Properties

Label 6.21
Level 6
Weight 21
Dimension 6
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 42
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 21 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(42\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(6))\).

Total New Old
Modular forms 22 6 16
Cusp forms 18 6 12
Eisenstein series 4 0 4

Trace form

\( 6 q + 18846 q^{3} - 3145728 q^{4} + 35057664 q^{6} - 566671812 q^{7} + 1944941382 q^{9} + 5360984064 q^{10} - 9880731648 q^{12} - 49898545620 q^{13} + 487708151328 q^{15} + 1649267441664 q^{16} - 3239129751552 q^{18}+ \cdots - 22\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.21.b \(\chi_{6}(5, \cdot)\) 6.21.b.a 6 1

Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{21}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)