99968e35i −0.430093 + 0.488472i
\(361\) −2.11429e35 −0.331179
\(362\) 2.66649e35i 0.401810i
\(363\) −6.05567e35 + 2.73656e35i −0.877949 + 0.396746i
\(364\) 9.88044e33 0.0137834
\(365\) 4.17826e35i 0.560913i
\(366\) −2.58518e35 5.72067e35i −0.334007 0.739115i
\(367\) −8.45017e35 −1.05085 −0.525425 0.850840i \(-0.676094\pi\)
−0.525425 + 0.850840i \(0.676094\pi\)
\(368\) 8.72641e34i 0.104464i
\(369\) 3.29034e35 + 2.89710e35i 0.379203 + 0.333883i
\(370\) −1.96950e36 −2.18541
\(371\) 2.87314e36i 3.06988i
\(372\) 3.12162e35 1.41067e35i 0.321203 0.145152i
\(373\) 1.83618e36 1.81967 0.909834 0.414973i \(-0.136209\pi\)
0.909834 + 0.414973i \(0.136209\pi\)
\(374\) 1.50437e34i 0.0143599i
\(375\) −1.14485e36 2.53340e36i −1.05271 2.32952i
\(376\) 2.44104e35 0.216245
\(377\) 4.47911e33i 0.00382307i
\(378\) 1.44176e36 + 4.42035e35i 1.18579 + 0.363556i
\(379\) 1.45479e35 0.115306 0.0576530 0.998337i \(-0.481638\pi\)
0.0576530 + 0.998337i \(0.481638\pi\)
\(380\) 9.85396e35i 0.752732i
\(381\) 1.01803e36 4.60049e35i 0.749568 0.338731i
\(382\) −1.74723e36 −1.24012
\(383\) 1.90800e36i 1.30556i −0.757549 0.652779i \(-0.773603\pi\)
0.757549 0.652779i \(-0.226397\pi\)
\(384\) 5.51726e34 + 1.22090e35i 0.0363988 + 0.0805458i
\(385\) 9.70615e35 0.617443
\(386\) 1.35903e36i 0.833695i
\(387\) 9.13333e35 1.03731e36i 0.540351 0.613696i
\(388\) 8.57270e34 0.0489185
\(389\) 4.28572e35i 0.235901i −0.993020 0.117950i \(-0.962368\pi\)
0.993020 0.117950i \(-0.0376323\pi\)
\(390\) −3.51081e34 + 1.58654e34i −0.0186424 + 0.00842454i
\(391\) −8.66203e34 −0.0443757
\(392\) 1.48526e36i 0.734174i
\(393\) 1.40780e36 + 3.11529e36i 0.671500 + 1.48594i
\(394\) 1.00098e36 0.460762
\(395\) 3.59059e36i 1.59517i
\(396\) 1.67348e35 + 1.47348e35i 0.0717610 + 0.0631846i
\(397\) 2.51529e36 1.04117 0.520585 0.853810i \(-0.325714\pi\)
0.520585 + 0.853810i \(0.325714\pi\)
\(398\) 1.32694e36i 0.530261i
\(399\) −3.38810e36 + 1.53109e36i −1.30718 + 0.590716i
\(400\) −1.60302e36 −0.597171
\(401\) 4.03167e36i 1.45032i 0.688580 + 0.725160i \(0.258234\pi\)
−0.688580 + 0.725160i \(0.741766\pi\)
\(402\) −7.35861e35 1.62837e36i −0.255641 0.565702i
\(403\) 3.30207e34 0.0110794
\(404\) 2.01712e36i 0.653720i
\(405\) −5.83280e36 + 7.44413e35i −1.82603 + 0.233047i
\(406\) 9.97563e35 0.301700
\(407\) 1.09876e36i 0.321056i
\(408\) 1.21189e35 5.47655e34i 0.0342154 0.0154620i
\(409\) −2.15348e36 −0.587508 −0.293754 0.955881i \(-0.594905\pi\)
−0.293754 + 0.955881i \(0.594905\pi\)
\(410\) 2.49446e36i 0.657661i
\(411\) 1.08250e36 + 2.39544e36i 0.275831 + 0.610379i
\(412\) 7.74444e35 0.190734
\(413\) 8.92724e36i 2.12528i
\(414\) 8.48415e35 9.63575e35i 0.195256 0.221759i
\(415\) −8.47605e35 −0.188591
\(416\) 1.29147e34i 0.00277830i
\(417\) −1.62737e36 + 7.35411e35i −0.338518 + 0.152977i
\(418\) −5.49739e35 −0.110583
\(419\) 4.28586e36i 0.833761i 0.908961 + 0.416880i \(0.136877\pi\)
−0.908961 + 0.416880i \(0.863123\pi\)
\(420\) 3.53346e36 + 7.81909e36i 0.664828 + 1.47118i
\(421\) 9.04826e36 1.64670 0.823352 0.567531i \(-0.192101\pi\)
0.823352 + 0.567531i \(0.192101\pi\)
\(422\) 2.28280e36i 0.401878i
\(423\) 2.69541e36 + 2.37327e36i 0.459050 + 0.404187i
\(424\) −3.75549e36 −0.618791
\(425\) 1.59119e36i 0.253675i
\(426\) 4.55031e36 2.05629e36i 0.701951 0.317212i
\(427\) −1.34773e37 −2.01192
\(428\) 5.24384e36i 0.757594i
\(429\) 8.85109e33 + 1.95863e34i 0.00123764 + 0.00273874i
\(430\) 7.86398e36 1.06435
\(431\) 1.32908e37i 1.74128i −0.491921 0.870640i \(-0.663705\pi\)
0.491921 0.870640i \(-0.336295\pi\)
\(432\) −5.77786e35 + 1.88453e36i −0.0732815 + 0.239018i
\(433\) −5.35638e36 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(434\) 7.35419e36i 0.874337i
\(435\) −3.54464e36 + 1.60183e36i −0.408058 + 0.184402i
\(436\) 7.19468e35 0.0802048
\(437\) 3.16535e36i 0.341729i
\(438\) 8.48582e35 + 1.87781e36i 0.0887271 + 0.196342i
\(439\) −5.76571e36 −0.583915 −0.291957 0.956431i \(-0.594307\pi\)
−0.291957 + 0.956431i \(0.594307\pi\)
\(440\) 1.26869e36i 0.124457i
\(441\) 1.44403e37 1.64004e37i 1.37226 1.55852i
\(442\) 1.28195e34 0.00118021
\(443\) 6.56591e36i 0.585656i −0.956165 0.292828i \(-0.905404\pi\)
0.956165 0.292828i \(-0.0945964\pi\)
\(444\) −8.85139e36 + 3.99995e36i −0.764980 + 0.345695i
\(445\) 2.25938e37 1.89212
\(446\) 1.79234e36i 0.145456i
\(447\) 4.35055e35 + 9.62722e35i 0.0342168 + 0.0757174i
\(448\) 2.87630e36 0.219251
\(449\) 1.52957e37i 1.13011i 0.825054 + 0.565054i \(0.191145\pi\)
−0.825054 + 0.565054i \(0.808855\pi\)
\(450\) −1.77006e37 1.55851e37i −1.26769 1.11618i
\(451\) 1.39163e36 0.0966164
\(452\) 5.55057e36i 0.373594i
\(453\) 6.89472e36 3.11573e36i 0.449927 0.203323i
\(454\) −1.24518e37 −0.787865
\(455\) 8.27107e35i 0.0507461i
\(456\) −2.00129e36 4.42859e36i −0.119070 0.263486i
\(457\) −1.00425e37 −0.579447 −0.289724 0.957110i \(-0.593563\pi\)
−0.289724 + 0.957110i \(0.593563\pi\)
\(458\) 1.33534e37i 0.747268i
\(459\) 1.87063e36 + 5.73523e35i 0.101534 + 0.0311296i
\(460\) 7.30502e36 0.384602
\(461\) 3.68289e37i 1.88094i 0.339875 + 0.940471i \(0.389615\pi\)
−0.339875 + 0.940471i \(0.610385\pi\)
\(462\) 4.36217e36 1.97127e36i 0.216130 0.0976693i
\(463\) −6.09514e36 −0.292988 −0.146494 0.989212i \(-0.546799\pi\)
−0.146494 + 0.989212i \(0.546799\pi\)
\(464\) 1.30392e36i 0.0608133i
\(465\) 1.18089e37 + 2.61316e37i 0.534402 + 1.18256i
\(466\) −1.42222e35 −0.00624546
\(467\) 1.10412e37i 0.470521i 0.971932 + 0.235261i \(0.0755944\pi\)
−0.971932 + 0.235261i \(0.924406\pi\)
\(468\) −1.25562e35 + 1.42605e35i −0.00519298 + 0.00589785i
\(469\) −3.83625e37 −1.53988
\(470\) 2.04344e37i 0.796143i
\(471\) 1.04913e37 4.74103e36i 0.396768 0.179300i
\(472\) 1.16688e37 0.428390
\(473\) 4.38721e36i 0.156363i
\(474\) −7.29229e36 1.61369e37i −0.252329 0.558372i
\(475\) 5.81466e37 1.95350
\(476\) 2.85508e36i 0.0931367i
\(477\) −4.14683e37 3.65122e37i −1.31359 1.15659i
\(478\) −1.21292e37 −0.373113
\(479\) 2.37669e37i 0.710028i −0.934861 0.355014i \(-0.884476\pi\)
0.934861 0.355014i \(-0.115524\pi\)
\(480\) −1.02204e37 + 4.61859e36i −0.296544 + 0.134008i
\(481\) −9.36305e35 −0.0263868
\(482\) 5.68680e36i 0.155672i
\(483\) −1.13504e37 2.51169e37i −0.301822 0.667893i
\(484\) −1.86477e37 −0.481716
\(485\) 7.17634e36i 0.180102i
\(486\) −2.47021e37 + 1.51917e37i −0.602318 + 0.370423i
\(487\) −3.98700e37 −0.944585 −0.472293 0.881442i \(-0.656573\pi\)
−0.472293 + 0.881442i \(0.656573\pi\)
\(488\) 1.76162e37i 0.405540i
\(489\) 4.90632e37 2.21717e37i 1.09757 0.495992i
\(490\) 1.24334e38 2.70299
\(491\) 2.84077e37i 0.600199i 0.953908 + 0.300099i \(0.0970199\pi\)
−0.953908 + 0.300099i \(0.902980\pi\)
\(492\) 5.06611e36 + 1.12107e37i 0.104031 + 0.230208i
\(493\) 1.29430e36 0.0258331
\(494\) 4.68459e35i 0.00908854i
\(495\) −1.23347e37 + 1.40090e37i −0.232625 + 0.264201i
\(496\) 9.61269e36 0.176239
\(497\) 1.07200e38i 1.91076i
\(498\) −3.80933e36 + 1.72144e36i −0.0660143 + 0.0298319i
\(499\) 1.39450e37 0.234969 0.117484 0.993075i \(-0.462517\pi\)
0.117484 + 0.993075i \(0.462517\pi\)
\(500\) 7.80133e37i 1.27817i
\(501\) 3.43258e37 + 7.59586e37i 0.546880 + 1.21018i
\(502\) −4.49824e37 −0.696932
\(503\) 8.78316e37i 1.32342i 0.749758 + 0.661712i \(0.230170\pi\)
−0.749758 + 0.661712i \(0.769830\pi\)
\(504\) 3.17603e37 + 2.79645e37i 0.465433 + 0.409807i
\(505\) −1.68856e38 −2.40678
\(506\) 4.07538e36i 0.0565015i
\(507\) 6.75542e37 3.05278e37i 0.911047 0.411703i
\(508\) 3.13491e37 0.411276
\(509\) 1.24194e38i 1.58508i −0.609818 0.792541i \(-0.708758\pi\)
0.609818 0.792541i \(-0.291242\pi\)
\(510\) 4.58451e36 + 1.01449e37i 0.0569260 + 0.125970i
\(511\) 4.42390e37 0.534457
\(512\) 3.75962e36i 0.0441942i
\(513\) 2.09581e37 6.83580e37i 0.239723 0.781891i
\(514\) −1.46624e37 −0.163201
\(515\) 6.48300e37i 0.702222i
\(516\) 3.53425e37 1.59713e37i 0.372565 0.168362i
\(517\) 1.14001e37 0.116961
\(518\) 2.08529e38i 2.08233i
\(519\) 3.97925e37 + 8.80557e37i 0.386775 + 0.855884i
\(520\) −1.08111e36 −0.0102288
\(521\) 8.71882e37i 0.803026i −0.915853 0.401513i \(-0.868484\pi\)
0.915853 0.401513i \(-0.131516\pi\)
\(522\) −1.26772e37 + 1.43979e37i −0.113667 + 0.129096i
\(523\) −1.39727e38 −1.21971 −0.609854 0.792513i \(-0.708772\pi\)
−0.609854 + 0.792513i \(0.708772\pi\)
\(524\) 9.59317e37i 0.815313i
\(525\) −4.61391e38 + 2.08503e38i −3.81803 + 1.72537i
\(526\) −1.07645e38 −0.867346
\(527\) 9.54176e36i 0.0748652i
\(528\) 2.57665e36 + 5.70180e36i 0.0196870 + 0.0435649i
\(529\) 1.10928e38 0.825397
\(530\) 3.14378e38i 2.27819i
\(531\) 1.28848e38 + 1.13449e38i 0.909397 + 0.800711i
\(532\) −1.04333e38 −0.717228
\(533\) 1.18587e36i 0.00794065i
\(534\) 1.01542e38 4.58868e37i 0.662318 0.299302i
\(535\) 4.38970e38 2.78922
\(536\) 5.01437e37i 0.310391i
\(537\) 3.96178e37 + 8.76691e37i 0.238919 + 0.528697i
\(538\) 6.18650e35 0.00363490
\(539\) 6.93642e37i 0.397094i
\(540\) −1.57757e38 4.83674e37i −0.879988 0.269799i
\(541\) 2.09262e38 1.13744 0.568720 0.822531i \(-0.307439\pi\)
0.568720 + 0.822531i \(0.307439\pi\)
\(542\) 7.52885e36i 0.0398785i
\(543\) 1.00319e38 4.53341e37i 0.517826 0.234006i
\(544\) 3.73188e36 0.0187734
\(545\) 6.02278e37i 0.295288i
\(546\) 1.67981e36 + 3.71721e36i 0.00802719 + 0.0177631i
\(547\) 2.73645e37 0.127457 0.0637286 0.997967i \(-0.479701\pi\)
0.0637286 + 0.997967i \(0.479701\pi\)
\(548\) 7.37648e37i 0.334905i
\(549\) 1.71271e38 1.94519e38i 0.758003 0.860892i
\(550\) −7.48635e37 −0.322993
\(551\) 4.72972e37i 0.198936i
\(552\) 3.28304e37 1.48361e37i 0.134626 0.0608377i
\(553\) −3.80168e38 −1.51993
\(554\) 1.68684e38i 0.657562i
\(555\) −3.34843e38 7.40964e38i −1.27274 2.81641i
\(556\) −5.01130e37 −0.185739
\(557\) 3.61739e38i 1.30744i 0.756735 + 0.653722i \(0.226793\pi\)
−0.756735 + 0.653722i \(0.773207\pi\)
\(558\) 1.06144e38 + 9.34582e37i 0.374124 + 0.329411i
\(559\) 3.73855e36 0.0128510
\(560\) 2.40780e38i 0.807213i
\(561\) 5.65973e36 2.55764e36i 0.0185061 0.00836294i
\(562\) −2.73572e38 −0.872497
\(563\) 8.51518e37i 0.264897i −0.991190 0.132448i \(-0.957716\pi\)
0.991190 0.132448i \(-0.0422839\pi\)
\(564\) 4.15011e37 + 9.18366e37i 0.125937 + 0.278682i
\(565\) 4.64648e38 1.37545
\(566\) 1.95805e38i 0.565449i
\(567\) 7.88176e37 + 6.17571e38i 0.222055 + 1.73990i
\(568\) 1.40122e38 0.385149
\(569\) 1.42664e37i 0.0382598i 0.999817 + 0.0191299i \(0.00608961\pi\)
−0.999817 + 0.0191299i \(0.993910\pi\)
\(570\) 3.70725e38 1.67531e38i 0.970071 0.438376i
\(571\) −4.50557e38 −1.15039 −0.575194 0.818017i \(-0.695073\pi\)
−0.575194 + 0.818017i \(0.695073\pi\)
\(572\) 6.03139e35i 0.00150270i
\(573\) −2.97053e38 6.57340e38i −0.722219 1.59818i
\(574\) 2.64110e38 0.626642
\(575\) 4.31057e38i 0.998125i
\(576\) −3.65525e37 + 4.15140e37i −0.0826042 + 0.0938166i
\(577\) 3.41383e38 0.752976 0.376488 0.926422i \(-0.377132\pi\)
0.376488 + 0.926422i \(0.377132\pi\)
\(578\) 3.24750e38i 0.699132i
\(579\) −5.11293e38 + 2.31054e38i −1.07441 + 0.485527i
\(580\) −1.09153e38 −0.223895
\(581\) 8.97435e37i 0.179696i
\(582\) 1.45748e37 + 3.22521e37i 0.0284892 + 0.0630429i
\(583\) −1.75387e38 −0.334686
\(584\) 5.78249e37i 0.107730i
\(585\) −1.19377e37 1.05110e37i −0.0217140 0.0191189i
\(586\) −1.33738e38 −0.237513
\(587\) 9.49435e37i 0.164639i 0.996606 + 0.0823194i \(0.0262327\pi\)
−0.996606 + 0.0823194i \(0.973767\pi\)
\(588\) 5.58785e38 2.52515e38i 0.946154 0.427568i
\(589\) −3.48683e38 −0.576523
\(590\) 9.76816e38i 1.57719i
\(591\) 1.70180e38 + 3.76586e38i 0.268338 + 0.593799i
\(592\) −2.72569e38 −0.419732
\(593\) 8.13998e38i 1.22422i 0.790775 + 0.612108i \(0.209678\pi\)
−0.790775 + 0.612108i \(0.790322\pi\)
\(594\) −2.69835e37 + 8.80107e37i −0.0396359 + 0.129278i
\(595\) 2.39003e38 0.342899
\(596\) 2.96459e37i 0.0415449i
\(597\) 4.99221e38 2.25599e38i 0.683364 0.308813i
\(598\) 3.47282e36 0.00464372
\(599\) 1.12165e39i 1.46514i −0.680690 0.732571i \(-0.738320\pi\)
0.680690 0.732571i \(-0.261680\pi\)
\(600\) −2.72535e38 6.03086e38i −0.347780 0.769594i
\(601\) −1.32774e39 −1.65528 −0.827641 0.561258i \(-0.810318\pi\)
−0.827641 + 0.561258i \(0.810318\pi\)
\(602\) 8.32630e38i 1.01415i
\(603\) 4.87516e38 5.53690e38i 0.580158 0.658907i
\(604\) 2.12315e38 0.246868
\(605\) 1.56103e39i 1.77352i
\(606\) −7.58877e38 + 3.42938e38i −0.842471 + 0.380714i
\(607\) −3.04155e37 −0.0329953 −0.0164977 0.999864i \(-0.505252\pi\)
−0.0164977 + 0.999864i \(0.505252\pi\)
\(608\) 1.36374e38i 0.144571i
\(609\) 1.69600e38 + 3.75302e38i 0.175704 + 0.388811i
\(610\) 1.47468e39 1.49307
\(611\) 9.71453e36i 0.00961268i
\(612\) 4.12077e37 + 3.62828e37i 0.0398527 + 0.0350898i
\(613\) 7.27558e38 0.687734 0.343867 0.939018i \(-0.388263\pi\)
0.343867 + 0.939018i \(0.388263\pi\)
\(614\) 9.01264e38i 0.832712i
\(615\) −9.38462e38 + 4.24092e38i −0.847550 + 0.383009i
\(616\) 1.34328e38 0.118587
\(617\) 1.26579e39i 1.09237i 0.837666 + 0.546183i \(0.183920\pi\)
−0.837666 + 0.546183i \(0.816080\pi\)
\(618\) 1.31666e38 + 2.91361e38i 0.111080 + 0.245806i
\(619\) 4.59321e38 0.378833 0.189416 0.981897i \(-0.439340\pi\)
0.189416 + 0.981897i \(0.439340\pi\)
\(620\) 8.04694e38i 0.648854i
\(621\) 5.06757e38 + 1.55369e38i 0.399501 + 0.122484i
\(622\) −5.33648e38 −0.411329
\(623\) 2.39221e39i 1.80288i
\(624\) −4.85877e36 + 2.19569e36i −0.00358049 + 0.00161803i
\(625\) 3.21566e39 2.31713
\(626\) 1.17801e39i 0.830059i
\(627\) −9.34633e37 2.06822e38i −0.0644014 0.142512i
\(628\) 3.23067e38 0.217700
\(629\) 2.70557e38i 0.178300i
\(630\) −2.34095e39 + 2.65871e39i −1.50878 + 1.71357i
\(631\) −1.16761e39 −0.736015 −0.368007 0.929823i \(-0.619960\pi\)
−0.368007 + 0.929823i \(0.619960\pi\)
\(632\) 4.96918e38i 0.306370i
\(633\) −8.58834e38 + 3.88108e38i −0.517914 + 0.234046i
\(634\) −2.05839e39 −1.21417
\(635\) 2.62428e39i 1.51418i
\(636\) −6.38484e38 1.41288e39i −0.360372 0.797457i
\(637\) 5.91085e37 0.0326361
\(638\) 6.08951e37i 0.0328922i
\(639\) 1.54723e39 + 1.36232e39i 0.817605 + 0.719889i
\(640\) −3.14724e38 −0.162709
\(641\) 1.11988e39i 0.566445i 0.959054 + 0.283223i \(0.0914035\pi\)
−0.959054 + 0.283223i \(0.908596\pi\)
\(642\) 1.97283e39 8.91525e38i 0.976337 0.441208i
\(643\) −2.66712e39 −1.29149 −0.645743 0.763555i \(-0.723452\pi\)
−0.645743 + 0.763555i \(0.723452\pi\)
\(644\) 7.73448e38i 0.366462i
\(645\) 1.33699e39 + 2.95858e39i 0.619856 + 1.37166i
\(646\) −1.35367e38 −0.0614127
\(647\) 2.20603e39i 0.979379i −0.871897 0.489690i \(-0.837110\pi\)
0.871897 0.489690i \(-0.162890\pi\)
\(648\) −8.07229e38 + 1.03023e38i −0.350709 + 0.0447593i
\(649\) 5.44953e38 0.231704
\(650\) 6.37947e37i 0.0265459i
\(651\) 2.76679e39 1.25031e39i 1.12679 0.509197i
\(652\) 1.51084e39 0.602218
\(653\) 9.07740e38i 0.354142i −0.984198 0.177071i \(-0.943338\pi\)
0.984198 0.177071i \(-0.0566622\pi\)
\(654\) 1.22319e38 + 2.70677e38i 0.0467097 + 0.103363i
\(655\) −8.03060e39 −3.00172
\(656\) 3.45220e38i 0.126311i
\(657\) −5.62195e38 + 6.38506e38i −0.201359 + 0.228691i
\(658\) 2.16357e39 0.758591
\(659\) 3.87881e39i 1.33138i 0.746227 + 0.665691i \(0.231863\pi\)
−0.746227 + 0.665691i \(0.768137\pi\)
\(660\) −4.77307e38 + 2.15696e38i −0.160392 + 0.0724813i
\(661\) 1.29123e39 0.424797 0.212399 0.977183i \(-0.431872\pi\)
0.212399 + 0.977183i \(0.431872\pi\)
\(662\) 3.48226e39i 1.12163i
\(663\) 2.17948e36 + 4.82292e36i 0.000687328 + 0.00152097i
\(664\) −1.17304e38 −0.0362209
\(665\) 8.73385e39i 2.64060i
\(666\) −3.00972e39 2.65001e39i −0.891018 0.784529i
\(667\) 3.50628e38 0.101645
\(668\) 2.33906e39i 0.664004i
\(669\) −6.74311e38 + 3.04722e38i −0.187454 + 0.0847107i
\(670\) 4.19761e39 1.14276
\(671\) 8.22703e38i 0.219345i
\(672\) 4.89011e38 + 1.08212e39i 0.127688 + 0.282557i
\(673\) 4.99566e39 1.27756 0.638781 0.769389i \(-0.279439\pi\)
0.638781 + 0.769389i \(0.279439\pi\)
\(674\) 9.20968e38i 0.230678i
\(675\) 2.85408e39 9.30900e39i 0.700185 2.28376i
\(676\) 2.08025e39 0.499876
\(677\) 6.54865e39i 1.54138i 0.637209 + 0.770691i \(0.280089\pi\)
−0.637209 + 0.770691i \(0.719911\pi\)
\(678\) 2.08823e39 9.43674e38i 0.481463 0.217574i
\(679\) 7.59824e38 0.171607
\(680\) 3.12402e38i 0.0691177i
\(681\) −2.11699e39 4.68462e39i −0.458837 1.01535i
\(682\) 4.48928e38 0.0953225
\(683\) 1.24017e39i 0.257983i 0.991646 + 0.128991i \(0.0411740\pi\)
−0.991646 + 0.128991i \(0.958826\pi\)
\(684\) 1.32587e39 1.50584e39i 0.270220 0.306898i
\(685\) −6.17497e39 −1.23301
\(686\) 6.82484e39i 1.33523i
\(687\) −5.02382e39 + 2.27027e39i −0.963029 + 0.435194i
\(688\) 1.08833e39 0.204420
\(689\) 1.49456e38i 0.0275070i
\(690\) 1.24195e39 + 2.74829e39i 0.223985 + 0.495650i
\(691\) −2.18575e39 −0.386286 −0.193143 0.981171i \(-0.561868\pi\)
−0.193143 + 0.981171i \(0.561868\pi\)
\(692\) 2.71158e39i 0.469609i
\(693\) 1.48326e39 + 1.30599e39i 0.251739 + 0.221653i
\(694\) −1.27199e39 −0.211568
\(695\) 4.19504e39i 0.683832i
\(696\) −4.90559e38 + 2.21684e38i −0.0783721 + 0.0354165i
\(697\) 3.42672e38 0.0536562
\(698\) 6.16557e39i 0.946232i
\(699\) −2.41797e37 5.35067e37i −0.00363723 0.00804873i
\(700\) −1.42080e40 −2.09489
\(701\) 1.04737e40i 1.51373i 0.653569 + 0.756867i \(0.273271\pi\)
−0.653569 + 0.756867i \(0.726729\pi\)
\(702\) −7.49981e37 2.29939e37i −0.0106250 0.00325757i
\(703\) 9.88693e39 1.37305
\(704\) 1.75580e38i 0.0239034i
\(705\) −7.68779e39 + 3.47412e39i −1.02602 + 0.463658i
\(706\) 1.27086e39 0.166276
\(707\) 1.78783e40i 2.29327i
\(708\) 1.98386e39 + 4.39003e39i 0.249486 + 0.552080i
\(709\) 1.73802e39 0.214292 0.107146 0.994243i \(-0.465829\pi\)
0.107146 + 0.994243i \(0.465829\pi\)
\(710\) 1.17298e40i 1.41799i
\(711\) 4.83122e39 5.48700e39i 0.572641 0.650370i
\(712\) 3.12686e39 0.363403
\(713\) 2.58488e39i 0.294569i
\(714\) 1.07414e39 4.85403e38i 0.120028 0.0542410i
\(715\) −5.04898e37 −0.00553247
\(716\) 2.69967e39i 0.290087i
\(717\) −2.06213e39 4.56322e39i −0.217294 0.480843i
\(718\) −2.10932e39 −0.217972
\(719\) 7.63464e39i 0.773721i −0.922138 0.386860i \(-0.873559\pi\)
0.922138 0.386860i \(-0.126441\pi\)
\(720\) −3.47520e39 3.05987e39i −0.345402 0.304122i
\(721\) 6.86413e39 0.669101
\(722\) 2.44945e39i 0.234179i
\(723\) −2.13948e39 + 9.66835e38i −0.200619 + 0.0906601i
\(724\) 3.08920e39 0.284122
\(725\) 6.44094e39i 0.581055i
\(726\) −3.17037e39 7.01563e39i −0.280542 0.620804i
\(727\) 1.22865e40 1.06647 0.533233 0.845968i \(-0.320977\pi\)
0.533233 + 0.845968i \(0.320977\pi\)
\(728\) 1.14467e38i 0.00974635i
\(729\) −9.91509e39 6.71060e39i −0.828154 0.560500i
\(730\) −4.84061e39 −0.396625
\(731\) 1.08030e39i 0.0868365i
\(732\) 6.62754e39 2.99499e39i 0.522633 0.236179i
\(733\) −2.22752e40 −1.72332 −0.861660 0.507487i \(-0.830575\pi\)
−0.861660 + 0.507487i \(0.830575\pi\)
\(734\) 9.78972e39i 0.743063i
\(735\) 2.11385e40 + 4.67768e40i 1.57417 + 3.48343i
\(736\) 1.01098e39 0.0738672
\(737\) 2.34179e39i 0.167882i
\(738\) −3.35635e39 + 3.81193e39i −0.236091 + 0.268137i
\(739\) 2.27106e40 1.56749 0.783747 0.621080i \(-0.213306\pi\)
0.783747 + 0.621080i \(0.213306\pi\)
\(740\) 2.28172e40i 1.54532i
\(741\) 1.76243e38 7.96445e37i 0.0117127 0.00529299i
\(742\) −3.32860e40 −2.17073
\(743\) 2.39598e40i 1.53334i −0.642039 0.766672i \(-0.721911\pi\)
0.642039 0.766672i \(-0.278089\pi\)
\(744\) 1.63429e39 + 3.61648e39i 0.102638 + 0.227125i
\(745\) −2.48171e39 −0.152955
\(746\) 2.12726e40i 1.28670i
\(747\) −1.29528e39 1.14047e39i −0.0768908 0.0677013i
\(748\) 1.74285e38 0.0101540
\(749\) 4.64777e40i 2.65766i
\(750\) 2.93501e40 1.32633e40i 1.64722 0.744381i