[N,k,chi] = [6,28,Mod(1,6)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 28, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6.1");
S:= CuspForms(chi, 28);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} - 2904255750 \)
T5 - 2904255750
acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(6))\).
$p$
$F_p(T)$
$2$
\( T - 8192 \)
T - 8192
$3$
\( T + 1594323 \)
T + 1594323
$5$
\( T - 2904255750 \)
T - 2904255750
$7$
\( T + 493494294832 \)
T + 493494294832
$11$
\( T + 20157692940660 \)
T + 20157692940660
$13$
\( T - 1313545153005254 \)
T - 1313545153005254
$17$
\( T + 62\!\cdots\!62 \)
T + 62309663121088062
$19$
\( T + 17\!\cdots\!36 \)
T + 173514279626960236
$23$
\( T + 26\!\cdots\!00 \)
T + 2647984382765871000
$29$
\( T + 62\!\cdots\!54 \)
T + 62268885764523619554
$31$
\( T + 17\!\cdots\!52 \)
T + 178651695829480373752
$37$
\( T - 18\!\cdots\!46 \)
T - 1818614887325301804446
$41$
\( T - 81\!\cdots\!54 \)
T - 81634330334866394154
$43$
\( T + 89\!\cdots\!88 \)
T + 8933158642225639355188
$47$
\( T - 22\!\cdots\!60 \)
T - 22661578279374355880160
$53$
\( T + 18\!\cdots\!02 \)
T + 180697181148908602401402
$59$
\( T + 25\!\cdots\!40 \)
T + 25051725177450752989140
$61$
\( T + 92\!\cdots\!90 \)
T + 925030094105389105794490
$67$
\( T - 84\!\cdots\!68 \)
T - 84945687836505713833268
$71$
\( T - 11\!\cdots\!20 \)
T - 11822812666153956105525720
$73$
\( T - 16\!\cdots\!34 \)
T - 16599941037534736667687834
$79$
\( T + 20\!\cdots\!68 \)
T + 2036434250910596200048168
$83$
\( T - 59\!\cdots\!44 \)
T - 59973247526267472884535444
$89$
\( T + 84\!\cdots\!38 \)
T + 84656571568595769921852438
$97$
\( T - 11\!\cdots\!46 \)
T - 117128886934809474571532546
show more
show less