Properties

Label 6.12.a
Level $6$
Weight $12$
Character orbit 6.a
Rep. character $\chi_{6}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $12$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(12\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(6))\).

Total New Old
Modular forms 13 3 10
Cusp forms 9 3 6
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(1\)

Trace form

\( 3 q - 32 q^{2} + 243 q^{3} + 3072 q^{4} - 2334 q^{5} + 7776 q^{6} + 55392 q^{7} - 32768 q^{8} + 177147 q^{9} + 307008 q^{10} - 1699116 q^{11} + 248832 q^{12} + 217266 q^{13} + 335360 q^{14} - 3369438 q^{15}+ \cdots - 100331100684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(6))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
6.12.a.a 6.a 1.a $1$ $4.610$ \(\Q\) None 6.12.a.a \(-32\) \(-243\) \(5766\) \(72464\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+5766q^{5}+\cdots\)
6.12.a.b 6.a 1.a $1$ $4.610$ \(\Q\) None 6.12.a.b \(-32\) \(243\) \(-11730\) \(-50008\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-11730q^{5}+\cdots\)
6.12.a.c 6.a 1.a $1$ $4.610$ \(\Q\) None 6.12.a.c \(32\) \(243\) \(3630\) \(32936\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+3630q^{5}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(6))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(6)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)