Properties

Label 5950.2.a.k.1.1
Level $5950$
Weight $2$
Character 5950.1
Self dual yes
Analytic conductor $47.511$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5950,2,Mod(1,5950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5950.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5950 = 2 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-2,1,0,-2,-1,1,1,0,-4,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.5109892027\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.00000 q^{3} +1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -4.00000 q^{11} -2.00000 q^{12} +4.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} +1.00000 q^{18} -6.00000 q^{19} +2.00000 q^{21} -4.00000 q^{22} -2.00000 q^{24} +4.00000 q^{26} +4.00000 q^{27} -1.00000 q^{28} +6.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} +8.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} +10.0000 q^{37} -6.00000 q^{38} -8.00000 q^{39} +6.00000 q^{41} +2.00000 q^{42} -4.00000 q^{44} -4.00000 q^{47} -2.00000 q^{48} +1.00000 q^{49} -2.00000 q^{51} +4.00000 q^{52} -14.0000 q^{53} +4.00000 q^{54} -1.00000 q^{56} +12.0000 q^{57} +6.00000 q^{58} -6.00000 q^{59} -12.0000 q^{61} +4.00000 q^{62} -1.00000 q^{63} +1.00000 q^{64} +8.00000 q^{66} -4.00000 q^{67} +1.00000 q^{68} -8.00000 q^{71} +1.00000 q^{72} -2.00000 q^{73} +10.0000 q^{74} -6.00000 q^{76} +4.00000 q^{77} -8.00000 q^{78} -11.0000 q^{81} +6.00000 q^{82} -10.0000 q^{83} +2.00000 q^{84} -12.0000 q^{87} -4.00000 q^{88} +10.0000 q^{89} -4.00000 q^{91} -8.00000 q^{93} -4.00000 q^{94} -2.00000 q^{96} -6.00000 q^{97} +1.00000 q^{98} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) −2.00000 −0.577350
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 1.00000 0.235702
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) −4.00000 −0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −2.00000 −0.408248
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 4.00000 0.769800
\(28\) −1.00000 −0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 8.00000 1.39262
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −6.00000 −0.973329
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 2.00000 0.308607
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −2.00000 −0.288675
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 4.00000 0.554700
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 12.0000 1.58944
\(58\) 6.00000 0.787839
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 4.00000 0.508001
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 8.00000 0.984732
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 4.00000 0.455842
\(78\) −8.00000 −0.905822
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 6.00000 0.662589
\(83\) −10.0000 −1.09764 −0.548821 0.835940i \(-0.684923\pi\)
−0.548821 + 0.835940i \(0.684923\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) −4.00000 −0.426401
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −2.00000 −0.204124
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 1.00000 0.101015
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 16.0000 1.59206 0.796030 0.605257i \(-0.206930\pi\)
0.796030 + 0.605257i \(0.206930\pi\)
\(102\) −2.00000 −0.198030
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 4.00000 0.392232
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 4.00000 0.384900
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −20.0000 −1.89832
\(112\) −1.00000 −0.0944911
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 12.0000 1.12390
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 4.00000 0.369800
\(118\) −6.00000 −0.552345
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −12.0000 −1.08643
\(123\) −12.0000 −1.08200
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −1.00000 −0.0890871
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 8.00000 0.696311
\(133\) 6.00000 0.520266
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) −8.00000 −0.671345
\(143\) −16.0000 −1.33799
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) −2.00000 −0.164957
\(148\) 10.0000 0.821995
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −6.00000 −0.486664
\(153\) 1.00000 0.0808452
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) −8.00000 −0.640513
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 28.0000 2.22054
\(160\) 0 0
\(161\) 0 0
\(162\) −11.0000 −0.864242
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −10.0000 −0.776151
\(167\) 20.0000 1.54765 0.773823 0.633402i \(-0.218342\pi\)
0.773823 + 0.633402i \(0.218342\pi\)
\(168\) 2.00000 0.154303
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 8.00000 0.608229 0.304114 0.952636i \(-0.401639\pi\)
0.304114 + 0.952636i \(0.401639\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 12.0000 0.901975
\(178\) 10.0000 0.749532
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −4.00000 −0.296500
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) 0 0
\(186\) −8.00000 −0.586588
\(187\) −4.00000 −0.292509
\(188\) −4.00000 −0.291730
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) −2.00000 −0.144338
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −4.00000 −0.284268
\(199\) 28.0000 1.98487 0.992434 0.122782i \(-0.0391815\pi\)
0.992434 + 0.122782i \(0.0391815\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 16.0000 1.12576
\(203\) −6.00000 −0.421117
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −14.0000 −0.961524
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 0 0
\(216\) 4.00000 0.272166
\(217\) −4.00000 −0.271538
\(218\) −2.00000 −0.135457
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) −20.0000 −1.34231
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 12.0000 0.794719
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 6.00000 0.393919
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 4.00000 0.261488
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) −1.00000 −0.0648204
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 5.00000 0.321412
\(243\) 10.0000 0.641500
\(244\) −12.0000 −0.768221
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) −24.0000 −1.52708
\(248\) 4.00000 0.254000
\(249\) 20.0000 1.26745
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) −18.0000 −1.11204
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 8.00000 0.492366
\(265\) 0 0
\(266\) 6.00000 0.367884
\(267\) −20.0000 −1.22398
\(268\) −4.00000 −0.244339
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.00000 0.0606339
\(273\) 8.00000 0.484182
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 10.0000 0.599760
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 8.00000 0.476393
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) −16.0000 −0.946100
\(287\) −6.00000 −0.354169
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) −2.00000 −0.117041
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) −16.0000 −0.928414
\(298\) −2.00000 −0.115857
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) −32.0000 −1.83835
\(304\) −6.00000 −0.344124
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 4.00000 0.227921
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) −8.00000 −0.452911
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 28.0000 1.57016
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 4.00000 0.221201
\(328\) 6.00000 0.331295
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −10.0000 −0.548821
\(333\) 10.0000 0.547997
\(334\) 20.0000 1.09435
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 3.00000 0.163178
\(339\) 28.0000 1.52075
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) −6.00000 −0.324443
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 8.00000 0.430083
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) −12.0000 −0.643268
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) −4.00000 −0.213201
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 2.00000 0.105851
\(358\) −12.0000 −0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) 24.0000 1.25450
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 14.0000 0.726844
\(372\) −8.00000 −0.414781
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 24.0000 1.23606
\(378\) −4.00000 −0.205738
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) −24.0000 −1.22795
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) −2.00000 −0.102062
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 36.0000 1.81596
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 28.0000 1.40351
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 8.00000 0.399004
\(403\) 16.0000 0.797017
\(404\) 16.0000 0.796030
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) −40.0000 −1.98273
\(408\) −2.00000 −0.0990148
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 4.00000 0.197305
\(412\) 4.00000 0.197066
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) −20.0000 −0.979404
\(418\) 24.0000 1.17388
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) −8.00000 −0.389434
\(423\) −4.00000 −0.194487
\(424\) −14.0000 −0.679900
\(425\) 0 0
\(426\) 16.0000 0.775203
\(427\) 12.0000 0.580721
\(428\) 0 0
\(429\) 32.0000 1.54497
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 4.00000 0.192450
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 4.00000 0.191127
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 4.00000 0.190261
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −20.0000 −0.949158
\(445\) 0 0
\(446\) −24.0000 −1.13643
\(447\) 4.00000 0.189194
\(448\) −1.00000 −0.0472456
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −14.0000 −0.658505
\(453\) 32.0000 1.50349
\(454\) 2.00000 0.0938647
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) −28.0000 −1.30835
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) −8.00000 −0.372194
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −26.0000 −1.20443
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 4.00000 0.184900
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 8.00000 0.368621
\(472\) −6.00000 −0.276172
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −1.00000 −0.0458349
\(477\) −14.0000 −0.641016
\(478\) −8.00000 −0.365911
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) −2.00000 −0.0910975
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 10.0000 0.453609
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) −12.0000 −0.543214
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) −12.0000 −0.541002
\(493\) 6.00000 0.270226
\(494\) −24.0000 −1.07981
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 8.00000 0.358849
\(498\) 20.0000 0.896221
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) −40.0000 −1.78707
\(502\) 14.0000 0.624851
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 0 0
\(506\) 0 0
\(507\) −6.00000 −0.266469
\(508\) 8.00000 0.354943
\(509\) 12.0000 0.531891 0.265945 0.963988i \(-0.414316\pi\)
0.265945 + 0.963988i \(0.414316\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 1.00000 0.0441942
\(513\) −24.0000 −1.05963
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) −10.0000 −0.439375
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 6.00000 0.262613
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) −18.0000 −0.786334
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 4.00000 0.174243
\(528\) 8.00000 0.348155
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 6.00000 0.260133
\(533\) 24.0000 1.03956
\(534\) −20.0000 −0.865485
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 24.0000 1.03568
\(538\) −24.0000 −1.03471
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 8.00000 0.342368
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) −2.00000 −0.0854358
\(549\) −12.0000 −0.512148
\(550\) 0 0
\(551\) −36.0000 −1.53365
\(552\) 0 0
\(553\) 0 0
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) 10.0000 0.424094
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) −6.00000 −0.253095
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 8.00000 0.336861
\(565\) 0 0
\(566\) −14.0000 −0.588464
\(567\) 11.0000 0.461957
\(568\) −8.00000 −0.335673
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) −16.0000 −0.668994
\(573\) 48.0000 2.00523
\(574\) −6.00000 −0.250435
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 1.00000 0.0415945
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) 10.0000 0.414870
\(582\) 12.0000 0.497416
\(583\) 56.0000 2.31928
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) −2.00000 −0.0824786
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) 4.00000 0.164538
\(592\) 10.0000 0.410997
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) −16.0000 −0.656488
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) −56.0000 −2.29193
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) −32.0000 −1.29991
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −6.00000 −0.243332
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 1.00000 0.0404226
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −10.0000 −0.403567
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) −14.0000 −0.563619 −0.281809 0.959470i \(-0.590935\pi\)
−0.281809 + 0.959470i \(0.590935\pi\)
\(618\) −8.00000 −0.321807
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 8.00000 0.320771
\(623\) −10.0000 −0.400642
\(624\) −8.00000 −0.320256
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) −48.0000 −1.91694
\(628\) −4.00000 −0.159617
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 16.0000 0.635943
\(634\) 22.0000 0.873732
\(635\) 0 0
\(636\) 28.0000 1.11027
\(637\) 4.00000 0.158486
\(638\) −24.0000 −0.950169
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) −11.0000 −0.432121
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) −4.00000 −0.156652
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 4.00000 0.156412
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) −2.00000 −0.0780274
\(658\) 4.00000 0.155936
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 24.0000 0.933492 0.466746 0.884391i \(-0.345426\pi\)
0.466746 + 0.884391i \(0.345426\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) −10.0000 −0.388075
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) 0 0
\(668\) 20.0000 0.773823
\(669\) 48.0000 1.85579
\(670\) 0 0
\(671\) 48.0000 1.85302
\(672\) 2.00000 0.0771517
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −16.0000 −0.614930 −0.307465 0.951559i \(-0.599481\pi\)
−0.307465 + 0.951559i \(0.599481\pi\)
\(678\) 28.0000 1.07533
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) −16.0000 −0.612672
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) −6.00000 −0.229416
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 56.0000 2.13653
\(688\) 0 0
\(689\) −56.0000 −2.13343
\(690\) 0 0
\(691\) 6.00000 0.228251 0.114125 0.993466i \(-0.463593\pi\)
0.114125 + 0.993466i \(0.463593\pi\)
\(692\) 8.00000 0.304114
\(693\) 4.00000 0.151947
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) −12.0000 −0.454859
\(697\) 6.00000 0.227266
\(698\) 20.0000 0.757011
\(699\) 52.0000 1.96682
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 16.0000 0.603881
\(703\) −60.0000 −2.26294
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) −26.0000 −0.978523
\(707\) −16.0000 −0.601742
\(708\) 12.0000 0.450988
\(709\) −2.00000 −0.0751116 −0.0375558 0.999295i \(-0.511957\pi\)
−0.0375558 + 0.999295i \(0.511957\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 2.00000 0.0748481
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 16.0000 0.597531
\(718\) 24.0000 0.895672
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 17.0000 0.632674
\(723\) 4.00000 0.148762
\(724\) 0 0
\(725\) 0 0
\(726\) −10.0000 −0.371135
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) −4.00000 −0.148250
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 24.0000 0.887066
\(733\) 24.0000 0.886460 0.443230 0.896408i \(-0.353832\pi\)
0.443230 + 0.896408i \(0.353832\pi\)
\(734\) 24.0000 0.885856
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 6.00000 0.220863
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 48.0000 1.76332
\(742\) 14.0000 0.513956
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) −8.00000 −0.293294
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) −10.0000 −0.365881
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −4.00000 −0.145865
\(753\) −28.0000 −1.02038
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) −4.00000 −0.145479
\(757\) 30.0000 1.09037 0.545184 0.838316i \(-0.316460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) −16.0000 −0.579619
\(763\) 2.00000 0.0724049
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) −24.0000 −0.866590
\(768\) −2.00000 −0.0721688
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 2.00000 0.0719816
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 20.0000 0.717496
\(778\) −30.0000 −1.07555
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 36.0000 1.28408
\(787\) 10.0000 0.356462 0.178231 0.983989i \(-0.442963\pi\)
0.178231 + 0.983989i \(0.442963\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 48.0000 1.70885
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) −4.00000 −0.142134
\(793\) −48.0000 −1.70453
\(794\) 16.0000 0.567819
\(795\) 0 0
\(796\) 28.0000 0.992434
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) −12.0000 −0.424795
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) −18.0000 −0.635602
\(803\) 8.00000 0.282314
\(804\) 8.00000 0.282138
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) 48.0000 1.68968
\(808\) 16.0000 0.562878
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) −6.00000 −0.210559
\(813\) 0 0
\(814\) −40.0000 −1.40200
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −26.0000 −0.909069
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 4.00000 0.139516
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 36.0000 1.24883
\(832\) 4.00000 0.138675
\(833\) 1.00000 0.0346479
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 16.0000 0.553041
\(838\) 18.0000 0.621800
\(839\) 52.0000 1.79524 0.897620 0.440771i \(-0.145295\pi\)
0.897620 + 0.440771i \(0.145295\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −18.0000 −0.620321
\(843\) 12.0000 0.413302
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) −4.00000 −0.137523
\(847\) −5.00000 −0.171802
\(848\) −14.0000 −0.480762
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 0 0
\(852\) 16.0000 0.548151
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 32.0000 1.09246
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) 0 0
\(861\) 12.0000 0.408959
\(862\) −8.00000 −0.272481
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 4.00000 0.136083
\(865\) 0 0
\(866\) 34.0000 1.15537
\(867\) −2.00000 −0.0679236
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) −2.00000 −0.0677285
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 4.00000 0.135147
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 40.0000 1.34993
\(879\) 0 0
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 1.00000 0.0336718
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) −20.0000 −0.671156
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 44.0000 1.47406
\(892\) −24.0000 −0.803579
\(893\) 24.0000 0.803129
\(894\) 4.00000 0.133780
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 10.0000 0.333704
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −14.0000 −0.466408
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) 32.0000 1.06313
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 2.00000 0.0663723
\(909\) 16.0000 0.530687
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 12.0000 0.397360
\(913\) 40.0000 1.32381
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) −28.0000 −0.925146
\(917\) 18.0000 0.594412
\(918\) 4.00000 0.132020
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) −20.0000 −0.658665
\(923\) −32.0000 −1.05329
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) 4.00000 0.131377
\(928\) 6.00000 0.196960
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −26.0000 −0.851658
\(933\) −16.0000 −0.523816
\(934\) −18.0000 −0.588978
\(935\) 0 0
\(936\) 4.00000 0.130744
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 4.00000 0.130605
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) 8.00000 0.260654
\(943\) 0 0
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) 0 0
\(951\) −44.0000 −1.42680
\(952\) −1.00000 −0.0324102
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) −14.0000 −0.453267
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 48.0000 1.55162
\(958\) 4.00000 0.129234
\(959\) 2.00000 0.0645834
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 40.0000 1.28965
\(963\) 0 0
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 5.00000 0.160706
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 10.0000 0.320750
\(973\) −10.0000 −0.320585
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) −12.0000 −0.384111
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 8.00000 0.255812
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −28.0000 −0.893516
\(983\) 28.0000 0.893061 0.446531 0.894768i \(-0.352659\pi\)
0.446531 + 0.894768i \(0.352659\pi\)
\(984\) −12.0000 −0.382546
\(985\) 0 0
\(986\) 6.00000 0.191079
\(987\) −8.00000 −0.254643
\(988\) −24.0000 −0.763542
\(989\) 0 0
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) 0 0
\(996\) 20.0000 0.633724
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) −24.0000 −0.759707
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5950.2.a.k.1.1 1
5.4 even 2 238.2.a.b.1.1 1
15.14 odd 2 2142.2.a.l.1.1 1
20.19 odd 2 1904.2.a.b.1.1 1
35.34 odd 2 1666.2.a.b.1.1 1
40.19 odd 2 7616.2.a.i.1.1 1
40.29 even 2 7616.2.a.a.1.1 1
85.84 even 2 4046.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.b.1.1 1 5.4 even 2
1666.2.a.b.1.1 1 35.34 odd 2
1904.2.a.b.1.1 1 20.19 odd 2
2142.2.a.l.1.1 1 15.14 odd 2
4046.2.a.b.1.1 1 85.84 even 2
5950.2.a.k.1.1 1 1.1 even 1 trivial
7616.2.a.a.1.1 1 40.29 even 2
7616.2.a.i.1.1 1 40.19 odd 2