Properties

Label 6.29.b.a
Level $6$
Weight $29$
Character orbit 6.b
Analytic conductor $29.801$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,29,Mod(5,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 29, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.5");
 
S:= CuspForms(chi, 29);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 29 \)
Character orbit: \([\chi]\) \(=\) 6.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8010845489\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{85}\cdot 3^{50}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} - 78 \beta_1 - 880597) q^{3} - 134217728 q^{4} + (\beta_{3} - 299 \beta_{2} - 20954 \beta_1 + 120) q^{5} + (\beta_{4} + 2 \beta_{3} - \beta_{2} + 880596 \beta_1 - 10521378815) q^{6} + (\beta_{5} - 3 \beta_{4} - 3 \beta_{3} - 15379 \beta_{2} + \cdots - 64058143580) q^{7}+ \cdots + (2 \beta_{9} - 6 \beta_{8} - \beta_{7} + 3 \beta_{6} + \cdots + 2732244967113) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{2} - 78 \beta_1 - 880597) q^{3} - 134217728 q^{4} + (\beta_{3} - 299 \beta_{2} - 20954 \beta_1 + 120) q^{5} + (\beta_{4} + 2 \beta_{3} - \beta_{2} + 880596 \beta_1 - 10521378815) q^{6} + (\beta_{5} - 3 \beta_{4} - 3 \beta_{3} - 15379 \beta_{2} + \cdots - 64058143580) q^{7}+ \cdots + (11\!\cdots\!56 \beta_{9} + \cdots - 23\!\cdots\!79) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 8805966 q^{3} - 1342177280 q^{4} - 105213788160 q^{6} - 640581497308 q^{7} + 27322446020490 q^{9} - 27967405817856 q^{10} + 11\!\cdots\!48 q^{12}+ \cdots - 23\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + \cdots + 25\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 35\!\cdots\!63 \nu^{9} + \cdots - 18\!\cdots\!00 \nu ) / 11\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 25\!\cdots\!93 \nu^{9} + \cdots - 15\!\cdots\!50 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 16\!\cdots\!94 \nu^{9} + \cdots - 45\!\cdots\!50 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16\!\cdots\!53 \nu^{9} + \cdots + 43\!\cdots\!50 ) / 28\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 20\!\cdots\!04 \nu^{9} + \cdots - 18\!\cdots\!75 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 14\!\cdots\!71 \nu^{9} + \cdots + 48\!\cdots\!50 ) / 28\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 81\!\cdots\!64 \nu^{9} + \cdots + 42\!\cdots\!50 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 77\!\cdots\!79 \nu^{9} + \cdots + 10\!\cdots\!25 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 81\!\cdots\!88 \nu^{9} + \cdots + 19\!\cdots\!75 ) / 14\!\cdots\!25 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 299\beta_{2} - 20954\beta _1 + 120 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 3524703 \beta_{9} + 7503320 \beta_{8} + 27620246 \beta_{7} + 907828 \beta_{6} + 25845866 \beta_{5} + 159947376 \beta_{4} + 691296382 \beta_{3} + \cdots - 49\!\cdots\!85 ) / 144 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 36\!\cdots\!75 \beta_{9} + 551355785305500 \beta_{8} + \cdots - 32\!\cdots\!95 ) / 96 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 32\!\cdots\!56 \beta_{9} + \cdots + 50\!\cdots\!95 ) / 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 11\!\cdots\!00 \beta_{9} + \cdots + 80\!\cdots\!45 ) / 288 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 78\!\cdots\!13 \beta_{9} + \cdots - 15\!\cdots\!85 ) / 96 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 64\!\cdots\!75 \beta_{9} + \cdots - 47\!\cdots\!10 ) / 192 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 40\!\cdots\!67 \beta_{9} + \cdots + 92\!\cdots\!65 ) / 72 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 46\!\cdots\!75 \beta_{9} + \cdots + 35\!\cdots\!60 ) / 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
6.81156e8i
9.36298e8i
1.67089e8i
3.05333e8i
4.93972e8i
6.81156e8i
9.36298e8i
1.67089e8i
3.05333e8i
4.93972e8i
11585.2i −4.66950e6 1.03566e6i −1.34218e8 8.17387e9i −1.19983e10 + 5.40972e10i 9.16442e11 1.55494e12i 2.07316e13 + 9.67200e12i −9.46962e13
5.2 11585.2i −4.35859e6 1.96965e6i −1.34218e8 1.12356e10i −2.28189e10 + 5.04953e10i −1.18961e12 1.55494e12i 1.51177e13 + 1.71698e13i 1.30167e14
5.3 11585.2i −1.12657e6 + 4.64840e6i −1.34218e8 2.00507e9i 5.38528e10 + 1.30516e10i −2.77395e11 1.55494e12i −2.03385e13 1.04735e13i −2.32292e13
5.4 11585.2i 1.23098e6 4.62185e6i −1.34218e8 3.66400e9i −5.35452e10 1.42612e10i 1.09838e12 1.55494e12i −1.98462e13 1.13788e13i 4.24483e13
5.5 11585.2i 4.52069e6 1.56210e6i −1.34218e8 5.92767e9i −1.80973e10 5.23733e10i −8.68104e11 1.55494e12i 1.79965e13 1.41236e13i −6.86735e13
5.6 11585.2i −4.66950e6 + 1.03566e6i −1.34218e8 8.17387e9i −1.19983e10 5.40972e10i 9.16442e11 1.55494e12i 2.07316e13 9.67200e12i −9.46962e13
5.7 11585.2i −4.35859e6 + 1.96965e6i −1.34218e8 1.12356e10i −2.28189e10 5.04953e10i −1.18961e12 1.55494e12i 1.51177e13 1.71698e13i 1.30167e14
5.8 11585.2i −1.12657e6 4.64840e6i −1.34218e8 2.00507e9i 5.38528e10 1.30516e10i −2.77395e11 1.55494e12i −2.03385e13 + 1.04735e13i −2.32292e13
5.9 11585.2i 1.23098e6 + 4.62185e6i −1.34218e8 3.66400e9i −5.35452e10 + 1.42612e10i 1.09838e12 1.55494e12i −1.98462e13 + 1.13788e13i 4.24483e13
5.10 11585.2i 4.52069e6 + 1.56210e6i −1.34218e8 5.92767e9i −1.80973e10 + 5.23733e10i −8.68104e11 1.55494e12i 1.79965e13 + 1.41236e13i −6.86735e13
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.29.b.a 10
3.b odd 2 1 inner 6.29.b.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.29.b.a 10 1.a even 1 1 trivial
6.29.b.a 10 3.b odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{29}^{\mathrm{new}}(6, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 134217728)^{5} \) Copy content Toggle raw display
$3$ \( T^{10} + 8805966 T^{9} + \cdots + 62\!\cdots\!01 \) Copy content Toggle raw display
$5$ \( T^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{5} + 320290748654 T^{4} + \cdots + 28\!\cdots\!64)^{2} \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 16\!\cdots\!32 \) Copy content Toggle raw display
$13$ \( (T^{5} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 25\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( (T^{5} + \cdots + 34\!\cdots\!28)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 14\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{5} + \cdots - 88\!\cdots\!08)^{2} \) Copy content Toggle raw display
$37$ \( (T^{5} + \cdots - 41\!\cdots\!24)^{2} \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots + 30\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( (T^{5} + \cdots + 10\!\cdots\!52)^{2} \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 16\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 22\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( (T^{5} + \cdots - 49\!\cdots\!44)^{2} \) Copy content Toggle raw display
$67$ \( (T^{5} + \cdots + 20\!\cdots\!36)^{2} \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{5} + \cdots - 56\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots - 77\!\cdots\!08)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 38\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 43\!\cdots\!12 \) Copy content Toggle raw display
$97$ \( (T^{5} + \cdots - 10\!\cdots\!12)^{2} \) Copy content Toggle raw display
show more
show less