Properties

Label 6.22.a.a.1.1
Level $6$
Weight $22$
Character 6.1
Self dual yes
Analytic conductor $16.769$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,22,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.7686406572\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1024.00 q^{2} +59049.0 q^{3} +1.04858e6 q^{4} +2.64446e7 q^{5} -6.04662e7 q^{6} +1.66116e8 q^{7} -1.07374e9 q^{8} +3.48678e9 q^{9} +O(q^{10})\) \(q-1024.00 q^{2} +59049.0 q^{3} +1.04858e6 q^{4} +2.64446e7 q^{5} -6.04662e7 q^{6} +1.66116e8 q^{7} -1.07374e9 q^{8} +3.48678e9 q^{9} -2.70792e10 q^{10} -1.04879e11 q^{11} +6.19174e10 q^{12} +3.35591e11 q^{13} -1.70103e11 q^{14} +1.56152e12 q^{15} +1.09951e12 q^{16} +1.45961e13 q^{17} -3.57047e12 q^{18} +3.56953e12 q^{19} +2.77291e13 q^{20} +9.80898e12 q^{21} +1.07396e14 q^{22} +2.22369e14 q^{23} -6.34034e13 q^{24} +2.22477e14 q^{25} -3.43646e14 q^{26} +2.05891e14 q^{27} +1.74185e14 q^{28} +2.19411e15 q^{29} -1.59900e15 q^{30} -8.72363e15 q^{31} -1.12590e15 q^{32} -6.19299e15 q^{33} -1.49465e16 q^{34} +4.39286e15 q^{35} +3.65616e15 q^{36} +3.74709e16 q^{37} -3.65520e15 q^{38} +1.98163e16 q^{39} -2.83946e16 q^{40} +8.66167e16 q^{41} -1.00444e16 q^{42} +1.31417e17 q^{43} -1.09973e17 q^{44} +9.22064e16 q^{45} -2.27706e17 q^{46} +3.39041e17 q^{47} +6.49251e16 q^{48} -5.30951e17 q^{49} -2.27817e17 q^{50} +8.61888e17 q^{51} +3.51893e17 q^{52} -1.57149e18 q^{53} -2.10833e17 q^{54} -2.77347e18 q^{55} -1.78366e17 q^{56} +2.10777e17 q^{57} -2.24677e18 q^{58} +5.23298e18 q^{59} +1.63738e18 q^{60} -4.78838e18 q^{61} +8.93299e18 q^{62} +5.79210e17 q^{63} +1.15292e18 q^{64} +8.87456e18 q^{65} +6.34162e18 q^{66} -1.54803e19 q^{67} +1.53052e19 q^{68} +1.31307e19 q^{69} -4.49829e18 q^{70} -1.29309e19 q^{71} -3.74391e18 q^{72} -4.42572e19 q^{73} -3.83702e19 q^{74} +1.31370e19 q^{75} +3.74292e18 q^{76} -1.74220e19 q^{77} -2.02919e19 q^{78} -1.48886e19 q^{79} +2.90761e19 q^{80} +1.21577e19 q^{81} -8.86955e19 q^{82} +3.70851e19 q^{83} +1.02855e19 q^{84} +3.85988e20 q^{85} -1.34571e20 q^{86} +1.29560e20 q^{87} +1.12613e20 q^{88} -1.05572e20 q^{89} -9.44194e19 q^{90} +5.57470e19 q^{91} +2.33171e20 q^{92} -5.15121e20 q^{93} -3.47178e20 q^{94} +9.43946e19 q^{95} -6.64833e19 q^{96} +1.38109e21 q^{97} +5.43694e20 q^{98} -3.65690e20 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1024.00 −0.707107
\(3\) 59049.0 0.577350
\(4\) 1.04858e6 0.500000
\(5\) 2.64446e7 1.21102 0.605510 0.795838i \(-0.292969\pi\)
0.605510 + 0.795838i \(0.292969\pi\)
\(6\) −6.04662e7 −0.408248
\(7\) 1.66116e8 0.222270 0.111135 0.993805i \(-0.464551\pi\)
0.111135 + 0.993805i \(0.464551\pi\)
\(8\) −1.07374e9 −0.353553
\(9\) 3.48678e9 0.333333
\(10\) −2.70792e10 −0.856320
\(11\) −1.04879e11 −1.21917 −0.609585 0.792721i \(-0.708664\pi\)
−0.609585 + 0.792721i \(0.708664\pi\)
\(12\) 6.19174e10 0.288675
\(13\) 3.35591e11 0.675158 0.337579 0.941297i \(-0.390392\pi\)
0.337579 + 0.941297i \(0.390392\pi\)
\(14\) −1.70103e11 −0.157169
\(15\) 1.56152e12 0.699182
\(16\) 1.09951e12 0.250000
\(17\) 1.45961e13 1.75600 0.878000 0.478661i \(-0.158878\pi\)
0.878000 + 0.478661i \(0.158878\pi\)
\(18\) −3.57047e12 −0.235702
\(19\) 3.56953e12 0.133567 0.0667834 0.997767i \(-0.478726\pi\)
0.0667834 + 0.997767i \(0.478726\pi\)
\(20\) 2.77291e13 0.605510
\(21\) 9.80898e12 0.128328
\(22\) 1.07396e14 0.862084
\(23\) 2.22369e14 1.11926 0.559632 0.828741i \(-0.310943\pi\)
0.559632 + 0.828741i \(0.310943\pi\)
\(24\) −6.34034e13 −0.204124
\(25\) 2.22477e14 0.466568
\(26\) −3.43646e14 −0.477409
\(27\) 2.05891e14 0.192450
\(28\) 1.74185e14 0.111135
\(29\) 2.19411e15 0.968455 0.484227 0.874942i \(-0.339101\pi\)
0.484227 + 0.874942i \(0.339101\pi\)
\(30\) −1.59900e15 −0.494397
\(31\) −8.72363e15 −1.91161 −0.955805 0.294001i \(-0.905013\pi\)
−0.955805 + 0.294001i \(0.905013\pi\)
\(32\) −1.12590e15 −0.176777
\(33\) −6.19299e15 −0.703888
\(34\) −1.49465e16 −1.24168
\(35\) 4.39286e15 0.269174
\(36\) 3.65616e15 0.166667
\(37\) 3.74709e16 1.28108 0.640540 0.767925i \(-0.278711\pi\)
0.640540 + 0.767925i \(0.278711\pi\)
\(38\) −3.65520e15 −0.0944459
\(39\) 1.98163e16 0.389803
\(40\) −2.83946e16 −0.428160
\(41\) 8.66167e16 1.00779 0.503897 0.863764i \(-0.331899\pi\)
0.503897 + 0.863764i \(0.331899\pi\)
\(42\) −1.00444e16 −0.0907415
\(43\) 1.31417e17 0.927326 0.463663 0.886012i \(-0.346535\pi\)
0.463663 + 0.886012i \(0.346535\pi\)
\(44\) −1.09973e17 −0.609585
\(45\) 9.22064e16 0.403673
\(46\) −2.27706e17 −0.791439
\(47\) 3.39041e17 0.940210 0.470105 0.882610i \(-0.344216\pi\)
0.470105 + 0.882610i \(0.344216\pi\)
\(48\) 6.49251e16 0.144338
\(49\) −5.30951e17 −0.950596
\(50\) −2.27817e17 −0.329914
\(51\) 8.61888e17 1.01383
\(52\) 3.51893e17 0.337579
\(53\) −1.57149e18 −1.23429 −0.617144 0.786850i \(-0.711710\pi\)
−0.617144 + 0.786850i \(0.711710\pi\)
\(54\) −2.10833e17 −0.136083
\(55\) −2.77347e18 −1.47644
\(56\) −1.78366e17 −0.0785845
\(57\) 2.10777e17 0.0771148
\(58\) −2.24677e18 −0.684801
\(59\) 5.23298e18 1.33292 0.666459 0.745542i \(-0.267809\pi\)
0.666459 + 0.745542i \(0.267809\pi\)
\(60\) 1.63738e18 0.349591
\(61\) −4.78838e18 −0.859460 −0.429730 0.902957i \(-0.641391\pi\)
−0.429730 + 0.902957i \(0.641391\pi\)
\(62\) 8.93299e18 1.35171
\(63\) 5.79210e17 0.0740901
\(64\) 1.15292e18 0.125000
\(65\) 8.87456e18 0.817630
\(66\) 6.34162e18 0.497724
\(67\) −1.54803e19 −1.03752 −0.518758 0.854921i \(-0.673605\pi\)
−0.518758 + 0.854921i \(0.673605\pi\)
\(68\) 1.53052e19 0.878000
\(69\) 1.31307e19 0.646207
\(70\) −4.49829e18 −0.190335
\(71\) −1.29309e19 −0.471429 −0.235715 0.971822i \(-0.575743\pi\)
−0.235715 + 0.971822i \(0.575743\pi\)
\(72\) −3.74391e18 −0.117851
\(73\) −4.42572e19 −1.20530 −0.602648 0.798007i \(-0.705888\pi\)
−0.602648 + 0.798007i \(0.705888\pi\)
\(74\) −3.83702e19 −0.905860
\(75\) 1.31370e19 0.269373
\(76\) 3.74292e18 0.0667834
\(77\) −1.74220e19 −0.270985
\(78\) −2.02919e19 −0.275632
\(79\) −1.48886e19 −0.176917 −0.0884583 0.996080i \(-0.528194\pi\)
−0.0884583 + 0.996080i \(0.528194\pi\)
\(80\) 2.90761e19 0.302755
\(81\) 1.21577e19 0.111111
\(82\) −8.86955e19 −0.712617
\(83\) 3.70851e19 0.262349 0.131174 0.991359i \(-0.458125\pi\)
0.131174 + 0.991359i \(0.458125\pi\)
\(84\) 1.02855e19 0.0641639
\(85\) 3.85988e20 2.12655
\(86\) −1.34571e20 −0.655719
\(87\) 1.29560e20 0.559138
\(88\) 1.12613e20 0.431042
\(89\) −1.05572e20 −0.358884 −0.179442 0.983769i \(-0.557429\pi\)
−0.179442 + 0.983769i \(0.557429\pi\)
\(90\) −9.44194e19 −0.285440
\(91\) 5.57470e19 0.150068
\(92\) 2.33171e20 0.559632
\(93\) −5.15121e20 −1.10367
\(94\) −3.47178e20 −0.664829
\(95\) 9.43946e19 0.161752
\(96\) −6.64833e19 −0.102062
\(97\) 1.38109e21 1.90160 0.950801 0.309803i \(-0.100263\pi\)
0.950801 + 0.309803i \(0.100263\pi\)
\(98\) 5.43694e20 0.672173
\(99\) −3.65690e20 −0.406390
\(100\) 2.33284e20 0.233284
\(101\) −1.49419e21 −1.34596 −0.672979 0.739662i \(-0.734986\pi\)
−0.672979 + 0.739662i \(0.734986\pi\)
\(102\) −8.82573e20 −0.716884
\(103\) −1.72821e21 −1.26708 −0.633542 0.773708i \(-0.718400\pi\)
−0.633542 + 0.773708i \(0.718400\pi\)
\(104\) −3.60338e20 −0.238704
\(105\) 2.59394e20 0.155408
\(106\) 1.60921e21 0.872773
\(107\) −3.21208e21 −1.57854 −0.789272 0.614044i \(-0.789542\pi\)
−0.789272 + 0.614044i \(0.789542\pi\)
\(108\) 2.15892e20 0.0962250
\(109\) −5.26985e20 −0.213216 −0.106608 0.994301i \(-0.533999\pi\)
−0.106608 + 0.994301i \(0.533999\pi\)
\(110\) 2.84003e21 1.04400
\(111\) 2.21262e21 0.739631
\(112\) 1.82646e20 0.0555676
\(113\) 2.65376e20 0.0735425 0.0367713 0.999324i \(-0.488293\pi\)
0.0367713 + 0.999324i \(0.488293\pi\)
\(114\) −2.15836e20 −0.0545284
\(115\) 5.88045e21 1.35545
\(116\) 2.30069e21 0.484227
\(117\) 1.17013e21 0.225053
\(118\) −5.35858e21 −0.942515
\(119\) 2.42465e21 0.390307
\(120\) −1.67667e21 −0.247198
\(121\) 3.59930e21 0.486376
\(122\) 4.90331e21 0.607730
\(123\) 5.11463e21 0.581850
\(124\) −9.14739e21 −0.955805
\(125\) −6.72644e21 −0.645996
\(126\) −5.93111e20 −0.0523896
\(127\) −1.95043e22 −1.58559 −0.792797 0.609485i \(-0.791376\pi\)
−0.792797 + 0.609485i \(0.791376\pi\)
\(128\) −1.18059e21 −0.0883883
\(129\) 7.76004e21 0.535392
\(130\) −9.08755e21 −0.578152
\(131\) −9.92728e21 −0.582749 −0.291375 0.956609i \(-0.594113\pi\)
−0.291375 + 0.956609i \(0.594113\pi\)
\(132\) −6.49382e21 −0.351944
\(133\) 5.92956e20 0.0296879
\(134\) 1.58519e22 0.733635
\(135\) 5.44470e21 0.233061
\(136\) −1.56725e22 −0.620840
\(137\) 4.13768e22 1.51772 0.758858 0.651256i \(-0.225758\pi\)
0.758858 + 0.651256i \(0.225758\pi\)
\(138\) −1.34458e22 −0.456938
\(139\) −1.86724e22 −0.588228 −0.294114 0.955770i \(-0.595025\pi\)
−0.294114 + 0.955770i \(0.595025\pi\)
\(140\) 4.60625e21 0.134587
\(141\) 2.00200e22 0.542831
\(142\) 1.32412e22 0.333351
\(143\) −3.51964e22 −0.823133
\(144\) 3.83376e21 0.0833333
\(145\) 5.80222e22 1.17282
\(146\) 4.53194e22 0.852273
\(147\) −3.13521e22 −0.548827
\(148\) 3.92911e22 0.640540
\(149\) −4.48377e22 −0.681064 −0.340532 0.940233i \(-0.610607\pi\)
−0.340532 + 0.940233i \(0.610607\pi\)
\(150\) −1.34523e22 −0.190476
\(151\) 5.27798e22 0.696963 0.348482 0.937316i \(-0.386697\pi\)
0.348482 + 0.937316i \(0.386697\pi\)
\(152\) −3.83275e21 −0.0472230
\(153\) 5.08936e22 0.585333
\(154\) 1.78402e22 0.191616
\(155\) −2.30692e23 −2.31500
\(156\) 2.07789e22 0.194901
\(157\) 4.76649e22 0.418074 0.209037 0.977908i \(-0.432967\pi\)
0.209037 + 0.977908i \(0.432967\pi\)
\(158\) 1.52459e22 0.125099
\(159\) −9.27952e22 −0.712616
\(160\) −2.97739e22 −0.214080
\(161\) 3.69391e22 0.248779
\(162\) −1.24494e22 −0.0785674
\(163\) 4.68583e22 0.277215 0.138607 0.990347i \(-0.455737\pi\)
0.138607 + 0.990347i \(0.455737\pi\)
\(164\) 9.08242e22 0.503897
\(165\) −1.63771e23 −0.852422
\(166\) −3.79751e22 −0.185509
\(167\) 4.21072e22 0.193123 0.0965613 0.995327i \(-0.469216\pi\)
0.0965613 + 0.995327i \(0.469216\pi\)
\(168\) −1.05323e22 −0.0453708
\(169\) −1.34443e23 −0.544161
\(170\) −3.95252e23 −1.50370
\(171\) 1.24462e22 0.0445222
\(172\) 1.37801e23 0.463663
\(173\) 4.51089e23 1.42816 0.714082 0.700062i \(-0.246844\pi\)
0.714082 + 0.700062i \(0.246844\pi\)
\(174\) −1.32669e23 −0.395370
\(175\) 3.69570e22 0.103704
\(176\) −1.15315e23 −0.304793
\(177\) 3.09003e23 0.769560
\(178\) 1.08106e23 0.253769
\(179\) 2.06595e23 0.457259 0.228629 0.973514i \(-0.426576\pi\)
0.228629 + 0.973514i \(0.426576\pi\)
\(180\) 9.66855e22 0.201837
\(181\) 7.17280e23 1.41274 0.706372 0.707841i \(-0.250331\pi\)
0.706372 + 0.707841i \(0.250331\pi\)
\(182\) −5.70850e22 −0.106114
\(183\) −2.82749e23 −0.496210
\(184\) −2.38767e23 −0.395719
\(185\) 9.90901e23 1.55141
\(186\) 5.27484e23 0.780412
\(187\) −1.53083e24 −2.14086
\(188\) 3.55510e23 0.470105
\(189\) 3.42018e22 0.0427760
\(190\) −9.66601e22 −0.114376
\(191\) −4.48187e23 −0.501890 −0.250945 0.968001i \(-0.580741\pi\)
−0.250945 + 0.968001i \(0.580741\pi\)
\(192\) 6.80789e22 0.0721688
\(193\) −7.88064e23 −0.791061 −0.395530 0.918453i \(-0.629439\pi\)
−0.395530 + 0.918453i \(0.629439\pi\)
\(194\) −1.41424e24 −1.34464
\(195\) 5.24034e23 0.472059
\(196\) −5.56743e23 −0.475298
\(197\) −5.38083e23 −0.435466 −0.217733 0.976008i \(-0.569866\pi\)
−0.217733 + 0.976008i \(0.569866\pi\)
\(198\) 3.74466e23 0.287361
\(199\) −1.82843e24 −1.33083 −0.665414 0.746475i \(-0.731745\pi\)
−0.665414 + 0.746475i \(0.731745\pi\)
\(200\) −2.38883e23 −0.164957
\(201\) −9.14098e23 −0.599010
\(202\) 1.53005e24 0.951736
\(203\) 3.64476e23 0.215259
\(204\) 9.03755e23 0.506914
\(205\) 2.29054e24 1.22046
\(206\) 1.76969e24 0.895964
\(207\) 7.75354e23 0.373088
\(208\) 3.68987e23 0.168790
\(209\) −3.74368e23 −0.162841
\(210\) −2.65619e23 −0.109890
\(211\) −2.17230e24 −0.854974 −0.427487 0.904021i \(-0.640601\pi\)
−0.427487 + 0.904021i \(0.640601\pi\)
\(212\) −1.64783e24 −0.617144
\(213\) −7.63557e23 −0.272180
\(214\) 3.28917e24 1.11620
\(215\) 3.47526e24 1.12301
\(216\) −2.21074e23 −0.0680414
\(217\) −1.44913e24 −0.424894
\(218\) 5.39632e23 0.150766
\(219\) −2.61334e24 −0.695878
\(220\) −2.90820e24 −0.738219
\(221\) 4.89834e24 1.18558
\(222\) −2.26572e24 −0.522998
\(223\) 8.40788e24 1.85134 0.925668 0.378336i \(-0.123504\pi\)
0.925668 + 0.378336i \(0.123504\pi\)
\(224\) −1.87030e23 −0.0392922
\(225\) 7.75730e23 0.155523
\(226\) −2.71745e23 −0.0520024
\(227\) −6.09701e24 −1.11390 −0.556949 0.830547i \(-0.688028\pi\)
−0.556949 + 0.830547i \(0.688028\pi\)
\(228\) 2.21016e23 0.0385574
\(229\) −6.53459e23 −0.108879 −0.0544397 0.998517i \(-0.517337\pi\)
−0.0544397 + 0.998517i \(0.517337\pi\)
\(230\) −6.02159e24 −0.958448
\(231\) −1.02875e24 −0.156454
\(232\) −2.35591e24 −0.342400
\(233\) −1.09090e25 −1.51547 −0.757735 0.652562i \(-0.773694\pi\)
−0.757735 + 0.652562i \(0.773694\pi\)
\(234\) −1.19822e24 −0.159136
\(235\) 8.96579e24 1.13861
\(236\) 5.48718e24 0.666459
\(237\) −8.79156e23 −0.102143
\(238\) −2.48284e24 −0.275989
\(239\) 5.96515e21 0.000634517 0 0.000317258 1.00000i \(-0.499899\pi\)
0.000317258 1.00000i \(0.499899\pi\)
\(240\) 1.71691e24 0.174796
\(241\) 8.17929e24 0.797144 0.398572 0.917137i \(-0.369506\pi\)
0.398572 + 0.917137i \(0.369506\pi\)
\(242\) −3.68569e24 −0.343920
\(243\) 7.17898e23 0.0641500
\(244\) −5.02099e24 −0.429730
\(245\) −1.40408e25 −1.15119
\(246\) −5.23738e24 −0.411430
\(247\) 1.19790e24 0.0901787
\(248\) 9.36692e24 0.675856
\(249\) 2.18984e24 0.151467
\(250\) 6.88787e24 0.456788
\(251\) 1.37352e25 0.873499 0.436749 0.899583i \(-0.356130\pi\)
0.436749 + 0.899583i \(0.356130\pi\)
\(252\) 6.07346e23 0.0370451
\(253\) −2.33218e25 −1.36457
\(254\) 1.99724e25 1.12118
\(255\) 2.27922e25 1.22776
\(256\) 1.20893e24 0.0625000
\(257\) 4.53006e24 0.224805 0.112403 0.993663i \(-0.464145\pi\)
0.112403 + 0.993663i \(0.464145\pi\)
\(258\) −7.94628e24 −0.378579
\(259\) 6.22451e24 0.284746
\(260\) 9.30565e24 0.408815
\(261\) 7.65039e24 0.322818
\(262\) 1.01655e25 0.412066
\(263\) −5.23061e24 −0.203712 −0.101856 0.994799i \(-0.532478\pi\)
−0.101856 + 0.994799i \(0.532478\pi\)
\(264\) 6.64967e24 0.248862
\(265\) −4.15575e25 −1.49475
\(266\) −6.07186e23 −0.0209925
\(267\) −6.23392e24 −0.207202
\(268\) −1.62323e25 −0.518758
\(269\) −1.15814e25 −0.355927 −0.177964 0.984037i \(-0.556951\pi\)
−0.177964 + 0.984037i \(0.556951\pi\)
\(270\) −5.57537e24 −0.164799
\(271\) 1.66790e25 0.474234 0.237117 0.971481i \(-0.423798\pi\)
0.237117 + 0.971481i \(0.423798\pi\)
\(272\) 1.60486e25 0.439000
\(273\) 3.29181e24 0.0866416
\(274\) −4.23698e25 −1.07319
\(275\) −2.33331e25 −0.568826
\(276\) 1.37685e25 0.323104
\(277\) −4.99177e25 −1.12776 −0.563880 0.825857i \(-0.690692\pi\)
−0.563880 + 0.825857i \(0.690692\pi\)
\(278\) 1.91206e25 0.415940
\(279\) −3.04174e25 −0.637203
\(280\) −4.71680e24 −0.0951673
\(281\) 2.39858e25 0.466162 0.233081 0.972457i \(-0.425119\pi\)
0.233081 + 0.972457i \(0.425119\pi\)
\(282\) −2.05005e25 −0.383839
\(283\) −2.68871e25 −0.485050 −0.242525 0.970145i \(-0.577976\pi\)
−0.242525 + 0.970145i \(0.577976\pi\)
\(284\) −1.35590e25 −0.235715
\(285\) 5.57391e24 0.0933875
\(286\) 3.60411e25 0.582043
\(287\) 1.43884e25 0.224003
\(288\) −3.92577e24 −0.0589256
\(289\) 1.43956e26 2.08354
\(290\) −5.94148e25 −0.829307
\(291\) 8.15521e25 1.09789
\(292\) −4.64070e25 −0.602648
\(293\) 1.29122e25 0.161767 0.0808835 0.996724i \(-0.474226\pi\)
0.0808835 + 0.996724i \(0.474226\pi\)
\(294\) 3.21046e25 0.388079
\(295\) 1.38384e26 1.61419
\(296\) −4.02341e25 −0.452930
\(297\) −2.15936e25 −0.234629
\(298\) 4.59138e25 0.481585
\(299\) 7.46252e25 0.755680
\(300\) 1.37752e25 0.134687
\(301\) 2.18304e25 0.206117
\(302\) −5.40465e25 −0.492827
\(303\) −8.82304e25 −0.777089
\(304\) 3.92474e24 0.0333917
\(305\) −1.26627e26 −1.04082
\(306\) −5.21151e25 −0.413893
\(307\) −1.45907e26 −1.11976 −0.559878 0.828575i \(-0.689152\pi\)
−0.559878 + 0.828575i \(0.689152\pi\)
\(308\) −1.82683e25 −0.135493
\(309\) −1.02049e26 −0.731552
\(310\) 2.36229e26 1.63695
\(311\) −1.00016e25 −0.0670015 −0.0335008 0.999439i \(-0.510666\pi\)
−0.0335008 + 0.999439i \(0.510666\pi\)
\(312\) −2.12776e25 −0.137816
\(313\) 2.08348e25 0.130489 0.0652445 0.997869i \(-0.479217\pi\)
0.0652445 + 0.997869i \(0.479217\pi\)
\(314\) −4.88089e25 −0.295623
\(315\) 1.53170e25 0.0897246
\(316\) −1.56118e25 −0.0884583
\(317\) 1.30949e26 0.717762 0.358881 0.933383i \(-0.383158\pi\)
0.358881 + 0.933383i \(0.383158\pi\)
\(318\) 9.50223e25 0.503896
\(319\) −2.30116e26 −1.18071
\(320\) 3.04885e25 0.151377
\(321\) −1.89670e26 −0.911373
\(322\) −3.78256e25 −0.175913
\(323\) 5.21014e25 0.234543
\(324\) 1.27482e25 0.0555556
\(325\) 7.46614e25 0.315007
\(326\) −4.79829e25 −0.196021
\(327\) −3.11179e25 −0.123100
\(328\) −9.30040e25 −0.356309
\(329\) 5.63201e25 0.208981
\(330\) 1.67701e26 0.602754
\(331\) 5.53748e24 0.0192805 0.00964026 0.999954i \(-0.496931\pi\)
0.00964026 + 0.999954i \(0.496931\pi\)
\(332\) 3.88865e25 0.131174
\(333\) 1.30653e26 0.427026
\(334\) −4.31177e25 −0.136558
\(335\) −4.09370e26 −1.25645
\(336\) 1.07851e25 0.0320820
\(337\) −2.35227e26 −0.678223 −0.339112 0.940746i \(-0.610126\pi\)
−0.339112 + 0.940746i \(0.610126\pi\)
\(338\) 1.37670e26 0.384780
\(339\) 1.56702e25 0.0424598
\(340\) 4.04738e26 1.06328
\(341\) 9.14923e26 2.33058
\(342\) −1.27449e25 −0.0314820
\(343\) −1.80983e26 −0.433560
\(344\) −1.41108e26 −0.327859
\(345\) 3.47235e26 0.782570
\(346\) −4.61915e26 −1.00986
\(347\) −1.60491e26 −0.340401 −0.170200 0.985409i \(-0.554441\pi\)
−0.170200 + 0.985409i \(0.554441\pi\)
\(348\) 1.35853e26 0.279569
\(349\) 3.71912e26 0.742631 0.371315 0.928507i \(-0.378907\pi\)
0.371315 + 0.928507i \(0.378907\pi\)
\(350\) −3.78439e25 −0.0733300
\(351\) 6.90953e25 0.129934
\(352\) 1.18083e26 0.215521
\(353\) 7.03252e26 1.24588 0.622941 0.782269i \(-0.285938\pi\)
0.622941 + 0.782269i \(0.285938\pi\)
\(354\) −3.16419e26 −0.544161
\(355\) −3.41952e26 −0.570910
\(356\) −1.10700e26 −0.179442
\(357\) 1.43173e26 0.225344
\(358\) −2.11553e26 −0.323331
\(359\) −5.01731e26 −0.744696 −0.372348 0.928093i \(-0.621447\pi\)
−0.372348 + 0.928093i \(0.621447\pi\)
\(360\) −9.90059e25 −0.142720
\(361\) −7.01468e26 −0.982160
\(362\) −7.34494e26 −0.998961
\(363\) 2.12535e26 0.280809
\(364\) 5.84550e25 0.0750338
\(365\) −1.17036e27 −1.45964
\(366\) 2.89535e26 0.350873
\(367\) 5.69112e26 0.670200 0.335100 0.942183i \(-0.391230\pi\)
0.335100 + 0.942183i \(0.391230\pi\)
\(368\) 2.44498e26 0.279816
\(369\) 3.02014e26 0.335931
\(370\) −1.01468e27 −1.09701
\(371\) −2.61050e26 −0.274346
\(372\) −5.40144e26 −0.551834
\(373\) 2.59366e26 0.257615 0.128807 0.991670i \(-0.458885\pi\)
0.128807 + 0.991670i \(0.458885\pi\)
\(374\) 1.56757e27 1.51382
\(375\) −3.97189e26 −0.372966
\(376\) −3.64043e26 −0.332414
\(377\) 7.36324e26 0.653860
\(378\) −3.50226e25 −0.0302472
\(379\) 1.10384e27 0.927241 0.463621 0.886034i \(-0.346550\pi\)
0.463621 + 0.886034i \(0.346550\pi\)
\(380\) 9.89799e25 0.0808759
\(381\) −1.15171e27 −0.915444
\(382\) 4.58943e26 0.354890
\(383\) −6.37501e26 −0.479616 −0.239808 0.970820i \(-0.577084\pi\)
−0.239808 + 0.970820i \(0.577084\pi\)
\(384\) −6.97128e25 −0.0510310
\(385\) −4.60718e26 −0.328169
\(386\) 8.06978e26 0.559364
\(387\) 4.58222e26 0.309109
\(388\) 1.44818e27 0.950801
\(389\) 3.61461e25 0.0230989 0.0115494 0.999933i \(-0.496324\pi\)
0.0115494 + 0.999933i \(0.496324\pi\)
\(390\) −5.36611e26 −0.333796
\(391\) 3.24573e27 1.96543
\(392\) 5.70105e26 0.336086
\(393\) −5.86196e26 −0.336450
\(394\) 5.50997e26 0.307921
\(395\) −3.93722e26 −0.214250
\(396\) −3.83453e26 −0.203195
\(397\) 6.60817e26 0.341021 0.170511 0.985356i \(-0.445458\pi\)
0.170511 + 0.985356i \(0.445458\pi\)
\(398\) 1.87232e27 0.941037
\(399\) 3.50134e25 0.0171403
\(400\) 2.44616e26 0.116642
\(401\) −3.16192e27 −1.46871 −0.734354 0.678767i \(-0.762515\pi\)
−0.734354 + 0.678767i \(0.762515\pi\)
\(402\) 9.36036e26 0.423564
\(403\) −2.92757e27 −1.29064
\(404\) −1.56677e27 −0.672979
\(405\) 3.21504e26 0.134558
\(406\) −3.73224e26 −0.152211
\(407\) −3.92990e27 −1.56185
\(408\) −9.25445e26 −0.358442
\(409\) 1.26849e27 0.478843 0.239422 0.970916i \(-0.423042\pi\)
0.239422 + 0.970916i \(0.423042\pi\)
\(410\) −2.34551e27 −0.862993
\(411\) 2.44326e27 0.876254
\(412\) −1.81216e27 −0.633542
\(413\) 8.69282e26 0.296268
\(414\) −7.93962e26 −0.263813
\(415\) 9.80698e26 0.317710
\(416\) −3.77842e26 −0.119352
\(417\) −1.10259e27 −0.339614
\(418\) 3.83353e26 0.115146
\(419\) 4.00666e27 1.17364 0.586821 0.809717i \(-0.300379\pi\)
0.586821 + 0.809717i \(0.300379\pi\)
\(420\) 2.71994e26 0.0777038
\(421\) −5.33195e27 −1.48568 −0.742838 0.669471i \(-0.766521\pi\)
−0.742838 + 0.669471i \(0.766521\pi\)
\(422\) 2.22443e27 0.604558
\(423\) 1.18216e27 0.313403
\(424\) 1.68738e27 0.436387
\(425\) 3.24731e27 0.819294
\(426\) 7.81882e26 0.192460
\(427\) −7.95427e26 −0.191033
\(428\) −3.36811e27 −0.789272
\(429\) −2.07831e27 −0.475236
\(430\) −3.55867e27 −0.794088
\(431\) 2.82207e27 0.614548 0.307274 0.951621i \(-0.400583\pi\)
0.307274 + 0.951621i \(0.400583\pi\)
\(432\) 2.26380e26 0.0481125
\(433\) −1.58069e26 −0.0327886 −0.0163943 0.999866i \(-0.505219\pi\)
−0.0163943 + 0.999866i \(0.505219\pi\)
\(434\) 1.48391e27 0.300446
\(435\) 3.42616e27 0.677127
\(436\) −5.52584e26 −0.106608
\(437\) 7.93754e26 0.149496
\(438\) 2.67606e27 0.492060
\(439\) 8.74620e27 1.57015 0.785077 0.619398i \(-0.212623\pi\)
0.785077 + 0.619398i \(0.212623\pi\)
\(440\) 2.97799e27 0.522000
\(441\) −1.85131e27 −0.316865
\(442\) −5.01590e27 −0.838330
\(443\) 1.81520e27 0.296269 0.148135 0.988967i \(-0.452673\pi\)
0.148135 + 0.988967i \(0.452673\pi\)
\(444\) 2.32010e27 0.369816
\(445\) −2.79180e27 −0.434615
\(446\) −8.60967e27 −1.30909
\(447\) −2.64762e27 −0.393212
\(448\) 1.91519e26 0.0277838
\(449\) 1.06970e28 1.51592 0.757958 0.652304i \(-0.226197\pi\)
0.757958 + 0.652304i \(0.226197\pi\)
\(450\) −7.94347e26 −0.109971
\(451\) −9.08426e27 −1.22867
\(452\) 2.78267e26 0.0367713
\(453\) 3.11659e27 0.402392
\(454\) 6.24334e27 0.787644
\(455\) 1.47421e27 0.181735
\(456\) −2.26320e26 −0.0272642
\(457\) −1.59372e28 −1.87626 −0.938129 0.346285i \(-0.887443\pi\)
−0.938129 + 0.346285i \(0.887443\pi\)
\(458\) 6.69142e26 0.0769894
\(459\) 3.00522e27 0.337942
\(460\) 6.16610e27 0.677725
\(461\) 5.33663e27 0.573334 0.286667 0.958030i \(-0.407453\pi\)
0.286667 + 0.958030i \(0.407453\pi\)
\(462\) 1.05344e27 0.110629
\(463\) 3.38648e27 0.347655 0.173828 0.984776i \(-0.444386\pi\)
0.173828 + 0.984776i \(0.444386\pi\)
\(464\) 2.41245e27 0.242114
\(465\) −1.36222e28 −1.33656
\(466\) 1.11708e28 1.07160
\(467\) −1.57577e28 −1.47797 −0.738986 0.673721i \(-0.764695\pi\)
−0.738986 + 0.673721i \(0.764695\pi\)
\(468\) 1.22698e27 0.112526
\(469\) −2.57153e27 −0.230609
\(470\) −9.18097e27 −0.805121
\(471\) 2.81457e27 0.241375
\(472\) −5.61887e27 −0.471258
\(473\) −1.37828e28 −1.13057
\(474\) 9.00255e26 0.0722259
\(475\) 7.94139e26 0.0623180
\(476\) 2.54243e27 0.195153
\(477\) −5.47946e27 −0.411429
\(478\) −6.10831e24 −0.000448671 0
\(479\) −2.12973e28 −1.53039 −0.765193 0.643801i \(-0.777356\pi\)
−0.765193 + 0.643801i \(0.777356\pi\)
\(480\) −1.75812e27 −0.123599
\(481\) 1.25749e28 0.864931
\(482\) −8.37559e27 −0.563666
\(483\) 2.18121e27 0.143633
\(484\) 3.77414e27 0.243188
\(485\) 3.65224e28 2.30288
\(486\) −7.35128e26 −0.0453609
\(487\) 1.68508e28 1.01757 0.508786 0.860893i \(-0.330094\pi\)
0.508786 + 0.860893i \(0.330094\pi\)
\(488\) 5.14149e27 0.303865
\(489\) 2.76694e27 0.160050
\(490\) 1.43777e28 0.814014
\(491\) −1.57697e28 −0.873910 −0.436955 0.899483i \(-0.643943\pi\)
−0.436955 + 0.899483i \(0.643943\pi\)
\(492\) 5.36308e27 0.290925
\(493\) 3.20255e28 1.70061
\(494\) −1.22665e27 −0.0637659
\(495\) −9.67050e27 −0.492146
\(496\) −9.59173e27 −0.477903
\(497\) −2.14803e27 −0.104785
\(498\) −2.24239e27 −0.107103
\(499\) 2.57185e28 1.20279 0.601395 0.798952i \(-0.294612\pi\)
0.601395 + 0.798952i \(0.294612\pi\)
\(500\) −7.05318e27 −0.322998
\(501\) 2.48639e27 0.111499
\(502\) −1.40649e28 −0.617657
\(503\) 2.83510e28 1.21928 0.609642 0.792677i \(-0.291313\pi\)
0.609642 + 0.792677i \(0.291313\pi\)
\(504\) −6.21922e26 −0.0261948
\(505\) −3.95132e28 −1.62998
\(506\) 2.38815e28 0.964899
\(507\) −7.93872e27 −0.314172
\(508\) −2.04518e28 −0.792797
\(509\) 2.41622e28 0.917485 0.458743 0.888569i \(-0.348300\pi\)
0.458743 + 0.888569i \(0.348300\pi\)
\(510\) −2.33392e28 −0.868160
\(511\) −7.35182e27 −0.267902
\(512\) −1.23794e27 −0.0441942
\(513\) 7.34935e26 0.0257049
\(514\) −4.63879e27 −0.158961
\(515\) −4.57017e28 −1.53446
\(516\) 8.13699e27 0.267696
\(517\) −3.55582e28 −1.14628
\(518\) −6.37390e27 −0.201346
\(519\) 2.66363e28 0.824551
\(520\) −9.52899e27 −0.289076
\(521\) 4.35634e28 1.29517 0.647584 0.761994i \(-0.275780\pi\)
0.647584 + 0.761994i \(0.275780\pi\)
\(522\) −7.83400e27 −0.228267
\(523\) 1.92361e28 0.549351 0.274676 0.961537i \(-0.411430\pi\)
0.274676 + 0.961537i \(0.411430\pi\)
\(524\) −1.04095e28 −0.291375
\(525\) 2.18227e27 0.0598737
\(526\) 5.35615e27 0.144046
\(527\) −1.27331e29 −3.35679
\(528\) −6.80926e27 −0.175972
\(529\) 9.97650e27 0.252751
\(530\) 4.25549e28 1.05695
\(531\) 1.82463e28 0.444306
\(532\) 6.21759e26 0.0148440
\(533\) 2.90678e28 0.680420
\(534\) 6.38354e27 0.146514
\(535\) −8.49420e28 −1.91165
\(536\) 1.66219e28 0.366817
\(537\) 1.21992e28 0.263998
\(538\) 1.18593e28 0.251678
\(539\) 5.56855e28 1.15894
\(540\) 5.70918e27 0.116530
\(541\) 7.52925e28 1.50723 0.753617 0.657314i \(-0.228307\pi\)
0.753617 + 0.657314i \(0.228307\pi\)
\(542\) −1.70793e28 −0.335334
\(543\) 4.23546e28 0.815648
\(544\) −1.64338e28 −0.310420
\(545\) −1.39359e28 −0.258209
\(546\) −3.37081e27 −0.0612649
\(547\) −6.21957e28 −1.10890 −0.554451 0.832216i \(-0.687072\pi\)
−0.554451 + 0.832216i \(0.687072\pi\)
\(548\) 4.33867e28 0.758858
\(549\) −1.66961e28 −0.286487
\(550\) 2.38931e28 0.402221
\(551\) 7.83194e27 0.129353
\(552\) −1.40990e28 −0.228469
\(553\) −2.47323e27 −0.0393233
\(554\) 5.11157e28 0.797447
\(555\) 5.85117e28 0.895708
\(556\) −1.95795e28 −0.294114
\(557\) 5.50617e27 0.0811652 0.0405826 0.999176i \(-0.487079\pi\)
0.0405826 + 0.999176i \(0.487079\pi\)
\(558\) 3.11474e28 0.450571
\(559\) 4.41024e28 0.626092
\(560\) 4.83000e27 0.0672935
\(561\) −9.03937e28 −1.23603
\(562\) −2.45614e28 −0.329627
\(563\) −1.21599e29 −1.60174 −0.800868 0.598840i \(-0.795628\pi\)
−0.800868 + 0.598840i \(0.795628\pi\)
\(564\) 2.09925e28 0.271415
\(565\) 7.01776e27 0.0890614
\(566\) 2.75324e28 0.342982
\(567\) 2.01958e27 0.0246967
\(568\) 1.38845e28 0.166675
\(569\) −3.49889e28 −0.412337 −0.206168 0.978517i \(-0.566099\pi\)
−0.206168 + 0.978517i \(0.566099\pi\)
\(570\) −5.70768e27 −0.0660349
\(571\) 9.42449e28 1.07048 0.535240 0.844700i \(-0.320221\pi\)
0.535240 + 0.844700i \(0.320221\pi\)
\(572\) −3.69061e28 −0.411566
\(573\) −2.64650e28 −0.289766
\(574\) −1.47337e28 −0.158394
\(575\) 4.94721e28 0.522213
\(576\) 4.01999e27 0.0416667
\(577\) −1.55441e29 −1.58205 −0.791025 0.611784i \(-0.790452\pi\)
−0.791025 + 0.611784i \(0.790452\pi\)
\(578\) −1.47410e29 −1.47328
\(579\) −4.65344e28 −0.456719
\(580\) 6.08407e28 0.586409
\(581\) 6.16042e27 0.0583124
\(582\) −8.35094e28 −0.776326
\(583\) 1.64816e29 1.50481
\(584\) 4.75208e28 0.426137
\(585\) 3.09437e28 0.272543
\(586\) −1.32221e28 −0.114387
\(587\) 1.17789e29 1.00093 0.500465 0.865757i \(-0.333162\pi\)
0.500465 + 0.865757i \(0.333162\pi\)
\(588\) −3.28751e28 −0.274413
\(589\) −3.11392e28 −0.255327
\(590\) −1.41705e29 −1.14140
\(591\) −3.17733e28 −0.251416
\(592\) 4.11997e28 0.320270
\(593\) 1.16653e29 0.890884 0.445442 0.895311i \(-0.353047\pi\)
0.445442 + 0.895311i \(0.353047\pi\)
\(594\) 2.21119e28 0.165908
\(595\) 6.41188e28 0.472669
\(596\) −4.70158e28 −0.340532
\(597\) −1.07967e29 −0.768353
\(598\) −7.64162e28 −0.534346
\(599\) −5.27398e28 −0.362374 −0.181187 0.983449i \(-0.557994\pi\)
−0.181187 + 0.983449i \(0.557994\pi\)
\(600\) −1.41058e28 −0.0952378
\(601\) −5.00756e28 −0.332234 −0.166117 0.986106i \(-0.553123\pi\)
−0.166117 + 0.986106i \(0.553123\pi\)
\(602\) −2.23544e28 −0.145747
\(603\) −5.39766e28 −0.345839
\(604\) 5.53436e28 0.348482
\(605\) 9.51820e28 0.589011
\(606\) 9.03480e28 0.549485
\(607\) −6.44426e28 −0.385205 −0.192603 0.981277i \(-0.561693\pi\)
−0.192603 + 0.981277i \(0.561693\pi\)
\(608\) −4.01893e27 −0.0236115
\(609\) 2.15220e28 0.124280
\(610\) 1.29666e29 0.735973
\(611\) 1.13779e29 0.634791
\(612\) 5.33658e28 0.292667
\(613\) 1.46854e29 0.791680 0.395840 0.918319i \(-0.370453\pi\)
0.395840 + 0.918319i \(0.370453\pi\)
\(614\) 1.49409e29 0.791788
\(615\) 1.35254e29 0.704631
\(616\) 1.87068e28 0.0958078
\(617\) −2.87513e29 −1.44765 −0.723823 0.689985i \(-0.757617\pi\)
−0.723823 + 0.689985i \(0.757617\pi\)
\(618\) 1.04498e29 0.517285
\(619\) 3.83570e29 1.86678 0.933388 0.358869i \(-0.116837\pi\)
0.933388 + 0.358869i \(0.116837\pi\)
\(620\) −2.41899e29 −1.15750
\(621\) 4.57839e28 0.215402
\(622\) 1.02416e28 0.0473772
\(623\) −1.75372e28 −0.0797692
\(624\) 2.17883e28 0.0974507
\(625\) −2.83963e29 −1.24888
\(626\) −2.13349e28 −0.0922697
\(627\) −2.21060e28 −0.0940160
\(628\) 4.99803e28 0.209037
\(629\) 5.46931e29 2.24957
\(630\) −1.56846e28 −0.0634449
\(631\) −4.12646e29 −1.64161 −0.820803 0.571211i \(-0.806474\pi\)
−0.820803 + 0.571211i \(0.806474\pi\)
\(632\) 1.59865e28 0.0625495
\(633\) −1.28272e29 −0.493620
\(634\) −1.34092e29 −0.507535
\(635\) −5.15784e29 −1.92019
\(636\) −9.73028e28 −0.356308
\(637\) −1.78183e29 −0.641803
\(638\) 2.35638e29 0.834889
\(639\) −4.50873e28 −0.157143
\(640\) −3.12202e28 −0.107040
\(641\) −4.45897e29 −1.50392 −0.751960 0.659208i \(-0.770891\pi\)
−0.751960 + 0.659208i \(0.770891\pi\)
\(642\) 1.94222e29 0.644438
\(643\) −1.19395e29 −0.389736 −0.194868 0.980829i \(-0.562428\pi\)
−0.194868 + 0.980829i \(0.562428\pi\)
\(644\) 3.87334e28 0.124390
\(645\) 2.05211e29 0.648370
\(646\) −5.33518e28 −0.165847
\(647\) 5.06908e29 1.55037 0.775183 0.631737i \(-0.217658\pi\)
0.775183 + 0.631737i \(0.217658\pi\)
\(648\) −1.30542e28 −0.0392837
\(649\) −5.48829e29 −1.62505
\(650\) −7.64532e28 −0.222744
\(651\) −8.55698e28 −0.245313
\(652\) 4.91345e28 0.138607
\(653\) 2.19335e29 0.608862 0.304431 0.952534i \(-0.401534\pi\)
0.304431 + 0.952534i \(0.401534\pi\)
\(654\) 3.18648e28 0.0870451
\(655\) −2.62523e29 −0.705721
\(656\) 9.52361e28 0.251948
\(657\) −1.54315e29 −0.401765
\(658\) −5.76718e28 −0.147772
\(659\) 2.49016e29 0.627957 0.313979 0.949430i \(-0.398338\pi\)
0.313979 + 0.949430i \(0.398338\pi\)
\(660\) −1.71726e29 −0.426211
\(661\) 3.02171e29 0.738137 0.369069 0.929402i \(-0.379677\pi\)
0.369069 + 0.929402i \(0.379677\pi\)
\(662\) −5.67038e27 −0.0136334
\(663\) 2.89242e29 0.684494
\(664\) −3.98198e28 −0.0927543
\(665\) 1.56804e28 0.0359527
\(666\) −1.33789e29 −0.301953
\(667\) 4.87903e29 1.08396
\(668\) 4.41526e28 0.0965613
\(669\) 4.96477e29 1.06887
\(670\) 4.19195e29 0.888446
\(671\) 5.02200e29 1.04783
\(672\) −1.10439e28 −0.0226854
\(673\) 1.15417e29 0.233406 0.116703 0.993167i \(-0.462767\pi\)
0.116703 + 0.993167i \(0.462767\pi\)
\(674\) 2.40872e29 0.479576
\(675\) 4.58061e28 0.0897911
\(676\) −1.40974e29 −0.272081
\(677\) −2.04966e29 −0.389494 −0.194747 0.980853i \(-0.562389\pi\)
−0.194747 + 0.980853i \(0.562389\pi\)
\(678\) −1.60463e28 −0.0300236
\(679\) 2.29421e29 0.422670
\(680\) −4.14452e29 −0.751849
\(681\) −3.60022e29 −0.643109
\(682\) −9.36881e29 −1.64797
\(683\) −7.56950e29 −1.31114 −0.655571 0.755134i \(-0.727572\pi\)
−0.655571 + 0.755134i \(0.727572\pi\)
\(684\) 1.30508e28 0.0222611
\(685\) 1.09419e30 1.83798
\(686\) 1.85326e29 0.306573
\(687\) −3.85861e28 −0.0628616
\(688\) 1.44494e29 0.231832
\(689\) −5.27380e29 −0.833339
\(690\) −3.55569e29 −0.553360
\(691\) −4.98998e29 −0.764855 −0.382427 0.923986i \(-0.624912\pi\)
−0.382427 + 0.923986i \(0.624912\pi\)
\(692\) 4.73001e29 0.714082
\(693\) −6.07468e28 −0.0903285
\(694\) 1.64342e29 0.240700
\(695\) −4.93784e29 −0.712356
\(696\) −1.39114e29 −0.197685
\(697\) 1.26427e30 1.76968
\(698\) −3.80838e29 −0.525119
\(699\) −6.44165e29 −0.874957
\(700\) 3.87522e28 0.0518522
\(701\) 4.27981e29 0.564137 0.282069 0.959394i \(-0.408979\pi\)
0.282069 + 0.959394i \(0.408979\pi\)
\(702\) −7.07536e28 −0.0918774
\(703\) 1.33753e29 0.171110
\(704\) −1.20917e29 −0.152396
\(705\) 5.29421e29 0.657378
\(706\) −7.20130e29 −0.880971
\(707\) −2.48209e29 −0.299167
\(708\) 3.24013e29 0.384780
\(709\) 3.31006e29 0.387303 0.193651 0.981070i \(-0.437967\pi\)
0.193651 + 0.981070i \(0.437967\pi\)
\(710\) 3.50159e29 0.403694
\(711\) −5.19133e28 −0.0589722
\(712\) 1.13357e29 0.126885
\(713\) −1.93987e30 −2.13960
\(714\) −1.46609e29 −0.159342
\(715\) −9.30753e29 −0.996830
\(716\) 2.16630e29 0.228629
\(717\) 3.52236e26 0.000366338 0
\(718\) 5.13772e29 0.526580
\(719\) −1.36160e30 −1.37530 −0.687648 0.726044i \(-0.741357\pi\)
−0.687648 + 0.726044i \(0.741357\pi\)
\(720\) 1.01382e29 0.100918
\(721\) −2.87083e29 −0.281636
\(722\) 7.18303e29 0.694492
\(723\) 4.82979e29 0.460231
\(724\) 7.52122e29 0.706372
\(725\) 4.88139e29 0.451850
\(726\) −2.17636e29 −0.198562
\(727\) −5.58942e29 −0.502638 −0.251319 0.967904i \(-0.580864\pi\)
−0.251319 + 0.967904i \(0.580864\pi\)
\(728\) −5.98579e28 −0.0530569
\(729\) 4.23912e28 0.0370370
\(730\) 1.19845e30 1.03212
\(731\) 1.91818e30 1.62838
\(732\) −2.96484e29 −0.248105
\(733\) 1.20616e30 0.994975 0.497488 0.867471i \(-0.334256\pi\)
0.497488 + 0.867471i \(0.334256\pi\)
\(734\) −5.82771e29 −0.473903
\(735\) −8.29093e29 −0.664640
\(736\) −2.50366e29 −0.197860
\(737\) 1.62356e30 1.26491
\(738\) −3.09262e29 −0.237539
\(739\) −1.99646e30 −1.51180 −0.755901 0.654686i \(-0.772801\pi\)
−0.755901 + 0.654686i \(0.772801\pi\)
\(740\) 1.03903e30 0.775706
\(741\) 7.07350e28 0.0520647
\(742\) 2.67315e29 0.193992
\(743\) 1.25058e30 0.894803 0.447402 0.894333i \(-0.352350\pi\)
0.447402 + 0.894333i \(0.352350\pi\)
\(744\) 5.53107e29 0.390206
\(745\) −1.18571e30 −0.824782
\(746\) −2.65591e29 −0.182161
\(747\) 1.29308e29 0.0874496
\(748\) −1.60519e30 −1.07043
\(749\) −5.33577e29 −0.350864
\(750\) 4.06722e29 0.263727
\(751\) 1.17402e30 0.750685 0.375343 0.926886i \(-0.377525\pi\)
0.375343 + 0.926886i \(0.377525\pi\)
\(752\) 3.72780e29 0.235053
\(753\) 8.11053e29 0.504315
\(754\) −7.53996e29 −0.462349
\(755\) 1.39574e30 0.844036
\(756\) 3.58632e28 0.0213880
\(757\) 5.86936e29 0.345210 0.172605 0.984991i \(-0.444782\pi\)
0.172605 + 0.984991i \(0.444782\pi\)
\(758\) −1.13033e30 −0.655658
\(759\) −1.37713e30 −0.787837
\(760\) −1.01355e29 −0.0571879
\(761\) −1.13068e30 −0.629217 −0.314609 0.949221i \(-0.601873\pi\)
−0.314609 + 0.949221i \(0.601873\pi\)
\(762\) 1.17935e30 0.647316
\(763\) −8.75405e28 −0.0473916
\(764\) −4.69958e29 −0.250945
\(765\) 1.34586e30 0.708850
\(766\) 6.52801e29 0.339140
\(767\) 1.75614e30 0.899930
\(768\) 7.13859e28 0.0360844
\(769\) −3.28732e30 −1.63914 −0.819569 0.572981i \(-0.805787\pi\)
−0.819569 + 0.572981i \(0.805787\pi\)
\(770\) 4.71775e29 0.232050
\(771\) 2.67496e29 0.129791
\(772\) −8.26345e29 −0.395530
\(773\) −2.96976e30 −1.40229 −0.701144 0.713020i \(-0.747327\pi\)
−0.701144 + 0.713020i \(0.747327\pi\)
\(774\) −4.69220e29 −0.218573
\(775\) −1.94081e30 −0.891897
\(776\) −1.48294e30 −0.672318
\(777\) 3.67551e29 0.164398
\(778\) −3.70136e28 −0.0163334
\(779\) 3.09181e29 0.134608
\(780\) 5.49489e29 0.236029
\(781\) 1.35618e30 0.574752
\(782\) −3.32363e30 −1.38977
\(783\) 4.51748e29 0.186379
\(784\) −5.83787e29 −0.237649
\(785\) 1.26048e30 0.506295
\(786\) 6.00265e29 0.237906
\(787\) 7.59025e29 0.296839 0.148420 0.988924i \(-0.452581\pi\)
0.148420 + 0.988924i \(0.452581\pi\)
\(788\) −5.64221e29 −0.217733
\(789\) −3.08862e29 −0.117613
\(790\) 4.03171e29 0.151497
\(791\) 4.40832e28 0.0163463
\(792\) 3.92656e29 0.143681
\(793\) −1.60694e30 −0.580272
\(794\) −6.76677e29 −0.241138
\(795\) −2.45393e30 −0.862992
\(796\) −1.91725e30 −0.665414
\(797\) 4.13590e30 1.41664 0.708318 0.705894i \(-0.249454\pi\)
0.708318 + 0.705894i \(0.249454\pi\)
\(798\) −3.58538e28 −0.0121200
\(799\) 4.94869e30 1.65101
\(800\) −2.50487e29 −0.0824784
\(801\) −3.68107e29 −0.119628
\(802\) 3.23781e30 1.03853
\(803\) 4.64164e30 1.46946
\(804\) −9.58501e29 −0.299505
\(805\) 9.76837e29 0.301277
\(806\) 2.99784e30 0.912620
\(807\) −6.83868e29 −0.205495
\(808\) 1.60437e30 0.475868
\(809\) −6.22694e30 −1.82312 −0.911560 0.411166i \(-0.865122\pi\)
−0.911560 + 0.411166i \(0.865122\pi\)
\(810\) −3.29220e29 −0.0951467
\(811\) 1.69279e30 0.482930 0.241465 0.970409i \(-0.422372\pi\)
0.241465 + 0.970409i \(0.422372\pi\)
\(812\) 3.82181e29 0.107629
\(813\) 9.84878e29 0.273799
\(814\) 4.02422e30 1.10440
\(815\) 1.23915e30 0.335713
\(816\) 9.47656e29 0.253457
\(817\) 4.69097e29 0.123860
\(818\) −1.29894e30 −0.338593
\(819\) 1.94378e29 0.0500226
\(820\) 2.40181e30 0.610228
\(821\) −8.06422e29 −0.202283 −0.101141 0.994872i \(-0.532249\pi\)
−0.101141 + 0.994872i \(0.532249\pi\)
\(822\) −2.50189e30 −0.619605
\(823\) −2.36474e30 −0.578210 −0.289105 0.957297i \(-0.593358\pi\)
−0.289105 + 0.957297i \(0.593358\pi\)
\(824\) 1.85565e30 0.447982
\(825\) −1.37780e30 −0.328412
\(826\) −8.90145e29 −0.209493
\(827\) −1.05624e30 −0.245445 −0.122722 0.992441i \(-0.539162\pi\)
−0.122722 + 0.992441i \(0.539162\pi\)
\(828\) 8.13017e29 0.186544
\(829\) −3.64602e30 −0.826032 −0.413016 0.910724i \(-0.635525\pi\)
−0.413016 + 0.910724i \(0.635525\pi\)
\(830\) −1.00423e30 −0.224655
\(831\) −2.94759e30 −0.651113
\(832\) 3.86910e29 0.0843948
\(833\) −7.74984e30 −1.66925
\(834\) 1.12905e30 0.240143
\(835\) 1.11351e30 0.233875
\(836\) −3.92553e29 −0.0814203
\(837\) −1.79612e30 −0.367890
\(838\) −4.10282e30 −0.829890
\(839\) −6.80400e29 −0.135914 −0.0679569 0.997688i \(-0.521648\pi\)
−0.0679569 + 0.997688i \(0.521648\pi\)
\(840\) −2.78522e29 −0.0549449
\(841\) −3.18725e29 −0.0620953
\(842\) 5.45992e30 1.05053
\(843\) 1.41634e30 0.269139
\(844\) −2.27782e30 −0.427487
\(845\) −3.55528e30 −0.658990
\(846\) −1.21054e30 −0.221610
\(847\) 5.97902e29 0.108107
\(848\) −1.72788e30 −0.308572
\(849\) −1.58766e30 −0.280044
\(850\) −3.32524e30 −0.579328
\(851\) 8.33237e30 1.43387
\(852\) −8.00648e29 −0.136090
\(853\) 9.57477e30 1.60755 0.803773 0.594936i \(-0.202823\pi\)
0.803773 + 0.594936i \(0.202823\pi\)
\(854\) 8.14517e29 0.135080
\(855\) 3.29134e29 0.0539173
\(856\) 3.44894e30 0.558100
\(857\) −4.04955e30 −0.647304 −0.323652 0.946176i \(-0.604911\pi\)
−0.323652 + 0.946176i \(0.604911\pi\)
\(858\) 2.12819e30 0.336043
\(859\) −9.44318e30 −1.47296 −0.736479 0.676461i \(-0.763513\pi\)
−0.736479 + 0.676461i \(0.763513\pi\)
\(860\) 3.64408e30 0.561505
\(861\) 8.49622e29 0.129328
\(862\) −2.88980e30 −0.434551
\(863\) −5.03037e30 −0.747285 −0.373642 0.927573i \(-0.621891\pi\)
−0.373642 + 0.927573i \(0.621891\pi\)
\(864\) −2.31813e29 −0.0340207
\(865\) 1.19288e31 1.72953
\(866\) 1.61863e29 0.0231851
\(867\) 8.50043e30 1.20293
\(868\) −1.51953e30 −0.212447
\(869\) 1.56150e30 0.215692
\(870\) −3.50838e30 −0.478801
\(871\) −5.19506e30 −0.700487
\(872\) 5.65846e29 0.0753832
\(873\) 4.81557e30 0.633867
\(874\) −8.12804e29 −0.105710
\(875\) −1.11737e30 −0.143586
\(876\) −2.74029e30 −0.347939
\(877\) 1.56535e30 0.196388 0.0981942 0.995167i \(-0.468693\pi\)
0.0981942 + 0.995167i \(0.468693\pi\)
\(878\) −8.95611e30 −1.11027
\(879\) 7.62452e29 0.0933963
\(880\) −3.04946e30 −0.369110
\(881\) 4.04777e30 0.484138 0.242069 0.970259i \(-0.422174\pi\)
0.242069 + 0.970259i \(0.422174\pi\)
\(882\) 1.89574e30 0.224058
\(883\) 6.12581e29 0.0715445 0.0357723 0.999360i \(-0.488611\pi\)
0.0357723 + 0.999360i \(0.488611\pi\)
\(884\) 5.13628e30 0.592789
\(885\) 8.17143e30 0.931953
\(886\) −1.85877e30 −0.209494
\(887\) 9.40602e30 1.04763 0.523815 0.851832i \(-0.324508\pi\)
0.523815 + 0.851832i \(0.324508\pi\)
\(888\) −2.37578e30 −0.261499
\(889\) −3.23998e30 −0.352431
\(890\) 2.85881e30 0.307319
\(891\) −1.27508e30 −0.135463
\(892\) 8.81630e30 0.925668
\(893\) 1.21022e30 0.125581
\(894\) 2.71117e30 0.278043
\(895\) 5.46330e30 0.553749
\(896\) −1.96115e29 −0.0196461
\(897\) 4.40654e30 0.436292
\(898\) −1.09537e31 −1.07191
\(899\) −1.91406e31 −1.85131
\(900\) 8.13411e29 0.0777614
\(901\) −2.29378e31 −2.16741
\(902\) 9.30228e30 0.868802
\(903\) 1.28907e30 0.119002
\(904\) −2.84946e29 −0.0260012
\(905\) 1.89681e31 1.71086
\(906\) −3.19139e30 −0.284534
\(907\) −2.95076e30 −0.260051 −0.130025 0.991511i \(-0.541506\pi\)
−0.130025 + 0.991511i \(0.541506\pi\)
\(908\) −6.39318e30 −0.556949
\(909\) −5.20992e30 −0.448653
\(910\) −1.50959e30 −0.128506
\(911\) 5.31915e30 0.447610 0.223805 0.974634i \(-0.428152\pi\)
0.223805 + 0.974634i \(0.428152\pi\)
\(912\) 2.31752e29 0.0192787
\(913\) −3.88944e30 −0.319848
\(914\) 1.63197e31 1.32672
\(915\) −7.47718e30 −0.600920
\(916\) −6.85202e29 −0.0544397
\(917\) −1.64908e30 −0.129528
\(918\) −3.07734e30 −0.238961
\(919\) 3.46199e30 0.265774 0.132887 0.991131i \(-0.457575\pi\)
0.132887 + 0.991131i \(0.457575\pi\)
\(920\) −6.31409e30 −0.479224
\(921\) −8.61567e30 −0.646492
\(922\) −5.46471e30 −0.405408
\(923\) −4.33950e30 −0.318289
\(924\) −1.07873e30 −0.0782268
\(925\) 8.33641e30 0.597711
\(926\) −3.46776e30 −0.245829
\(927\) −6.02590e30 −0.422362
\(928\) −2.47035e30 −0.171200
\(929\) −8.04165e30 −0.551036 −0.275518 0.961296i \(-0.588849\pi\)
−0.275518 + 0.961296i \(0.588849\pi\)
\(930\) 1.39491e31 0.945094
\(931\) −1.89525e30 −0.126968
\(932\) −1.14389e31 −0.757735
\(933\) −5.90584e29 −0.0386834
\(934\) 1.61359e31 1.04508
\(935\) −4.04820e31 −2.59263
\(936\) −1.25642e30 −0.0795682
\(937\) 5.36884e30 0.336213 0.168106 0.985769i \(-0.446235\pi\)
0.168106 + 0.985769i \(0.446235\pi\)
\(938\) 2.63324e30 0.163065
\(939\) 1.23028e30 0.0753379
\(940\) 9.40131e30 0.569306
\(941\) 3.46189e30 0.207311 0.103655 0.994613i \(-0.466946\pi\)
0.103655 + 0.994613i \(0.466946\pi\)
\(942\) −2.88212e30 −0.170678
\(943\) 1.92609e31 1.12799
\(944\) 5.75373e30 0.333229
\(945\) 9.04451e29 0.0518025
\(946\) 1.41136e31 0.799433
\(947\) 1.53479e31 0.859753 0.429877 0.902888i \(-0.358557\pi\)
0.429877 + 0.902888i \(0.358557\pi\)
\(948\) −9.21862e29 −0.0510714
\(949\) −1.48523e31 −0.813766
\(950\) −8.13198e29 −0.0440655
\(951\) 7.73242e30 0.414400
\(952\) −2.60345e30 −0.137994
\(953\) 3.39202e31 1.77821 0.889105 0.457703i \(-0.151328\pi\)
0.889105 + 0.457703i \(0.151328\pi\)
\(954\) 5.61097e30 0.290924
\(955\) −1.18521e31 −0.607799
\(956\) 6.25491e27 0.000317258 0
\(957\) −1.35881e31 −0.681684
\(958\) 2.18084e31 1.08215
\(959\) 6.87334e30 0.337343
\(960\) 1.80031e30 0.0873978
\(961\) 5.52762e31 2.65425
\(962\) −1.28767e31 −0.611599
\(963\) −1.11998e31 −0.526181
\(964\) 8.57661e30 0.398572
\(965\) −2.08400e31 −0.957990
\(966\) −2.23356e30 −0.101564
\(967\) −5.24173e30 −0.235775 −0.117887 0.993027i \(-0.537612\pi\)
−0.117887 + 0.993027i \(0.537612\pi\)
\(968\) −3.86472e30 −0.171960
\(969\) 3.07653e30 0.135414
\(970\) −3.73989e31 −1.62838
\(971\) −1.66001e31 −0.715004 −0.357502 0.933912i \(-0.616371\pi\)
−0.357502 + 0.933912i \(0.616371\pi\)
\(972\) 7.52771e29 0.0320750
\(973\) −3.10179e30 −0.130746
\(974\) −1.72552e31 −0.719533
\(975\) 4.40868e30 0.181870
\(976\) −5.26488e30 −0.214865
\(977\) 4.02046e31 1.62324 0.811621 0.584185i \(-0.198586\pi\)
0.811621 + 0.584185i \(0.198586\pi\)
\(978\) −2.83334e30 −0.113173
\(979\) 1.10723e31 0.437540
\(980\) −1.47228e31 −0.575595
\(981\) −1.83748e30 −0.0710720
\(982\) 1.61481e31 0.617948
\(983\) 1.31702e31 0.498633 0.249317 0.968422i \(-0.419794\pi\)
0.249317 + 0.968422i \(0.419794\pi\)
\(984\) −5.49179e30 −0.205715
\(985\) −1.42294e31 −0.527357
\(986\) −3.27942e31 −1.20251
\(987\) 3.32565e30 0.120655
\(988\) 1.25609e30 0.0450893
\(989\) 2.92231e31 1.03792
\(990\) 9.90259e30 0.348000
\(991\) −4.21282e31 −1.46487 −0.732436 0.680836i \(-0.761616\pi\)
−0.732436 + 0.680836i \(0.761616\pi\)
\(992\) 9.82193e30 0.337928
\(993\) 3.26983e29 0.0111316
\(994\) 2.19958e30 0.0740940
\(995\) −4.83521e31 −1.61166
\(996\) 2.29621e30 0.0757336
\(997\) −5.77509e31 −1.88477 −0.942387 0.334524i \(-0.891424\pi\)
−0.942387 + 0.334524i \(0.891424\pi\)
\(998\) −2.63357e31 −0.850501
\(999\) 7.71492e30 0.246544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6.22.a.a.1.1 1
3.2 odd 2 18.22.a.d.1.1 1
4.3 odd 2 48.22.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.22.a.a.1.1 1 1.1 even 1 trivial
18.22.a.d.1.1 1 3.2 odd 2
48.22.a.c.1.1 1 4.3 odd 2