Properties

Label 6.22.a.b.1.1
Level $6$
Weight $22$
Character 6.1
Self dual yes
Analytic conductor $16.769$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,22,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.7686406572\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1024.00 q^{2} -59049.0 q^{3} +1.04858e6 q^{4} +1.29542e7 q^{5} -6.04662e7 q^{6} -4.79513e8 q^{7} +1.07374e9 q^{8} +3.48678e9 q^{9} +O(q^{10})\) \(q+1024.00 q^{2} -59049.0 q^{3} +1.04858e6 q^{4} +1.29542e7 q^{5} -6.04662e7 q^{6} -4.79513e8 q^{7} +1.07374e9 q^{8} +3.48678e9 q^{9} +1.32651e10 q^{10} +1.15658e11 q^{11} -6.19174e10 q^{12} +2.95658e11 q^{13} -4.91021e11 q^{14} -7.64931e11 q^{15} +1.09951e12 q^{16} +6.62698e12 q^{17} +3.57047e12 q^{18} +2.85762e13 q^{19} +1.35834e13 q^{20} +2.83148e13 q^{21} +1.18434e14 q^{22} +3.35385e14 q^{23} -6.34034e13 q^{24} -3.09027e14 q^{25} +3.02754e14 q^{26} -2.05891e14 q^{27} -5.02806e14 q^{28} -6.99224e14 q^{29} -7.83289e14 q^{30} -3.48496e15 q^{31} +1.12590e15 q^{32} -6.82948e15 q^{33} +6.78603e15 q^{34} -6.21170e15 q^{35} +3.65616e15 q^{36} -3.51815e16 q^{37} +2.92620e16 q^{38} -1.74583e16 q^{39} +1.39094e16 q^{40} +6.13206e15 q^{41} +2.89943e16 q^{42} +2.33261e17 q^{43} +1.21276e17 q^{44} +4.51684e16 q^{45} +3.43434e17 q^{46} -5.80206e17 q^{47} -6.49251e16 q^{48} -3.28613e17 q^{49} -3.16443e17 q^{50} -3.91317e17 q^{51} +3.10020e17 q^{52} -1.39447e18 q^{53} -2.10833e17 q^{54} +1.49825e18 q^{55} -5.14873e17 q^{56} -1.68740e18 q^{57} -7.16006e17 q^{58} +2.35248e18 q^{59} -8.02088e17 q^{60} +9.92063e18 q^{61} -3.56860e18 q^{62} -1.67196e18 q^{63} +1.15292e18 q^{64} +3.83001e18 q^{65} -6.99338e18 q^{66} +2.60690e19 q^{67} +6.94890e18 q^{68} -1.98042e19 q^{69} -6.36078e18 q^{70} -1.33370e19 q^{71} +3.74391e18 q^{72} +9.03753e18 q^{73} -3.60259e19 q^{74} +1.82477e19 q^{75} +2.99643e19 q^{76} -5.54594e19 q^{77} -1.78773e19 q^{78} -7.72839e19 q^{79} +1.42433e19 q^{80} +1.21577e19 q^{81} +6.27923e18 q^{82} -1.55698e20 q^{83} +2.96902e19 q^{84} +8.58471e19 q^{85} +2.38859e20 q^{86} +4.12885e19 q^{87} +1.24187e20 q^{88} +2.53837e20 q^{89} +4.62525e19 q^{90} -1.41772e20 q^{91} +3.51677e20 q^{92} +2.05783e20 q^{93} -5.94131e20 q^{94} +3.70181e20 q^{95} -6.64833e19 q^{96} -1.03072e21 q^{97} -3.36500e20 q^{98} +4.03274e20 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1024.00 0.707107
\(3\) −59049.0 −0.577350
\(4\) 1.04858e6 0.500000
\(5\) 1.29542e7 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(6\) −6.04662e7 −0.408248
\(7\) −4.79513e8 −0.641610 −0.320805 0.947145i \(-0.603953\pi\)
−0.320805 + 0.947145i \(0.603953\pi\)
\(8\) 1.07374e9 0.353553
\(9\) 3.48678e9 0.333333
\(10\) 1.32651e10 0.419478
\(11\) 1.15658e11 1.34447 0.672236 0.740337i \(-0.265334\pi\)
0.672236 + 0.740337i \(0.265334\pi\)
\(12\) −6.19174e10 −0.288675
\(13\) 2.95658e11 0.594819 0.297409 0.954750i \(-0.403877\pi\)
0.297409 + 0.954750i \(0.403877\pi\)
\(14\) −4.91021e11 −0.453687
\(15\) −7.64931e11 −0.342503
\(16\) 1.09951e12 0.250000
\(17\) 6.62698e12 0.797264 0.398632 0.917111i \(-0.369485\pi\)
0.398632 + 0.917111i \(0.369485\pi\)
\(18\) 3.57047e12 0.235702
\(19\) 2.85762e13 1.06928 0.534640 0.845080i \(-0.320447\pi\)
0.534640 + 0.845080i \(0.320447\pi\)
\(20\) 1.35834e13 0.296616
\(21\) 2.83148e13 0.370434
\(22\) 1.18434e14 0.950685
\(23\) 3.35385e14 1.68811 0.844057 0.536254i \(-0.180161\pi\)
0.844057 + 0.536254i \(0.180161\pi\)
\(24\) −6.34034e13 −0.204124
\(25\) −3.09027e14 −0.648076
\(26\) 3.02754e14 0.420601
\(27\) −2.05891e14 −0.192450
\(28\) −5.02806e14 −0.320805
\(29\) −6.99224e14 −0.308630 −0.154315 0.988022i \(-0.549317\pi\)
−0.154315 + 0.988022i \(0.549317\pi\)
\(30\) −7.83289e14 −0.242186
\(31\) −3.48496e15 −0.763659 −0.381830 0.924233i \(-0.624706\pi\)
−0.381830 + 0.924233i \(0.624706\pi\)
\(32\) 1.12590e15 0.176777
\(33\) −6.82948e15 −0.776231
\(34\) 6.78603e15 0.563751
\(35\) −6.21170e15 −0.380624
\(36\) 3.65616e15 0.166667
\(37\) −3.51815e16 −1.20281 −0.601404 0.798945i \(-0.705392\pi\)
−0.601404 + 0.798945i \(0.705392\pi\)
\(38\) 2.92620e16 0.756095
\(39\) −1.74583e16 −0.343419
\(40\) 1.39094e16 0.209739
\(41\) 6.13206e15 0.0713470 0.0356735 0.999363i \(-0.488642\pi\)
0.0356735 + 0.999363i \(0.488642\pi\)
\(42\) 2.89943e16 0.261936
\(43\) 2.33261e17 1.64597 0.822987 0.568060i \(-0.192306\pi\)
0.822987 + 0.568060i \(0.192306\pi\)
\(44\) 1.21276e17 0.672236
\(45\) 4.51684e16 0.197744
\(46\) 3.43434e17 1.19368
\(47\) −5.80206e17 −1.60899 −0.804497 0.593957i \(-0.797565\pi\)
−0.804497 + 0.593957i \(0.797565\pi\)
\(48\) −6.49251e16 −0.144338
\(49\) −3.28613e17 −0.588337
\(50\) −3.16443e17 −0.458259
\(51\) −3.91317e17 −0.460301
\(52\) 3.10020e17 0.297409
\(53\) −1.39447e18 −1.09525 −0.547625 0.836724i \(-0.684468\pi\)
−0.547625 + 0.836724i \(0.684468\pi\)
\(54\) −2.10833e17 −0.136083
\(55\) 1.49825e18 0.797584
\(56\) −5.14873e17 −0.226843
\(57\) −1.68740e18 −0.617349
\(58\) −7.16006e17 −0.218234
\(59\) 2.35248e18 0.599210 0.299605 0.954063i \(-0.403145\pi\)
0.299605 + 0.954063i \(0.403145\pi\)
\(60\) −8.02088e17 −0.171251
\(61\) 9.92063e18 1.78064 0.890320 0.455336i \(-0.150481\pi\)
0.890320 + 0.455336i \(0.150481\pi\)
\(62\) −3.56860e18 −0.539989
\(63\) −1.67196e18 −0.213870
\(64\) 1.15292e18 0.125000
\(65\) 3.83001e18 0.352866
\(66\) −6.99338e18 −0.548878
\(67\) 2.60690e19 1.74718 0.873592 0.486659i \(-0.161785\pi\)
0.873592 + 0.486659i \(0.161785\pi\)
\(68\) 6.94890e18 0.398632
\(69\) −1.98042e19 −0.974633
\(70\) −6.36078e18 −0.269142
\(71\) −1.33370e19 −0.486233 −0.243116 0.969997i \(-0.578170\pi\)
−0.243116 + 0.969997i \(0.578170\pi\)
\(72\) 3.74391e18 0.117851
\(73\) 9.03753e18 0.246127 0.123064 0.992399i \(-0.460728\pi\)
0.123064 + 0.992399i \(0.460728\pi\)
\(74\) −3.60259e19 −0.850514
\(75\) 1.82477e19 0.374167
\(76\) 2.99643e19 0.534640
\(77\) −5.54594e19 −0.862626
\(78\) −1.78773e19 −0.242834
\(79\) −7.72839e19 −0.918342 −0.459171 0.888348i \(-0.651853\pi\)
−0.459171 + 0.888348i \(0.651853\pi\)
\(80\) 1.42433e19 0.148308
\(81\) 1.21577e19 0.111111
\(82\) 6.27923e18 0.0504499
\(83\) −1.55698e20 −1.10145 −0.550724 0.834687i \(-0.685648\pi\)
−0.550724 + 0.834687i \(0.685648\pi\)
\(84\) 2.96902e19 0.185217
\(85\) 8.58471e19 0.472963
\(86\) 2.38859e20 1.16388
\(87\) 4.12885e19 0.178187
\(88\) 1.24187e20 0.475343
\(89\) 2.53837e20 0.862900 0.431450 0.902137i \(-0.358002\pi\)
0.431450 + 0.902137i \(0.358002\pi\)
\(90\) 4.62525e19 0.139826
\(91\) −1.41772e20 −0.381642
\(92\) 3.51677e20 0.844057
\(93\) 2.05783e20 0.440899
\(94\) −5.94131e20 −1.13773
\(95\) 3.70181e20 0.634331
\(96\) −6.64833e19 −0.102062
\(97\) −1.03072e21 −1.41918 −0.709591 0.704613i \(-0.751120\pi\)
−0.709591 + 0.704613i \(0.751120\pi\)
\(98\) −3.36500e20 −0.416017
\(99\) 4.03274e20 0.448157
\(100\) −3.24038e20 −0.324038
\(101\) −7.65513e20 −0.689570 −0.344785 0.938682i \(-0.612048\pi\)
−0.344785 + 0.938682i \(0.612048\pi\)
\(102\) −4.00708e20 −0.325482
\(103\) −8.97524e20 −0.658044 −0.329022 0.944322i \(-0.606719\pi\)
−0.329022 + 0.944322i \(0.606719\pi\)
\(104\) 3.17461e20 0.210300
\(105\) 3.66794e20 0.219753
\(106\) −1.42794e21 −0.774458
\(107\) 1.71774e21 0.844166 0.422083 0.906557i \(-0.361299\pi\)
0.422083 + 0.906557i \(0.361299\pi\)
\(108\) −2.15892e20 −0.0962250
\(109\) 2.99848e21 1.21317 0.606586 0.795018i \(-0.292539\pi\)
0.606586 + 0.795018i \(0.292539\pi\)
\(110\) 1.53421e21 0.563977
\(111\) 2.07743e21 0.694442
\(112\) −5.27230e20 −0.160402
\(113\) −5.11711e21 −1.41808 −0.709041 0.705168i \(-0.750872\pi\)
−0.709041 + 0.705168i \(0.750872\pi\)
\(114\) −1.72789e21 −0.436532
\(115\) 4.34464e21 1.00144
\(116\) −7.33190e20 −0.154315
\(117\) 1.03090e21 0.198273
\(118\) 2.40894e21 0.423706
\(119\) −3.17773e21 −0.511533
\(120\) −8.21338e20 −0.121093
\(121\) 5.97647e21 0.807604
\(122\) 1.01587e22 1.25910
\(123\) −3.62092e20 −0.0411922
\(124\) −3.65424e21 −0.381830
\(125\) −1.01802e22 −0.977691
\(126\) −1.71209e21 −0.151229
\(127\) 4.05103e21 0.329326 0.164663 0.986350i \(-0.447346\pi\)
0.164663 + 0.986350i \(0.447346\pi\)
\(128\) 1.18059e21 0.0883883
\(129\) −1.37738e22 −0.950304
\(130\) 3.92193e21 0.249514
\(131\) −1.92867e22 −1.13217 −0.566083 0.824348i \(-0.691542\pi\)
−0.566083 + 0.824348i \(0.691542\pi\)
\(132\) −7.16122e21 −0.388116
\(133\) −1.37027e22 −0.686061
\(134\) 2.66946e22 1.23545
\(135\) −2.66715e21 −0.114168
\(136\) 7.11567e21 0.281875
\(137\) −2.93536e22 −1.07670 −0.538351 0.842721i \(-0.680953\pi\)
−0.538351 + 0.842721i \(0.680953\pi\)
\(138\) −2.02795e22 −0.689169
\(139\) 4.24068e22 1.33592 0.667959 0.744198i \(-0.267168\pi\)
0.667959 + 0.744198i \(0.267168\pi\)
\(140\) −6.51344e21 −0.190312
\(141\) 3.42606e22 0.928953
\(142\) −1.36570e22 −0.343818
\(143\) 3.41952e22 0.799717
\(144\) 3.83376e21 0.0833333
\(145\) −9.05787e21 −0.183089
\(146\) 9.25443e21 0.174038
\(147\) 1.94043e22 0.339676
\(148\) −3.68905e22 −0.601404
\(149\) 5.04492e22 0.766299 0.383150 0.923686i \(-0.374839\pi\)
0.383150 + 0.923686i \(0.374839\pi\)
\(150\) 1.86857e22 0.264576
\(151\) 8.30789e22 1.09707 0.548533 0.836129i \(-0.315186\pi\)
0.548533 + 0.836129i \(0.315186\pi\)
\(152\) 3.06834e22 0.378048
\(153\) 2.31069e22 0.265755
\(154\) −5.67904e22 −0.609969
\(155\) −4.51447e22 −0.453027
\(156\) −1.83064e22 −0.171709
\(157\) −1.66285e23 −1.45850 −0.729250 0.684247i \(-0.760131\pi\)
−0.729250 + 0.684247i \(0.760131\pi\)
\(158\) −7.91387e22 −0.649366
\(159\) 8.23422e22 0.632343
\(160\) 1.45851e22 0.104870
\(161\) −1.60822e23 −1.08311
\(162\) 1.24494e22 0.0785674
\(163\) −1.13921e23 −0.673958 −0.336979 0.941512i \(-0.609405\pi\)
−0.336979 + 0.941512i \(0.609405\pi\)
\(164\) 6.42993e21 0.0356735
\(165\) −8.84702e22 −0.460485
\(166\) −1.59435e23 −0.778842
\(167\) 3.52378e23 1.61617 0.808084 0.589068i \(-0.200505\pi\)
0.808084 + 0.589068i \(0.200505\pi\)
\(168\) 3.04028e22 0.130968
\(169\) −1.59651e23 −0.646190
\(170\) 8.79074e22 0.334435
\(171\) 9.96390e22 0.356427
\(172\) 2.44592e23 0.822987
\(173\) −5.43709e22 −0.172140 −0.0860702 0.996289i \(-0.527431\pi\)
−0.0860702 + 0.996289i \(0.527431\pi\)
\(174\) 4.22794e22 0.125997
\(175\) 1.48182e23 0.415812
\(176\) 1.27167e23 0.336118
\(177\) −1.38911e23 −0.345954
\(178\) 2.59929e23 0.610162
\(179\) 5.57843e23 1.23468 0.617341 0.786695i \(-0.288210\pi\)
0.617341 + 0.786695i \(0.288210\pi\)
\(180\) 4.73625e22 0.0988720
\(181\) −5.29021e23 −1.04195 −0.520976 0.853571i \(-0.674432\pi\)
−0.520976 + 0.853571i \(0.674432\pi\)
\(182\) −1.45175e23 −0.269861
\(183\) −5.85803e23 −1.02805
\(184\) 3.60117e23 0.596838
\(185\) −4.55748e23 −0.713545
\(186\) 2.10722e23 0.311763
\(187\) 7.66462e23 1.07190
\(188\) −6.08390e23 −0.804497
\(189\) 9.87275e22 0.123478
\(190\) 3.79065e23 0.448540
\(191\) −8.19262e22 −0.0917429 −0.0458715 0.998947i \(-0.514606\pi\)
−0.0458715 + 0.998947i \(0.514606\pi\)
\(192\) −6.80789e22 −0.0721688
\(193\) 6.60174e23 0.662684 0.331342 0.943511i \(-0.392499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(194\) −1.05546e24 −1.00351
\(195\) −2.26158e23 −0.203727
\(196\) −3.44576e23 −0.294168
\(197\) −8.79420e23 −0.711707 −0.355853 0.934542i \(-0.615810\pi\)
−0.355853 + 0.934542i \(0.615810\pi\)
\(198\) 4.12952e23 0.316895
\(199\) 8.82376e23 0.642239 0.321119 0.947039i \(-0.395941\pi\)
0.321119 + 0.947039i \(0.395941\pi\)
\(200\) −3.31815e23 −0.229129
\(201\) −1.53935e24 −1.00874
\(202\) −7.83885e23 −0.487599
\(203\) 3.35287e23 0.198020
\(204\) −4.10325e23 −0.230150
\(205\) 7.94357e22 0.0423253
\(206\) −9.19064e23 −0.465308
\(207\) 1.16942e24 0.562704
\(208\) 3.25080e23 0.148705
\(209\) 3.30506e24 1.43762
\(210\) 3.75598e23 0.155389
\(211\) −2.86260e24 −1.12667 −0.563333 0.826230i \(-0.690481\pi\)
−0.563333 + 0.826230i \(0.690481\pi\)
\(212\) −1.46221e24 −0.547625
\(213\) 7.87534e23 0.280727
\(214\) 1.75897e24 0.596915
\(215\) 3.02170e24 0.976445
\(216\) −2.21074e23 −0.0680414
\(217\) 1.67108e24 0.489971
\(218\) 3.07044e24 0.857842
\(219\) −5.33657e23 −0.142102
\(220\) 1.57103e24 0.398792
\(221\) 1.95932e24 0.474228
\(222\) 2.12729e24 0.491045
\(223\) −1.04892e24 −0.230963 −0.115481 0.993310i \(-0.536841\pi\)
−0.115481 + 0.993310i \(0.536841\pi\)
\(224\) −5.39884e23 −0.113422
\(225\) −1.07751e24 −0.216025
\(226\) −5.23992e24 −1.00273
\(227\) −4.22561e24 −0.772002 −0.386001 0.922498i \(-0.626144\pi\)
−0.386001 + 0.922498i \(0.626144\pi\)
\(228\) −1.76936e24 −0.308675
\(229\) −9.40000e24 −1.56623 −0.783115 0.621877i \(-0.786370\pi\)
−0.783115 + 0.621877i \(0.786370\pi\)
\(230\) 4.44891e24 0.708127
\(231\) 3.27482e24 0.498038
\(232\) −7.50786e23 −0.109117
\(233\) −5.59528e24 −0.777293 −0.388646 0.921387i \(-0.627057\pi\)
−0.388646 + 0.921387i \(0.627057\pi\)
\(234\) 1.05564e24 0.140200
\(235\) −7.51609e24 −0.954507
\(236\) 2.46675e24 0.299605
\(237\) 4.56353e24 0.530205
\(238\) −3.25399e24 −0.361708
\(239\) −4.79661e24 −0.510219 −0.255109 0.966912i \(-0.582111\pi\)
−0.255109 + 0.966912i \(0.582111\pi\)
\(240\) −8.41051e23 −0.0856257
\(241\) 1.30240e24 0.126930 0.0634649 0.997984i \(-0.479785\pi\)
0.0634649 + 0.997984i \(0.479785\pi\)
\(242\) 6.11991e24 0.571062
\(243\) −7.17898e23 −0.0641500
\(244\) 1.04025e25 0.890320
\(245\) −4.25691e24 −0.349020
\(246\) −3.70782e23 −0.0291273
\(247\) 8.44878e24 0.636028
\(248\) −3.74194e24 −0.269994
\(249\) 9.19384e24 0.635922
\(250\) −1.04245e25 −0.691332
\(251\) −1.25489e25 −0.798055 −0.399027 0.916939i \(-0.630652\pi\)
−0.399027 + 0.916939i \(0.630652\pi\)
\(252\) −1.75318e24 −0.106935
\(253\) 3.87899e25 2.26962
\(254\) 4.14825e24 0.232869
\(255\) −5.06919e24 −0.273065
\(256\) 1.20893e24 0.0625000
\(257\) 3.12478e25 1.55068 0.775339 0.631546i \(-0.217579\pi\)
0.775339 + 0.631546i \(0.217579\pi\)
\(258\) −1.41044e25 −0.671966
\(259\) 1.68700e25 0.771734
\(260\) 4.01605e24 0.176433
\(261\) −2.43804e24 −0.102877
\(262\) −1.97496e25 −0.800562
\(263\) −2.04345e25 −0.795845 −0.397923 0.917419i \(-0.630269\pi\)
−0.397923 + 0.917419i \(0.630269\pi\)
\(264\) −7.33309e24 −0.274439
\(265\) −1.80642e25 −0.649737
\(266\) −1.40315e25 −0.485118
\(267\) −1.49888e25 −0.498195
\(268\) 2.73353e25 0.873592
\(269\) −6.02651e24 −0.185211 −0.0926055 0.995703i \(-0.529520\pi\)
−0.0926055 + 0.995703i \(0.529520\pi\)
\(270\) −2.73116e24 −0.0807287
\(271\) −1.13011e25 −0.321324 −0.160662 0.987009i \(-0.551363\pi\)
−0.160662 + 0.987009i \(0.551363\pi\)
\(272\) 7.28645e24 0.199316
\(273\) 8.37150e24 0.220341
\(274\) −3.00581e25 −0.761343
\(275\) −3.57413e25 −0.871319
\(276\) −2.07662e25 −0.487316
\(277\) 7.51731e25 1.69834 0.849170 0.528119i \(-0.177103\pi\)
0.849170 + 0.528119i \(0.177103\pi\)
\(278\) 4.34245e25 0.944637
\(279\) −1.21513e25 −0.254553
\(280\) −6.66976e24 −0.134571
\(281\) −2.24659e25 −0.436623 −0.218312 0.975879i \(-0.570055\pi\)
−0.218312 + 0.975879i \(0.570055\pi\)
\(282\) 3.50828e25 0.656869
\(283\) −6.02460e25 −1.08685 −0.543426 0.839457i \(-0.682873\pi\)
−0.543426 + 0.839457i \(0.682873\pi\)
\(284\) −1.39848e25 −0.243116
\(285\) −2.18588e25 −0.366231
\(286\) 3.50159e25 0.565485
\(287\) −2.94040e24 −0.0457769
\(288\) 3.92577e24 0.0589256
\(289\) −2.51750e25 −0.364370
\(290\) −9.27526e24 −0.129463
\(291\) 6.08631e25 0.819366
\(292\) 9.47654e24 0.123064
\(293\) 4.65033e24 0.0582604 0.0291302 0.999576i \(-0.490726\pi\)
0.0291302 + 0.999576i \(0.490726\pi\)
\(294\) 1.98700e25 0.240187
\(295\) 3.04744e25 0.355471
\(296\) −3.77759e25 −0.425257
\(297\) −2.38129e25 −0.258744
\(298\) 5.16600e25 0.541855
\(299\) 9.91594e25 1.00412
\(300\) 1.91341e25 0.187083
\(301\) −1.11852e26 −1.05607
\(302\) 8.50728e25 0.775743
\(303\) 4.52028e25 0.398123
\(304\) 3.14198e25 0.267320
\(305\) 1.28514e26 1.05633
\(306\) 2.36614e25 0.187917
\(307\) −6.89098e25 −0.528844 −0.264422 0.964407i \(-0.585181\pi\)
−0.264422 + 0.964407i \(0.585181\pi\)
\(308\) −5.81534e25 −0.431313
\(309\) 5.29979e25 0.379922
\(310\) −4.62282e25 −0.320339
\(311\) −2.75254e25 −0.184395 −0.0921976 0.995741i \(-0.529389\pi\)
−0.0921976 + 0.995741i \(0.529389\pi\)
\(312\) −1.87457e25 −0.121417
\(313\) −1.51255e26 −0.947316 −0.473658 0.880709i \(-0.657067\pi\)
−0.473658 + 0.880709i \(0.657067\pi\)
\(314\) −1.70276e26 −1.03132
\(315\) −2.16588e25 −0.126875
\(316\) −8.10380e25 −0.459171
\(317\) −5.45958e25 −0.299252 −0.149626 0.988743i \(-0.547807\pi\)
−0.149626 + 0.988743i \(0.547807\pi\)
\(318\) 8.43184e25 0.447134
\(319\) −8.08707e25 −0.414944
\(320\) 1.49351e25 0.0741540
\(321\) −1.01431e26 −0.487379
\(322\) −1.64681e26 −0.765875
\(323\) 1.89374e26 0.852499
\(324\) 1.27482e25 0.0555556
\(325\) −9.13662e25 −0.385488
\(326\) −1.16655e26 −0.476561
\(327\) −1.77057e26 −0.700425
\(328\) 6.58425e24 0.0252250
\(329\) 2.78216e26 1.03235
\(330\) −9.05935e25 −0.325612
\(331\) 4.57958e26 1.59453 0.797263 0.603632i \(-0.206280\pi\)
0.797263 + 0.603632i \(0.206280\pi\)
\(332\) −1.63262e26 −0.550724
\(333\) −1.22670e26 −0.400936
\(334\) 3.60836e26 1.14280
\(335\) 3.37702e26 1.03649
\(336\) 3.11324e25 0.0926084
\(337\) 1.77477e26 0.511714 0.255857 0.966715i \(-0.417642\pi\)
0.255857 + 0.966715i \(0.417642\pi\)
\(338\) −1.63482e26 −0.456926
\(339\) 3.02160e26 0.818730
\(340\) 9.00172e25 0.236481
\(341\) −4.03062e26 −1.02672
\(342\) 1.02030e26 0.252032
\(343\) 4.25404e26 1.01909
\(344\) 2.50462e26 0.581940
\(345\) −2.56547e26 −0.578183
\(346\) −5.56758e25 −0.121722
\(347\) −3.31317e26 −0.702724 −0.351362 0.936240i \(-0.614281\pi\)
−0.351362 + 0.936240i \(0.614281\pi\)
\(348\) 4.32941e25 0.0890937
\(349\) −1.82866e26 −0.365146 −0.182573 0.983192i \(-0.558443\pi\)
−0.182573 + 0.983192i \(0.558443\pi\)
\(350\) 1.51739e26 0.294023
\(351\) −6.08734e25 −0.114473
\(352\) 1.30219e26 0.237671
\(353\) −5.58761e26 −0.989900 −0.494950 0.868921i \(-0.664814\pi\)
−0.494950 + 0.868921i \(0.664814\pi\)
\(354\) −1.42245e26 −0.244627
\(355\) −1.72769e26 −0.288449
\(356\) 2.66168e26 0.431450
\(357\) 1.87642e26 0.295333
\(358\) 5.71232e26 0.873053
\(359\) −8.65986e26 −1.28534 −0.642671 0.766142i \(-0.722174\pi\)
−0.642671 + 0.766142i \(0.722174\pi\)
\(360\) 4.84992e25 0.0699131
\(361\) 1.02389e26 0.143360
\(362\) −5.41717e26 −0.736771
\(363\) −3.52905e26 −0.466270
\(364\) −1.48659e26 −0.190821
\(365\) 1.17074e26 0.146011
\(366\) −5.99862e26 −0.726943
\(367\) −1.31813e26 −0.155227 −0.0776133 0.996984i \(-0.524730\pi\)
−0.0776133 + 0.996984i \(0.524730\pi\)
\(368\) 3.68760e26 0.422028
\(369\) 2.13812e25 0.0237823
\(370\) −4.66686e26 −0.504552
\(371\) 6.68667e26 0.702723
\(372\) 2.15779e26 0.220449
\(373\) −4.80048e26 −0.476806 −0.238403 0.971166i \(-0.576624\pi\)
−0.238403 + 0.971166i \(0.576624\pi\)
\(374\) 7.84857e26 0.757947
\(375\) 6.01132e26 0.564470
\(376\) −6.22991e26 −0.568865
\(377\) −2.06731e26 −0.183579
\(378\) 1.01097e26 0.0873120
\(379\) 3.61041e26 0.303281 0.151640 0.988436i \(-0.451544\pi\)
0.151640 + 0.988436i \(0.451544\pi\)
\(380\) 3.88163e26 0.317166
\(381\) −2.39209e26 −0.190136
\(382\) −8.38924e25 −0.0648720
\(383\) −4.45743e26 −0.335349 −0.167675 0.985842i \(-0.553626\pi\)
−0.167675 + 0.985842i \(0.553626\pi\)
\(384\) −6.97128e25 −0.0510310
\(385\) −7.18431e26 −0.511738
\(386\) 6.76018e26 0.468588
\(387\) 8.13330e26 0.548658
\(388\) −1.08079e27 −0.709591
\(389\) 2.63616e27 1.68461 0.842307 0.538998i \(-0.181197\pi\)
0.842307 + 0.538998i \(0.181197\pi\)
\(390\) −2.31586e26 −0.144057
\(391\) 2.22259e27 1.34587
\(392\) −3.52846e26 −0.208008
\(393\) 1.13886e27 0.653657
\(394\) −9.00526e26 −0.503253
\(395\) −1.00115e27 −0.544790
\(396\) 4.22863e26 0.224079
\(397\) −1.91276e27 −0.987100 −0.493550 0.869717i \(-0.664301\pi\)
−0.493550 + 0.869717i \(0.664301\pi\)
\(398\) 9.03553e26 0.454131
\(399\) 8.09128e26 0.396097
\(400\) −3.39778e26 −0.162019
\(401\) 2.31621e27 1.07588 0.537939 0.842984i \(-0.319203\pi\)
0.537939 + 0.842984i \(0.319203\pi\)
\(402\) −1.57629e27 −0.713285
\(403\) −1.03036e27 −0.454239
\(404\) −8.02698e26 −0.344785
\(405\) 1.57493e26 0.0659147
\(406\) 3.43334e26 0.140021
\(407\) −4.06902e27 −1.61714
\(408\) −4.20173e26 −0.162741
\(409\) 1.77500e27 0.670045 0.335022 0.942210i \(-0.391256\pi\)
0.335022 + 0.942210i \(0.391256\pi\)
\(410\) 8.13422e25 0.0299285
\(411\) 1.73330e27 0.621634
\(412\) −9.41122e26 −0.329022
\(413\) −1.12804e27 −0.384459
\(414\) 1.19748e27 0.397892
\(415\) −2.01694e27 −0.653415
\(416\) 3.32882e26 0.105150
\(417\) −2.50408e27 −0.771293
\(418\) 3.38438e27 1.01655
\(419\) −2.22580e27 −0.651988 −0.325994 0.945372i \(-0.605699\pi\)
−0.325994 + 0.945372i \(0.605699\pi\)
\(420\) 3.84612e26 0.109877
\(421\) 2.26274e27 0.630482 0.315241 0.949012i \(-0.397915\pi\)
0.315241 + 0.949012i \(0.397915\pi\)
\(422\) −2.93131e27 −0.796674
\(423\) −2.02305e27 −0.536331
\(424\) −1.49730e27 −0.387229
\(425\) −2.04791e27 −0.516687
\(426\) 8.06435e26 0.198504
\(427\) −4.75707e27 −1.14248
\(428\) 1.80118e27 0.422083
\(429\) −2.01919e27 −0.461717
\(430\) 3.09422e27 0.690451
\(431\) −1.80751e27 −0.393612 −0.196806 0.980442i \(-0.563057\pi\)
−0.196806 + 0.980442i \(0.563057\pi\)
\(432\) −2.26380e26 −0.0481125
\(433\) 7.12467e27 1.47789 0.738945 0.673766i \(-0.235324\pi\)
0.738945 + 0.673766i \(0.235324\pi\)
\(434\) 1.71119e27 0.346462
\(435\) 5.34858e26 0.105706
\(436\) 3.14413e27 0.606586
\(437\) 9.58403e27 1.80507
\(438\) −5.46465e26 −0.100481
\(439\) 1.58875e27 0.285218 0.142609 0.989779i \(-0.454451\pi\)
0.142609 + 0.989779i \(0.454451\pi\)
\(440\) 1.60873e27 0.281988
\(441\) −1.14580e27 −0.196112
\(442\) 2.00635e27 0.335330
\(443\) 3.52672e26 0.0575614 0.0287807 0.999586i \(-0.490838\pi\)
0.0287807 + 0.999586i \(0.490838\pi\)
\(444\) 2.17835e27 0.347221
\(445\) 3.28825e27 0.511900
\(446\) −1.07410e27 −0.163315
\(447\) −2.97897e27 −0.442423
\(448\) −5.52841e26 −0.0802012
\(449\) 7.74724e27 1.09789 0.548947 0.835857i \(-0.315029\pi\)
0.548947 + 0.835857i \(0.315029\pi\)
\(450\) −1.10337e27 −0.152753
\(451\) 7.09220e26 0.0959240
\(452\) −5.36568e27 −0.709041
\(453\) −4.90573e27 −0.633391
\(454\) −4.32703e27 −0.545888
\(455\) −1.83654e27 −0.226402
\(456\) −1.81183e27 −0.218266
\(457\) −1.41977e28 −1.67147 −0.835735 0.549132i \(-0.814958\pi\)
−0.835735 + 0.549132i \(0.814958\pi\)
\(458\) −9.62560e27 −1.10749
\(459\) −1.36444e27 −0.153434
\(460\) 4.55568e27 0.500722
\(461\) −2.10321e27 −0.225956 −0.112978 0.993598i \(-0.536039\pi\)
−0.112978 + 0.993598i \(0.536039\pi\)
\(462\) 3.35342e27 0.352166
\(463\) 1.66348e28 1.70772 0.853860 0.520503i \(-0.174256\pi\)
0.853860 + 0.520503i \(0.174256\pi\)
\(464\) −7.68805e26 −0.0771574
\(465\) 2.66575e27 0.261555
\(466\) −5.72957e27 −0.549629
\(467\) −1.92552e28 −1.80601 −0.903006 0.429629i \(-0.858644\pi\)
−0.903006 + 0.429629i \(0.858644\pi\)
\(468\) 1.08097e27 0.0991365
\(469\) −1.25004e28 −1.12101
\(470\) −7.69647e27 −0.674938
\(471\) 9.81896e27 0.842065
\(472\) 2.52595e27 0.211853
\(473\) 2.69784e28 2.21297
\(474\) 4.67306e27 0.374911
\(475\) −8.83080e27 −0.692974
\(476\) −3.33209e27 −0.255766
\(477\) −4.86222e27 −0.365083
\(478\) −4.91173e27 −0.360779
\(479\) 1.98417e28 1.42579 0.712894 0.701272i \(-0.247384\pi\)
0.712894 + 0.701272i \(0.247384\pi\)
\(480\) −8.61236e26 −0.0605465
\(481\) −1.04017e28 −0.715454
\(482\) 1.33365e27 0.0897530
\(483\) 9.49635e27 0.625334
\(484\) 6.26679e27 0.403802
\(485\) −1.33522e28 −0.841905
\(486\) −7.35128e26 −0.0453609
\(487\) −1.91036e26 −0.0115361 −0.00576807 0.999983i \(-0.501836\pi\)
−0.00576807 + 0.999983i \(0.501836\pi\)
\(488\) 1.06522e28 0.629551
\(489\) 6.72691e27 0.389110
\(490\) −4.35908e27 −0.246795
\(491\) 8.06003e27 0.446664 0.223332 0.974742i \(-0.428307\pi\)
0.223332 + 0.974742i \(0.428307\pi\)
\(492\) −3.79681e26 −0.0205961
\(493\) −4.63375e27 −0.246059
\(494\) 8.65156e27 0.449740
\(495\) 5.22408e27 0.265861
\(496\) −3.83175e27 −0.190915
\(497\) 6.39525e27 0.311972
\(498\) 9.41449e27 0.449665
\(499\) 3.12631e28 1.46210 0.731048 0.682326i \(-0.239032\pi\)
0.731048 + 0.682326i \(0.239032\pi\)
\(500\) −1.06747e28 −0.488846
\(501\) −2.08076e28 −0.933095
\(502\) −1.28501e28 −0.564310
\(503\) −4.14717e28 −1.78356 −0.891782 0.452466i \(-0.850544\pi\)
−0.891782 + 0.452466i \(0.850544\pi\)
\(504\) −1.79525e27 −0.0756145
\(505\) −9.91659e27 −0.409075
\(506\) 3.97209e28 1.60486
\(507\) 9.42722e27 0.373078
\(508\) 4.24781e27 0.164663
\(509\) 2.54263e28 0.965488 0.482744 0.875762i \(-0.339640\pi\)
0.482744 + 0.875762i \(0.339640\pi\)
\(510\) −5.19085e27 −0.193086
\(511\) −4.33361e27 −0.157918
\(512\) 1.23794e27 0.0441942
\(513\) −5.88358e27 −0.205783
\(514\) 3.19977e28 1.09649
\(515\) −1.16267e28 −0.390373
\(516\) −1.44429e28 −0.475152
\(517\) −6.71053e28 −2.16325
\(518\) 1.72749e28 0.545698
\(519\) 3.21055e27 0.0993853
\(520\) 4.11244e27 0.124757
\(521\) −3.24742e28 −0.965479 −0.482739 0.875764i \(-0.660358\pi\)
−0.482739 + 0.875764i \(0.660358\pi\)
\(522\) −2.49656e27 −0.0727447
\(523\) 1.45605e28 0.415822 0.207911 0.978148i \(-0.433334\pi\)
0.207911 + 0.978148i \(0.433334\pi\)
\(524\) −2.02236e28 −0.566083
\(525\) −8.75002e27 −0.240069
\(526\) −2.09249e28 −0.562748
\(527\) −2.30948e28 −0.608838
\(528\) −7.50909e27 −0.194058
\(529\) 7.30116e28 1.84973
\(530\) −1.84978e28 −0.459434
\(531\) 8.20258e27 0.199737
\(532\) −1.43683e28 −0.343030
\(533\) 1.81299e27 0.0424385
\(534\) −1.53486e28 −0.352277
\(535\) 2.22519e28 0.500786
\(536\) 2.79914e28 0.617723
\(537\) −3.29401e28 −0.712844
\(538\) −6.17114e27 −0.130964
\(539\) −3.80067e28 −0.791002
\(540\) −2.79671e27 −0.0570838
\(541\) 1.59820e28 0.319933 0.159967 0.987122i \(-0.448861\pi\)
0.159967 + 0.987122i \(0.448861\pi\)
\(542\) −1.15723e28 −0.227210
\(543\) 3.12381e28 0.601571
\(544\) 7.46132e27 0.140938
\(545\) 3.88428e28 0.719692
\(546\) 8.57241e27 0.155805
\(547\) 1.03425e29 1.84399 0.921994 0.387203i \(-0.126559\pi\)
0.921994 + 0.387203i \(0.126559\pi\)
\(548\) −3.07795e28 −0.538351
\(549\) 3.45911e28 0.593546
\(550\) −3.65991e28 −0.616116
\(551\) −1.99812e28 −0.330011
\(552\) −2.12646e28 −0.344585
\(553\) 3.70586e28 0.589217
\(554\) 7.69772e28 1.20091
\(555\) 2.69114e28 0.411965
\(556\) 4.44667e28 0.667959
\(557\) −9.81350e28 −1.44659 −0.723293 0.690541i \(-0.757372\pi\)
−0.723293 + 0.690541i \(0.757372\pi\)
\(558\) −1.24429e28 −0.179996
\(559\) 6.89655e28 0.979057
\(560\) −6.82983e27 −0.0951559
\(561\) −4.52588e28 −0.618861
\(562\) −2.30051e28 −0.308739
\(563\) 7.10142e28 0.935421 0.467711 0.883882i \(-0.345079\pi\)
0.467711 + 0.883882i \(0.345079\pi\)
\(564\) 3.59248e28 0.464477
\(565\) −6.62879e28 −0.841251
\(566\) −6.16919e28 −0.768521
\(567\) −5.82976e27 −0.0712900
\(568\) −1.43204e28 −0.171909
\(569\) 1.47837e29 1.74222 0.871110 0.491087i \(-0.163400\pi\)
0.871110 + 0.491087i \(0.163400\pi\)
\(570\) −2.23834e28 −0.258965
\(571\) −1.30988e29 −1.48783 −0.743914 0.668275i \(-0.767033\pi\)
−0.743914 + 0.668275i \(0.767033\pi\)
\(572\) 3.58562e28 0.399859
\(573\) 4.83766e27 0.0529678
\(574\) −3.01097e27 −0.0323692
\(575\) −1.03643e29 −1.09403
\(576\) 4.01999e27 0.0416667
\(577\) −1.13007e29 −1.15017 −0.575083 0.818095i \(-0.695030\pi\)
−0.575083 + 0.818095i \(0.695030\pi\)
\(578\) −2.57792e28 −0.257648
\(579\) −3.89826e28 −0.382601
\(580\) −9.49787e27 −0.0915445
\(581\) 7.46594e28 0.706700
\(582\) 6.23238e28 0.579379
\(583\) −1.61281e29 −1.47253
\(584\) 9.70397e27 0.0870191
\(585\) 1.33544e28 0.117622
\(586\) 4.76194e27 0.0411963
\(587\) −1.05612e29 −0.897455 −0.448728 0.893669i \(-0.648123\pi\)
−0.448728 + 0.893669i \(0.648123\pi\)
\(588\) 2.03469e28 0.169838
\(589\) −9.95868e28 −0.816566
\(590\) 3.12058e28 0.251356
\(591\) 5.19289e28 0.410904
\(592\) −3.86825e28 −0.300702
\(593\) 1.22381e29 0.934630 0.467315 0.884091i \(-0.345221\pi\)
0.467315 + 0.884091i \(0.345221\pi\)
\(594\) −2.43844e28 −0.182959
\(595\) −4.11648e28 −0.303458
\(596\) 5.28998e28 0.383150
\(597\) −5.21034e28 −0.370797
\(598\) 1.01539e29 0.710021
\(599\) 1.37213e29 0.942789 0.471394 0.881922i \(-0.343751\pi\)
0.471394 + 0.881922i \(0.343751\pi\)
\(600\) 1.95933e28 0.132288
\(601\) 1.89598e29 1.25792 0.628958 0.777439i \(-0.283482\pi\)
0.628958 + 0.777439i \(0.283482\pi\)
\(602\) −1.14536e29 −0.746757
\(603\) 9.08969e28 0.582395
\(604\) 8.71146e28 0.548533
\(605\) 7.74203e28 0.479097
\(606\) 4.62876e28 0.281516
\(607\) −1.07832e29 −0.644563 −0.322281 0.946644i \(-0.604450\pi\)
−0.322281 + 0.946644i \(0.604450\pi\)
\(608\) 3.21739e28 0.189024
\(609\) −1.97984e28 −0.114327
\(610\) 1.31598e29 0.746940
\(611\) −1.71543e29 −0.957060
\(612\) 2.42293e28 0.132877
\(613\) 4.49900e28 0.242538 0.121269 0.992620i \(-0.461304\pi\)
0.121269 + 0.992620i \(0.461304\pi\)
\(614\) −7.05636e28 −0.373949
\(615\) −4.69060e27 −0.0244365
\(616\) −5.95491e28 −0.304984
\(617\) 2.83973e29 1.42982 0.714911 0.699215i \(-0.246467\pi\)
0.714911 + 0.699215i \(0.246467\pi\)
\(618\) 5.42698e28 0.268645
\(619\) 1.17452e29 0.571624 0.285812 0.958286i \(-0.407737\pi\)
0.285812 + 0.958286i \(0.407737\pi\)
\(620\) −4.73377e28 −0.226514
\(621\) −6.90528e28 −0.324878
\(622\) −2.81860e28 −0.130387
\(623\) −1.21718e29 −0.553645
\(624\) −1.91956e28 −0.0858547
\(625\) 1.54791e28 0.0680776
\(626\) −1.54885e29 −0.669854
\(627\) −1.95160e29 −0.830008
\(628\) −1.74362e29 −0.729250
\(629\) −2.33147e29 −0.958956
\(630\) −2.21787e28 −0.0897138
\(631\) 1.11858e29 0.444999 0.222500 0.974933i \(-0.428578\pi\)
0.222500 + 0.974933i \(0.428578\pi\)
\(632\) −8.29829e28 −0.324683
\(633\) 1.69034e29 0.650481
\(634\) −5.59061e28 −0.211603
\(635\) 5.24777e28 0.195367
\(636\) 8.63420e28 0.316171
\(637\) −9.71572e28 −0.349954
\(638\) −8.28116e28 −0.293409
\(639\) −4.65031e28 −0.162078
\(640\) 1.52936e28 0.0524348
\(641\) 5.02292e29 1.69413 0.847066 0.531488i \(-0.178367\pi\)
0.847066 + 0.531488i \(0.178367\pi\)
\(642\) −1.03865e29 −0.344629
\(643\) 4.27106e29 1.39419 0.697093 0.716980i \(-0.254476\pi\)
0.697093 + 0.716980i \(0.254476\pi\)
\(644\) −1.68634e29 −0.541555
\(645\) −1.78428e29 −0.563751
\(646\) 1.93919e29 0.602807
\(647\) −4.32869e29 −1.32392 −0.661960 0.749539i \(-0.730275\pi\)
−0.661960 + 0.749539i \(0.730275\pi\)
\(648\) 1.30542e28 0.0392837
\(649\) 2.72082e29 0.805621
\(650\) −9.35590e28 −0.272581
\(651\) −9.86758e28 −0.282885
\(652\) −1.19455e29 −0.336979
\(653\) −2.73969e29 −0.760525 −0.380263 0.924879i \(-0.624166\pi\)
−0.380263 + 0.924879i \(0.624166\pi\)
\(654\) −1.81306e29 −0.495275
\(655\) −2.49844e29 −0.671637
\(656\) 6.74227e27 0.0178367
\(657\) 3.15119e28 0.0820424
\(658\) 2.84893e29 0.729979
\(659\) 3.07743e28 0.0776053 0.0388026 0.999247i \(-0.487646\pi\)
0.0388026 + 0.999247i \(0.487646\pi\)
\(660\) −9.27678e28 −0.230243
\(661\) −3.06325e29 −0.748286 −0.374143 0.927371i \(-0.622063\pi\)
−0.374143 + 0.927371i \(0.622063\pi\)
\(662\) 4.68949e29 1.12750
\(663\) −1.15696e29 −0.273796
\(664\) −1.67180e29 −0.389421
\(665\) −1.77507e29 −0.406993
\(666\) −1.25615e29 −0.283505
\(667\) −2.34509e29 −0.521002
\(668\) 3.69496e29 0.808084
\(669\) 6.19378e28 0.133346
\(670\) 3.45807e29 0.732906
\(671\) 1.14740e30 2.39402
\(672\) 3.18796e28 0.0654840
\(673\) 5.09843e29 1.03105 0.515523 0.856876i \(-0.327598\pi\)
0.515523 + 0.856876i \(0.327598\pi\)
\(674\) 1.81736e29 0.361836
\(675\) 6.36258e28 0.124722
\(676\) −1.67406e29 −0.323095
\(677\) −7.38047e29 −1.40250 −0.701250 0.712915i \(-0.747374\pi\)
−0.701250 + 0.712915i \(0.747374\pi\)
\(678\) 3.09412e29 0.578929
\(679\) 4.94245e29 0.910562
\(680\) 9.21776e28 0.167218
\(681\) 2.49518e29 0.445716
\(682\) −4.12736e29 −0.726000
\(683\) −4.68059e29 −0.810743 −0.405372 0.914152i \(-0.632858\pi\)
−0.405372 + 0.914152i \(0.632858\pi\)
\(684\) 1.04479e29 0.178213
\(685\) −3.80252e29 −0.638734
\(686\) 4.35614e29 0.720607
\(687\) 5.55061e29 0.904263
\(688\) 2.56473e29 0.411494
\(689\) −4.12287e29 −0.651475
\(690\) −2.62704e29 −0.408837
\(691\) −4.77475e29 −0.731865 −0.365932 0.930641i \(-0.619250\pi\)
−0.365932 + 0.930641i \(0.619250\pi\)
\(692\) −5.70120e28 −0.0860702
\(693\) −1.93375e29 −0.287542
\(694\) −3.39269e29 −0.496901
\(695\) 5.49345e29 0.792510
\(696\) 4.43332e28 0.0629987
\(697\) 4.06370e28 0.0568824
\(698\) −1.87255e29 −0.258197
\(699\) 3.30396e29 0.448770
\(700\) 1.55380e29 0.207906
\(701\) −9.76926e29 −1.28772 −0.643862 0.765142i \(-0.722669\pi\)
−0.643862 + 0.765142i \(0.722669\pi\)
\(702\) −6.23344e28 −0.0809446
\(703\) −1.00535e30 −1.28614
\(704\) 1.33344e29 0.168059
\(705\) 4.43817e29 0.551085
\(706\) −5.72171e29 −0.699965
\(707\) 3.67073e29 0.442435
\(708\) −1.45659e29 −0.172977
\(709\) −8.06956e29 −0.944201 −0.472101 0.881545i \(-0.656504\pi\)
−0.472101 + 0.881545i \(0.656504\pi\)
\(710\) −1.76916e29 −0.203964
\(711\) −2.69472e29 −0.306114
\(712\) 2.72556e29 0.305081
\(713\) −1.16880e30 −1.28914
\(714\) 1.92145e29 0.208832
\(715\) 4.42970e29 0.474418
\(716\) 5.84941e29 0.617341
\(717\) 2.83235e29 0.294575
\(718\) −8.86769e29 −0.908875
\(719\) 2.20303e29 0.222519 0.111259 0.993791i \(-0.464512\pi\)
0.111259 + 0.993791i \(0.464512\pi\)
\(720\) 4.96632e28 0.0494360
\(721\) 4.30374e29 0.422208
\(722\) 1.04846e29 0.101371
\(723\) −7.69051e28 −0.0732830
\(724\) −5.54718e29 −0.520976
\(725\) 2.16079e29 0.200015
\(726\) −3.61374e29 −0.329703
\(727\) 1.52128e30 1.36804 0.684020 0.729463i \(-0.260230\pi\)
0.684020 + 0.729463i \(0.260230\pi\)
\(728\) −1.52227e29 −0.134931
\(729\) 4.23912e28 0.0370370
\(730\) 1.19884e29 0.103245
\(731\) 1.54582e30 1.31228
\(732\) −6.14259e29 −0.514026
\(733\) 3.36651e29 0.277708 0.138854 0.990313i \(-0.455658\pi\)
0.138854 + 0.990313i \(0.455658\pi\)
\(734\) −1.34977e29 −0.109762
\(735\) 2.51366e29 0.201507
\(736\) 3.77610e29 0.298419
\(737\) 3.01508e30 2.34904
\(738\) 2.18943e28 0.0168166
\(739\) −2.59622e29 −0.196596 −0.0982982 0.995157i \(-0.531340\pi\)
−0.0982982 + 0.995157i \(0.531340\pi\)
\(740\) −4.77886e29 −0.356772
\(741\) −4.98892e29 −0.367211
\(742\) 6.84715e29 0.496900
\(743\) −1.31717e30 −0.942455 −0.471227 0.882012i \(-0.656189\pi\)
−0.471227 + 0.882012i \(0.656189\pi\)
\(744\) 2.20958e29 0.155881
\(745\) 6.53528e29 0.454593
\(746\) −4.91569e29 −0.337153
\(747\) −5.42887e29 −0.367150
\(748\) 8.03694e29 0.535950
\(749\) −8.23679e29 −0.541625
\(750\) 6.15559e29 0.399141
\(751\) 1.46730e29 0.0938209 0.0469104 0.998899i \(-0.485062\pi\)
0.0469104 + 0.998899i \(0.485062\pi\)
\(752\) −6.37943e29 −0.402249
\(753\) 7.41002e29 0.460757
\(754\) −2.11693e29 −0.129810
\(755\) 1.07622e30 0.650815
\(756\) 1.03523e29 0.0617389
\(757\) −3.16010e29 −0.185864 −0.0929318 0.995672i \(-0.529624\pi\)
−0.0929318 + 0.995672i \(0.529624\pi\)
\(758\) 3.69706e29 0.214452
\(759\) −2.29051e30 −1.31037
\(760\) 3.97479e29 0.224270
\(761\) −2.02639e30 −1.12767 −0.563837 0.825886i \(-0.690676\pi\)
−0.563837 + 0.825886i \(0.690676\pi\)
\(762\) −2.44950e29 −0.134447
\(763\) −1.43781e30 −0.778383
\(764\) −8.59059e28 −0.0458715
\(765\) 2.99330e29 0.157654
\(766\) −4.56441e29 −0.237128
\(767\) 6.95529e29 0.356422
\(768\) −7.13859e28 −0.0360844
\(769\) 1.55510e30 0.775410 0.387705 0.921783i \(-0.373268\pi\)
0.387705 + 0.921783i \(0.373268\pi\)
\(770\) −7.35673e29 −0.361853
\(771\) −1.84515e30 −0.895284
\(772\) 6.92242e29 0.331342
\(773\) −3.90527e30 −1.84402 −0.922012 0.387161i \(-0.873456\pi\)
−0.922012 + 0.387161i \(0.873456\pi\)
\(774\) 8.32850e29 0.387960
\(775\) 1.07694e30 0.494909
\(776\) −1.10673e30 −0.501757
\(777\) −9.96157e29 −0.445561
\(778\) 2.69943e30 1.19120
\(779\) 1.75231e29 0.0762899
\(780\) −2.37144e29 −0.101864
\(781\) −1.54252e30 −0.653726
\(782\) 2.27593e30 0.951675
\(783\) 1.43964e29 0.0593958
\(784\) −3.61314e29 −0.147084
\(785\) −2.15408e30 −0.865229
\(786\) 1.16620e30 0.462205
\(787\) −6.91303e29 −0.270355 −0.135177 0.990821i \(-0.543160\pi\)
−0.135177 + 0.990821i \(0.543160\pi\)
\(788\) −9.22139e29 −0.355853
\(789\) 1.20664e30 0.459481
\(790\) −1.02518e30 −0.385225
\(791\) 2.45372e30 0.909855
\(792\) 4.33012e29 0.158448
\(793\) 2.93312e30 1.05916
\(794\) −1.95867e30 −0.697985
\(795\) 1.06667e30 0.375126
\(796\) 9.25238e29 0.321119
\(797\) 3.05715e30 1.04714 0.523569 0.851983i \(-0.324600\pi\)
0.523569 + 0.851983i \(0.324600\pi\)
\(798\) 8.28547e29 0.280083
\(799\) −3.84501e30 −1.28279
\(800\) −3.47933e29 −0.114565
\(801\) 8.85076e29 0.287633
\(802\) 2.37180e30 0.760760
\(803\) 1.04526e30 0.330911
\(804\) −1.61412e30 −0.504369
\(805\) −2.08331e30 −0.642536
\(806\) −1.05508e30 −0.321196
\(807\) 3.55859e29 0.106932
\(808\) −8.21963e29 −0.243800
\(809\) 5.62302e30 1.64630 0.823152 0.567821i \(-0.192213\pi\)
0.823152 + 0.567821i \(0.192213\pi\)
\(810\) 1.61272e29 0.0466087
\(811\) −3.35752e30 −0.957854 −0.478927 0.877855i \(-0.658974\pi\)
−0.478927 + 0.877855i \(0.658974\pi\)
\(812\) 3.51574e29 0.0990099
\(813\) 6.67319e29 0.185517
\(814\) −4.16667e30 −1.14349
\(815\) −1.47575e30 −0.399814
\(816\) −4.30257e29 −0.115075
\(817\) 6.66571e30 1.76001
\(818\) 1.81760e30 0.473793
\(819\) −4.94328e29 −0.127214
\(820\) 8.32944e28 0.0211627
\(821\) 1.66494e30 0.417634 0.208817 0.977955i \(-0.433039\pi\)
0.208817 + 0.977955i \(0.433039\pi\)
\(822\) 1.77490e30 0.439562
\(823\) −4.79393e30 −1.17218 −0.586088 0.810247i \(-0.699333\pi\)
−0.586088 + 0.810247i \(0.699333\pi\)
\(824\) −9.63709e29 −0.232654
\(825\) 2.11049e30 0.503056
\(826\) −1.15512e30 −0.271854
\(827\) 6.92737e30 1.60976 0.804879 0.593439i \(-0.202230\pi\)
0.804879 + 0.593439i \(0.202230\pi\)
\(828\) 1.22622e30 0.281352
\(829\) −2.55745e30 −0.579408 −0.289704 0.957116i \(-0.593557\pi\)
−0.289704 + 0.957116i \(0.593557\pi\)
\(830\) −2.06535e30 −0.462034
\(831\) −4.43890e30 −0.980537
\(832\) 3.40871e29 0.0743524
\(833\) −2.17771e30 −0.469060
\(834\) −2.56418e30 −0.545386
\(835\) 4.56477e30 0.958763
\(836\) 3.46560e30 0.718808
\(837\) 7.17522e29 0.146966
\(838\) −2.27922e30 −0.461025
\(839\) −4.16860e29 −0.0832702 −0.0416351 0.999133i \(-0.513257\pi\)
−0.0416351 + 0.999133i \(0.513257\pi\)
\(840\) 3.93843e29 0.0776945
\(841\) −4.64393e30 −0.904748
\(842\) 2.31704e30 0.445818
\(843\) 1.32659e30 0.252085
\(844\) −3.00166e30 −0.563333
\(845\) −2.06814e30 −0.383341
\(846\) −2.07161e30 −0.379244
\(847\) −2.86580e30 −0.518167
\(848\) −1.53324e30 −0.273812
\(849\) 3.55747e30 0.627495
\(850\) −2.09706e30 −0.365353
\(851\) −1.17994e31 −2.03048
\(852\) 8.25789e29 0.140363
\(853\) 7.40771e30 1.24371 0.621855 0.783132i \(-0.286379\pi\)
0.621855 + 0.783132i \(0.286379\pi\)
\(854\) −4.87124e30 −0.807852
\(855\) 1.29074e30 0.211444
\(856\) 1.84441e30 0.298458
\(857\) −3.64448e30 −0.582555 −0.291277 0.956639i \(-0.594080\pi\)
−0.291277 + 0.956639i \(0.594080\pi\)
\(858\) −2.06765e30 −0.326483
\(859\) −3.70416e30 −0.577778 −0.288889 0.957363i \(-0.593286\pi\)
−0.288889 + 0.957363i \(0.593286\pi\)
\(860\) 3.16848e30 0.488222
\(861\) 1.73628e29 0.0264293
\(862\) −1.85089e30 −0.278326
\(863\) 6.86612e29 0.101999 0.0509997 0.998699i \(-0.483759\pi\)
0.0509997 + 0.998699i \(0.483759\pi\)
\(864\) −2.31813e29 −0.0340207
\(865\) −7.04330e29 −0.102119
\(866\) 7.29567e30 1.04503
\(867\) 1.48656e30 0.210369
\(868\) 1.75226e30 0.244986
\(869\) −8.93848e30 −1.23468
\(870\) 5.47695e29 0.0747458
\(871\) 7.70751e30 1.03926
\(872\) 3.21959e30 0.428921
\(873\) −3.59391e30 −0.473061
\(874\) 9.81405e30 1.27637
\(875\) 4.88155e30 0.627297
\(876\) −5.59580e29 −0.0710508
\(877\) 1.41886e31 1.78010 0.890049 0.455865i \(-0.150670\pi\)
0.890049 + 0.455865i \(0.150670\pi\)
\(878\) 1.62688e30 0.201680
\(879\) −2.74597e29 −0.0336367
\(880\) 1.64734e30 0.199396
\(881\) 9.83090e30 1.17583 0.587917 0.808921i \(-0.299948\pi\)
0.587917 + 0.808921i \(0.299948\pi\)
\(882\) −1.17330e30 −0.138672
\(883\) 1.06031e30 0.123835 0.0619176 0.998081i \(-0.480278\pi\)
0.0619176 + 0.998081i \(0.480278\pi\)
\(884\) 2.05450e30 0.237114
\(885\) −1.79948e30 −0.205231
\(886\) 3.61136e29 0.0407021
\(887\) −8.96894e30 −0.998949 −0.499474 0.866329i \(-0.666473\pi\)
−0.499474 + 0.866329i \(0.666473\pi\)
\(888\) 2.23063e30 0.245522
\(889\) −1.94252e30 −0.211299
\(890\) 3.36717e30 0.361968
\(891\) 1.40613e30 0.149386
\(892\) −1.09987e30 −0.115481
\(893\) −1.65801e31 −1.72047
\(894\) −3.05047e30 −0.312840
\(895\) 7.22640e30 0.732453
\(896\) −5.66109e29 −0.0567108
\(897\) −5.85526e30 −0.579730
\(898\) 7.93318e30 0.776329
\(899\) 2.43677e30 0.235688
\(900\) −1.12985e30 −0.108013
\(901\) −9.24114e30 −0.873203
\(902\) 7.26241e29 0.0678285
\(903\) 6.60473e30 0.609724
\(904\) −5.49445e30 −0.501367
\(905\) −6.85303e30 −0.618119
\(906\) −5.02346e30 −0.447875
\(907\) 3.04599e30 0.268443 0.134221 0.990951i \(-0.457147\pi\)
0.134221 + 0.990951i \(0.457147\pi\)
\(908\) −4.43088e30 −0.386001
\(909\) −2.66918e30 −0.229857
\(910\) −1.88062e30 −0.160090
\(911\) 9.54796e30 0.803466 0.401733 0.915757i \(-0.368408\pi\)
0.401733 + 0.915757i \(0.368408\pi\)
\(912\) −1.85531e30 −0.154337
\(913\) −1.80077e31 −1.48087
\(914\) −1.45385e31 −1.18191
\(915\) −7.58860e30 −0.609874
\(916\) −9.85661e30 −0.783115
\(917\) 9.24824e30 0.726409
\(918\) −1.39718e30 −0.108494
\(919\) 1.56370e31 1.20044 0.600219 0.799835i \(-0.295080\pi\)
0.600219 + 0.799835i \(0.295080\pi\)
\(920\) 4.66502e30 0.354064
\(921\) 4.06905e30 0.305328
\(922\) −2.15369e30 −0.159775
\(923\) −3.94318e30 −0.289220
\(924\) 3.43390e30 0.249019
\(925\) 1.08720e31 0.779511
\(926\) 1.70340e31 1.20754
\(927\) −3.12947e30 −0.219348
\(928\) −7.87256e29 −0.0545585
\(929\) −4.04044e30 −0.276862 −0.138431 0.990372i \(-0.544206\pi\)
−0.138431 + 0.990372i \(0.544206\pi\)
\(930\) 2.72973e30 0.184948
\(931\) −9.39051e30 −0.629097
\(932\) −5.86708e30 −0.388646
\(933\) 1.62535e30 0.106461
\(934\) −1.97173e31 −1.27704
\(935\) 9.92888e30 0.635885
\(936\) 1.10692e30 0.0701001
\(937\) −2.09838e31 −1.31407 −0.657035 0.753860i \(-0.728190\pi\)
−0.657035 + 0.753860i \(0.728190\pi\)
\(938\) −1.28004e31 −0.792674
\(939\) 8.93147e30 0.546933
\(940\) −7.88119e30 −0.477254
\(941\) 2.17744e31 1.30393 0.651967 0.758247i \(-0.273944\pi\)
0.651967 + 0.758247i \(0.273944\pi\)
\(942\) 1.00546e31 0.595430
\(943\) 2.05660e30 0.120442
\(944\) 2.58658e30 0.149803
\(945\) 1.27893e30 0.0732511
\(946\) 2.76259e31 1.56480
\(947\) 1.21468e31 0.680435 0.340218 0.940347i \(-0.389499\pi\)
0.340218 + 0.940347i \(0.389499\pi\)
\(948\) 4.78521e30 0.265102
\(949\) 2.67202e30 0.146401
\(950\) −9.04274e30 −0.490007
\(951\) 3.22383e30 0.172773
\(952\) −3.41206e30 −0.180854
\(953\) 6.95212e30 0.364453 0.182227 0.983257i \(-0.441670\pi\)
0.182227 + 0.983257i \(0.441670\pi\)
\(954\) −4.97892e30 −0.258153
\(955\) −1.06129e30 −0.0544248
\(956\) −5.02961e30 −0.255109
\(957\) 4.77534e30 0.239568
\(958\) 2.03179e31 1.00818
\(959\) 1.40754e31 0.690823
\(960\) −8.81905e29 −0.0428128
\(961\) −8.68058e30 −0.416824
\(962\) −1.06514e31 −0.505902
\(963\) 5.98939e30 0.281389
\(964\) 1.36566e30 0.0634649
\(965\) 8.55201e30 0.393126
\(966\) 9.72427e30 0.442178
\(967\) −8.85795e30 −0.398433 −0.199216 0.979956i \(-0.563840\pi\)
−0.199216 + 0.979956i \(0.563840\pi\)
\(968\) 6.41719e30 0.285531
\(969\) −1.11823e31 −0.492190
\(970\) −1.36726e31 −0.595317
\(971\) −3.05382e31 −1.31535 −0.657676 0.753301i \(-0.728460\pi\)
−0.657676 + 0.753301i \(0.728460\pi\)
\(972\) −7.52771e29 −0.0320750
\(973\) −2.03346e31 −0.857138
\(974\) −1.95621e29 −0.00815728
\(975\) 5.39509e30 0.222561
\(976\) 1.09078e31 0.445160
\(977\) −2.38019e31 −0.960989 −0.480495 0.876998i \(-0.659543\pi\)
−0.480495 + 0.876998i \(0.659543\pi\)
\(978\) 6.88835e30 0.275142
\(979\) 2.93583e31 1.16014
\(980\) −4.46369e30 −0.174510
\(981\) 1.04550e31 0.404391
\(982\) 8.25347e30 0.315839
\(983\) −3.40761e31 −1.29014 −0.645072 0.764122i \(-0.723173\pi\)
−0.645072 + 0.764122i \(0.723173\pi\)
\(984\) −3.88793e29 −0.0145636
\(985\) −1.13922e31 −0.422207
\(986\) −4.74496e30 −0.173990
\(987\) −1.64284e31 −0.596026
\(988\) 8.85919e30 0.318014
\(989\) 7.82322e31 2.77859
\(990\) 5.34946e30 0.187992
\(991\) −3.53546e31 −1.22934 −0.614671 0.788784i \(-0.710711\pi\)
−0.614671 + 0.788784i \(0.710711\pi\)
\(992\) −3.92371e30 −0.134997
\(993\) −2.70420e31 −0.920600
\(994\) 6.54873e30 0.220597
\(995\) 1.14305e31 0.380997
\(996\) 9.64044e30 0.317961
\(997\) −4.23577e31 −1.38240 −0.691199 0.722664i \(-0.742917\pi\)
−0.691199 + 0.722664i \(0.742917\pi\)
\(998\) 3.20134e31 1.03386
\(999\) 7.24357e30 0.231481
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6.22.a.b.1.1 1
3.2 odd 2 18.22.a.a.1.1 1
4.3 odd 2 48.22.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.22.a.b.1.1 1 1.1 even 1 trivial
18.22.a.a.1.1 1 3.2 odd 2
48.22.a.f.1.1 1 4.3 odd 2