[N,k,chi] = [6,26,Mod(1,6)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 26, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6.1");
S:= CuspForms(chi, 26);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} - 590425734 \)
T5 - 590425734
acting on \(S_{26}^{\mathrm{new}}(\Gamma_0(6))\).
$p$
$F_p(T)$
$2$
\( T + 4096 \)
T + 4096
$3$
\( T - 531441 \)
T - 531441
$5$
\( T - 590425734 \)
T - 590425734
$7$
\( T - 57857417576 \)
T - 57857417576
$11$
\( T - 9494266240140 \)
T - 9494266240140
$13$
\( T + 134968021061458 \)
T + 134968021061458
$17$
\( T + 2526114016804014 \)
T + 2526114016804014
$19$
\( T - 11\!\cdots\!56 \)
T - 11468758872260756
$23$
\( T - 11\!\cdots\!00 \)
T - 113342630802000600
$29$
\( T - 10\!\cdots\!74 \)
T - 1081348899350530974
$31$
\( T - 46\!\cdots\!08 \)
T - 4649090467326833408
$37$
\( T + 46\!\cdots\!58 \)
T + 46093370056702003258
$41$
\( T - 51\!\cdots\!94 \)
T - 51449233931826001194
$43$
\( T + 36\!\cdots\!84 \)
T + 369342639690619984084
$47$
\( T + 49\!\cdots\!80 \)
T + 49106637730499080080
$53$
\( T - 44\!\cdots\!34 \)
T - 4440077625909370178934
$59$
\( T - 22\!\cdots\!40 \)
T - 22549343358865698156540
$61$
\( T + 12\!\cdots\!90 \)
T + 12310641025418994171490
$67$
\( T - 63\!\cdots\!96 \)
T - 6385919851217871016196
$71$
\( T - 60\!\cdots\!20 \)
T - 60276767662482517683720
$73$
\( T + 26\!\cdots\!58 \)
T + 268812100727467655130358
$79$
\( T + 26\!\cdots\!92 \)
T + 262861199604551219808592
$83$
\( T - 68\!\cdots\!32 \)
T - 688505757189913419282132
$89$
\( T + 25\!\cdots\!42 \)
T + 2558749855718408389837542
$97$
\( T - 25\!\cdots\!82 \)
T - 2595207926228515475808482
show more
show less