Properties

Label 6.28.a.d
Level $6$
Weight $28$
Character orbit 6.a
Self dual yes
Analytic conductor $27.711$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,28,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.7113344903\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3386644380 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 5184\sqrt{13546577521}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8192 q^{2} - 1594323 q^{3} + 67108864 q^{4} + ( - 7 \beta + 145720518) q^{5} + 13060694016 q^{6} + ( - 415 \beta + 60823147664) q^{7} - 549755813888 q^{8} + 2541865828329 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8192 q^{2} - 1594323 q^{3} + 67108864 q^{4} + ( - 7 \beta + 145720518) q^{5} + 13060694016 q^{6} + ( - 415 \beta + 60823147664) q^{7} - 549755813888 q^{8} + 2541865828329 q^{9} + (57344 \beta - 1193742483456) q^{10} + ( - 91630 \beta - 115903680883188) q^{11} - 106993205379072 q^{12} + ( - 2029370 \beta - 577879635805882) q^{13} + (3399680 \beta - 498263225663488) q^{14} + (11160261 \beta - 232325573419314) q^{15} + 45\!\cdots\!96 q^{16}+ \cdots + ( - 23\!\cdots\!70 \beta - 29\!\cdots\!52) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} - 3188646 q^{3} + 134217728 q^{4} + 291441036 q^{5} + 26121388032 q^{6} + 121646295328 q^{7} - 1099511627776 q^{8} + 5083731656658 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 16384 q^{2} - 3188646 q^{3} + 134217728 q^{4} + 291441036 q^{5} + 26121388032 q^{6} + 121646295328 q^{7} - 1099511627776 q^{8} + 5083731656658 q^{9} - 2387484966912 q^{10} - 231807361766376 q^{11} - 213986410758144 q^{12} - 11\!\cdots\!64 q^{13}+ \cdots - 58\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
58195.4
−58194.4
−8192.00 −1.59432e6 6.71089e7 −4.07783e9 1.30607e10 −1.89573e11 −5.49756e11 2.54187e12 3.34056e13
1.2 −8192.00 −1.59432e6 6.71089e7 4.36927e9 1.30607e10 3.11219e11 −5.49756e11 2.54187e12 −3.57931e13
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.28.a.d 2
3.b odd 2 1 18.28.a.g 2
4.b odd 2 1 48.28.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.28.a.d 2 1.a even 1 1 trivial
18.28.a.g 2 3.b odd 2 1
48.28.a.g 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 291441036T_{5} - 17817155436651169500 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(6))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8192)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1594323)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 58\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 41\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 92\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 14\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 80\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 56\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 58\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 43\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 91\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 29\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 81\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 69\!\cdots\!56 \) Copy content Toggle raw display
show more
show less