[N,k,chi] = [6,22,Mod(1,6)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
\( p \) |
Sign
|
\(2\) |
\(-1\) |
\(3\) |
\(-1\) |
This newform does not admit any (nontrivial) inner twists.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 23245050 \)
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(6))\).
$p$ |
$F_p(T)$ |
$2$ |
\( T - 1024 \)
|
$3$ |
\( T - 59049 \)
|
$5$ |
\( T + 23245050 \)
|
$7$ |
\( T + 1322977768 \)
|
$11$ |
\( T + 109174443828 \)
|
$13$ |
\( T - 468325115966 \)
|
$17$ |
\( T - 2654798072562 \)
|
$19$ |
\( T + 43712786306860 \)
|
$23$ |
\( T + 216861233964744 \)
|
$29$ |
\( T - 2535247265345310 \)
|
$31$ |
\( T - 5132915444930672 \)
|
$37$ |
\( T + 8126962096433578 \)
|
$41$ |
\( T + 28\!\cdots\!18 \)
|
$43$ |
\( T - 60\!\cdots\!16 \)
|
$47$ |
\( T + 31\!\cdots\!88 \)
|
$53$ |
\( T - 23\!\cdots\!86 \)
|
$59$ |
\( T + 19\!\cdots\!40 \)
|
$61$ |
\( T + 55\!\cdots\!78 \)
|
$67$ |
\( T - 19\!\cdots\!72 \)
|
$71$ |
\( T + 43\!\cdots\!68 \)
|
$73$ |
\( T - 16\!\cdots\!06 \)
|
$79$ |
\( T - 15\!\cdots\!60 \)
|
$83$ |
\( T + 26\!\cdots\!64 \)
|
$89$ |
\( T + 17\!\cdots\!10 \)
|
$97$ |
\( T + 36\!\cdots\!38 \)
|
show more
|
show less
|