Properties

Label 6.14
Level 6
Weight 14
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 28
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(6))\).

Total New Old
Modular forms 15 1 14
Cusp forms 11 1 10
Eisenstein series 4 0 4

Trace form

\( q + 64 q^{2} - 729 q^{3} + 4096 q^{4} + 54654 q^{5} - 46656 q^{6} + 176336 q^{7} + 262144 q^{8} + 531441 q^{9} + 3497856 q^{10} + 6612420 q^{11} - 2985984 q^{12} - 24028978 q^{13} + 11285504 q^{14} - 39842766 q^{15}+ \cdots + 3514111097220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.14.a \(\chi_{6}(1, \cdot)\) 6.14.a.a 1 1

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)