Properties

Label 595.2.a.f.1.1
Level $595$
Weight $2$
Character 595.1
Self dual yes
Analytic conductor $4.751$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [595,2,Mod(1,595)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("595.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(595, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,-2,4,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.75109892027\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.37720\) of defining polynomial
Character \(\chi\) \(=\) 595.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37720 q^{2} +1.65109 q^{3} +3.65109 q^{4} -1.00000 q^{5} -3.92498 q^{6} +1.00000 q^{7} -3.92498 q^{8} -0.273891 q^{9} +2.37720 q^{10} -3.00000 q^{11} +6.02830 q^{12} -3.92498 q^{13} -2.37720 q^{14} -1.65109 q^{15} +2.02830 q^{16} +1.00000 q^{17} +0.651093 q^{18} -4.30219 q^{19} -3.65109 q^{20} +1.65109 q^{21} +7.13161 q^{22} -4.09556 q^{23} -6.48052 q^{24} +1.00000 q^{25} +9.33048 q^{26} -5.40550 q^{27} +3.65109 q^{28} -9.37720 q^{29} +3.92498 q^{30} +5.57608 q^{31} +3.02830 q^{32} -4.95328 q^{33} -2.37720 q^{34} -1.00000 q^{35} -1.00000 q^{36} +10.2555 q^{37} +10.2272 q^{38} -6.48052 q^{39} +3.92498 q^{40} -7.58383 q^{41} -3.92498 q^{42} +7.37720 q^{43} -10.9533 q^{44} +0.273891 q^{45} +9.73598 q^{46} +5.95328 q^{47} +3.34891 q^{48} +1.00000 q^{49} -2.37720 q^{50} +1.65109 q^{51} -14.3305 q^{52} -7.93273 q^{53} +12.8500 q^{54} +3.00000 q^{55} -3.92498 q^{56} -7.10331 q^{57} +22.2915 q^{58} -8.50106 q^{59} -6.02830 q^{60} -4.44447 q^{61} -13.2555 q^{62} -0.273891 q^{63} -11.2555 q^{64} +3.92498 q^{65} +11.7750 q^{66} -7.61212 q^{67} +3.65109 q^{68} -6.76216 q^{69} +2.37720 q^{70} -2.44447 q^{71} +1.07502 q^{72} +7.17833 q^{73} -24.3793 q^{74} +1.65109 q^{75} -15.7077 q^{76} -3.00000 q^{77} +15.4055 q^{78} -14.6121 q^{79} -2.02830 q^{80} -8.10331 q^{81} +18.0283 q^{82} -10.7827 q^{83} +6.02830 q^{84} -1.00000 q^{85} -17.5371 q^{86} -15.4826 q^{87} +11.7750 q^{88} +7.75441 q^{89} -0.651093 q^{90} -3.92498 q^{91} -14.9533 q^{92} +9.20662 q^{93} -14.1522 q^{94} +4.30219 q^{95} +5.00000 q^{96} +0.726109 q^{97} -2.37720 q^{98} +0.821672 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 3 q^{5} - 3 q^{6} + 3 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} - 9 q^{11} + 6 q^{12} - 3 q^{13} - 2 q^{14} + 2 q^{15} - 6 q^{16} + 3 q^{17} - 5 q^{18} + q^{19} - 4 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37720 −1.68094 −0.840468 0.541861i \(-0.817720\pi\)
−0.840468 + 0.541861i \(0.817720\pi\)
\(3\) 1.65109 0.953259 0.476630 0.879104i \(-0.341858\pi\)
0.476630 + 0.879104i \(0.341858\pi\)
\(4\) 3.65109 1.82555
\(5\) −1.00000 −0.447214
\(6\) −3.92498 −1.60237
\(7\) 1.00000 0.377964
\(8\) −3.92498 −1.38769
\(9\) −0.273891 −0.0912969
\(10\) 2.37720 0.751738
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 6.02830 1.74022
\(13\) −3.92498 −1.08859 −0.544297 0.838892i \(-0.683204\pi\)
−0.544297 + 0.838892i \(0.683204\pi\)
\(14\) −2.37720 −0.635334
\(15\) −1.65109 −0.426310
\(16\) 2.02830 0.507074
\(17\) 1.00000 0.242536
\(18\) 0.651093 0.153464
\(19\) −4.30219 −0.986989 −0.493495 0.869749i \(-0.664281\pi\)
−0.493495 + 0.869749i \(0.664281\pi\)
\(20\) −3.65109 −0.816409
\(21\) 1.65109 0.360298
\(22\) 7.13161 1.52046
\(23\) −4.09556 −0.853984 −0.426992 0.904255i \(-0.640427\pi\)
−0.426992 + 0.904255i \(0.640427\pi\)
\(24\) −6.48052 −1.32283
\(25\) 1.00000 0.200000
\(26\) 9.33048 1.82986
\(27\) −5.40550 −1.04029
\(28\) 3.65109 0.689992
\(29\) −9.37720 −1.74130 −0.870651 0.491900i \(-0.836302\pi\)
−0.870651 + 0.491900i \(0.836302\pi\)
\(30\) 3.92498 0.716601
\(31\) 5.57608 1.00149 0.500747 0.865594i \(-0.333059\pi\)
0.500747 + 0.865594i \(0.333059\pi\)
\(32\) 3.02830 0.535332
\(33\) −4.95328 −0.862255
\(34\) −2.37720 −0.407687
\(35\) −1.00000 −0.169031
\(36\) −1.00000 −0.166667
\(37\) 10.2555 1.68599 0.842994 0.537923i \(-0.180791\pi\)
0.842994 + 0.537923i \(0.180791\pi\)
\(38\) 10.2272 1.65907
\(39\) −6.48052 −1.03771
\(40\) 3.92498 0.620594
\(41\) −7.58383 −1.18439 −0.592197 0.805793i \(-0.701739\pi\)
−0.592197 + 0.805793i \(0.701739\pi\)
\(42\) −3.92498 −0.605638
\(43\) 7.37720 1.12501 0.562506 0.826793i \(-0.309837\pi\)
0.562506 + 0.826793i \(0.309837\pi\)
\(44\) −10.9533 −1.65127
\(45\) 0.273891 0.0408292
\(46\) 9.73598 1.43549
\(47\) 5.95328 0.868375 0.434188 0.900822i \(-0.357036\pi\)
0.434188 + 0.900822i \(0.357036\pi\)
\(48\) 3.34891 0.483373
\(49\) 1.00000 0.142857
\(50\) −2.37720 −0.336187
\(51\) 1.65109 0.231199
\(52\) −14.3305 −1.98728
\(53\) −7.93273 −1.08964 −0.544822 0.838551i \(-0.683403\pi\)
−0.544822 + 0.838551i \(0.683403\pi\)
\(54\) 12.8500 1.74866
\(55\) 3.00000 0.404520
\(56\) −3.92498 −0.524498
\(57\) −7.10331 −0.940857
\(58\) 22.2915 2.92702
\(59\) −8.50106 −1.10674 −0.553372 0.832934i \(-0.686659\pi\)
−0.553372 + 0.832934i \(0.686659\pi\)
\(60\) −6.02830 −0.778250
\(61\) −4.44447 −0.569056 −0.284528 0.958668i \(-0.591837\pi\)
−0.284528 + 0.958668i \(0.591837\pi\)
\(62\) −13.2555 −1.68345
\(63\) −0.273891 −0.0345070
\(64\) −11.2555 −1.40693
\(65\) 3.92498 0.486834
\(66\) 11.7750 1.44940
\(67\) −7.61212 −0.929969 −0.464984 0.885319i \(-0.653940\pi\)
−0.464984 + 0.885319i \(0.653940\pi\)
\(68\) 3.65109 0.442760
\(69\) −6.76216 −0.814068
\(70\) 2.37720 0.284130
\(71\) −2.44447 −0.290105 −0.145053 0.989424i \(-0.546335\pi\)
−0.145053 + 0.989424i \(0.546335\pi\)
\(72\) 1.07502 0.126692
\(73\) 7.17833 0.840160 0.420080 0.907487i \(-0.362002\pi\)
0.420080 + 0.907487i \(0.362002\pi\)
\(74\) −24.3793 −2.83404
\(75\) 1.65109 0.190652
\(76\) −15.7077 −1.80180
\(77\) −3.00000 −0.341882
\(78\) 15.4055 1.74433
\(79\) −14.6121 −1.64399 −0.821996 0.569493i \(-0.807140\pi\)
−0.821996 + 0.569493i \(0.807140\pi\)
\(80\) −2.02830 −0.226770
\(81\) −8.10331 −0.900368
\(82\) 18.0283 1.99089
\(83\) −10.7827 −1.18356 −0.591778 0.806101i \(-0.701574\pi\)
−0.591778 + 0.806101i \(0.701574\pi\)
\(84\) 6.02830 0.657741
\(85\) −1.00000 −0.108465
\(86\) −17.5371 −1.89107
\(87\) −15.4826 −1.65991
\(88\) 11.7750 1.25521
\(89\) 7.75441 0.821965 0.410983 0.911643i \(-0.365186\pi\)
0.410983 + 0.911643i \(0.365186\pi\)
\(90\) −0.651093 −0.0686313
\(91\) −3.92498 −0.411450
\(92\) −14.9533 −1.55899
\(93\) 9.20662 0.954682
\(94\) −14.1522 −1.45968
\(95\) 4.30219 0.441395
\(96\) 5.00000 0.510310
\(97\) 0.726109 0.0737252 0.0368626 0.999320i \(-0.488264\pi\)
0.0368626 + 0.999320i \(0.488264\pi\)
\(98\) −2.37720 −0.240134
\(99\) 0.821672 0.0825811
\(100\) 3.65109 0.365109
\(101\) 10.9816 1.09271 0.546354 0.837554i \(-0.316015\pi\)
0.546354 + 0.837554i \(0.316015\pi\)
\(102\) −3.92498 −0.388631
\(103\) −7.78270 −0.766852 −0.383426 0.923572i \(-0.625256\pi\)
−0.383426 + 0.923572i \(0.625256\pi\)
\(104\) 15.4055 1.51063
\(105\) −1.65109 −0.161130
\(106\) 18.8577 1.83162
\(107\) −2.51948 −0.243568 −0.121784 0.992557i \(-0.538861\pi\)
−0.121784 + 0.992557i \(0.538861\pi\)
\(108\) −19.7360 −1.89910
\(109\) −2.42392 −0.232170 −0.116085 0.993239i \(-0.537034\pi\)
−0.116085 + 0.993239i \(0.537034\pi\)
\(110\) −7.13161 −0.679972
\(111\) 16.9327 1.60718
\(112\) 2.02830 0.191656
\(113\) 15.9816 1.50342 0.751710 0.659494i \(-0.229229\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(114\) 16.8860 1.58152
\(115\) 4.09556 0.381913
\(116\) −34.2370 −3.17883
\(117\) 1.07502 0.0993853
\(118\) 20.2087 1.86037
\(119\) 1.00000 0.0916698
\(120\) 6.48052 0.591587
\(121\) −2.00000 −0.181818
\(122\) 10.5654 0.956547
\(123\) −12.5216 −1.12904
\(124\) 20.3588 1.82827
\(125\) −1.00000 −0.0894427
\(126\) 0.651093 0.0580040
\(127\) −0.508811 −0.0451497 −0.0225749 0.999745i \(-0.507186\pi\)
−0.0225749 + 0.999745i \(0.507186\pi\)
\(128\) 20.6999 1.82963
\(129\) 12.1805 1.07243
\(130\) −9.33048 −0.818338
\(131\) 13.5577 1.18454 0.592269 0.805740i \(-0.298232\pi\)
0.592269 + 0.805740i \(0.298232\pi\)
\(132\) −18.0849 −1.57409
\(133\) −4.30219 −0.373047
\(134\) 18.0956 1.56322
\(135\) 5.40550 0.465231
\(136\) −3.92498 −0.336565
\(137\) 12.6249 1.07862 0.539310 0.842107i \(-0.318685\pi\)
0.539310 + 0.842107i \(0.318685\pi\)
\(138\) 16.0750 1.36840
\(139\) 3.39775 0.288193 0.144097 0.989564i \(-0.453972\pi\)
0.144097 + 0.989564i \(0.453972\pi\)
\(140\) −3.65109 −0.308574
\(141\) 9.82942 0.827787
\(142\) 5.81100 0.487648
\(143\) 11.7750 0.984671
\(144\) −0.555531 −0.0462943
\(145\) 9.37720 0.778734
\(146\) −17.0643 −1.41226
\(147\) 1.65109 0.136180
\(148\) 37.4437 3.07785
\(149\) 1.13161 0.0927050 0.0463525 0.998925i \(-0.485240\pi\)
0.0463525 + 0.998925i \(0.485240\pi\)
\(150\) −3.92498 −0.320474
\(151\) 8.86547 0.721462 0.360731 0.932670i \(-0.382527\pi\)
0.360731 + 0.932670i \(0.382527\pi\)
\(152\) 16.8860 1.36964
\(153\) −0.273891 −0.0221427
\(154\) 7.13161 0.574681
\(155\) −5.57608 −0.447881
\(156\) −23.6610 −1.89439
\(157\) −16.2944 −1.30044 −0.650219 0.759747i \(-0.725323\pi\)
−0.650219 + 0.759747i \(0.725323\pi\)
\(158\) 34.7360 2.76345
\(159\) −13.0977 −1.03871
\(160\) −3.02830 −0.239408
\(161\) −4.09556 −0.322776
\(162\) 19.2632 1.51346
\(163\) −2.66177 −0.208486 −0.104243 0.994552i \(-0.533242\pi\)
−0.104243 + 0.994552i \(0.533242\pi\)
\(164\) −27.6893 −2.16217
\(165\) 4.95328 0.385612
\(166\) 25.6327 1.98948
\(167\) 2.31286 0.178974 0.0894872 0.995988i \(-0.471477\pi\)
0.0894872 + 0.995988i \(0.471477\pi\)
\(168\) −6.48052 −0.499983
\(169\) 2.40550 0.185038
\(170\) 2.37720 0.182323
\(171\) 1.17833 0.0901090
\(172\) 26.9349 2.05376
\(173\) −25.2165 −1.91717 −0.958587 0.284799i \(-0.908073\pi\)
−0.958587 + 0.284799i \(0.908073\pi\)
\(174\) 36.8054 2.79021
\(175\) 1.00000 0.0755929
\(176\) −6.08489 −0.458666
\(177\) −14.0360 −1.05501
\(178\) −18.4338 −1.38167
\(179\) 19.8315 1.48228 0.741140 0.671351i \(-0.234286\pi\)
0.741140 + 0.671351i \(0.234286\pi\)
\(180\) 1.00000 0.0745356
\(181\) −16.7750 −1.24687 −0.623436 0.781874i \(-0.714264\pi\)
−0.623436 + 0.781874i \(0.714264\pi\)
\(182\) 9.33048 0.691621
\(183\) −7.33823 −0.542458
\(184\) 16.0750 1.18507
\(185\) −10.2555 −0.753997
\(186\) −21.8860 −1.60476
\(187\) −3.00000 −0.219382
\(188\) 21.7360 1.58526
\(189\) −5.40550 −0.393192
\(190\) −10.2272 −0.741957
\(191\) 8.80325 0.636981 0.318490 0.947926i \(-0.396824\pi\)
0.318490 + 0.947926i \(0.396824\pi\)
\(192\) −18.5838 −1.34117
\(193\) 19.1882 1.38120 0.690598 0.723238i \(-0.257347\pi\)
0.690598 + 0.723238i \(0.257347\pi\)
\(194\) −1.72611 −0.123927
\(195\) 6.48052 0.464079
\(196\) 3.65109 0.260792
\(197\) 16.4437 1.17156 0.585781 0.810469i \(-0.300788\pi\)
0.585781 + 0.810469i \(0.300788\pi\)
\(198\) −1.95328 −0.138814
\(199\) 11.6482 0.825717 0.412858 0.910795i \(-0.364530\pi\)
0.412858 + 0.910795i \(0.364530\pi\)
\(200\) −3.92498 −0.277538
\(201\) −12.5683 −0.886501
\(202\) −26.1054 −1.83677
\(203\) −9.37720 −0.658151
\(204\) 6.02830 0.422065
\(205\) 7.58383 0.529677
\(206\) 18.5011 1.28903
\(207\) 1.12174 0.0779660
\(208\) −7.96103 −0.551998
\(209\) 12.9066 0.892765
\(210\) 3.92498 0.270850
\(211\) −18.7437 −1.29037 −0.645186 0.764026i \(-0.723220\pi\)
−0.645186 + 0.764026i \(0.723220\pi\)
\(212\) −28.9632 −1.98920
\(213\) −4.03605 −0.276545
\(214\) 5.98933 0.409422
\(215\) −7.37720 −0.503121
\(216\) 21.2165 1.44360
\(217\) 5.57608 0.378529
\(218\) 5.76216 0.390262
\(219\) 11.8521 0.800890
\(220\) 10.9533 0.738470
\(221\) −3.92498 −0.264023
\(222\) −40.2525 −2.70157
\(223\) 4.34116 0.290705 0.145353 0.989380i \(-0.453568\pi\)
0.145353 + 0.989380i \(0.453568\pi\)
\(224\) 3.02830 0.202337
\(225\) −0.273891 −0.0182594
\(226\) −37.9914 −2.52715
\(227\) 18.9349 1.25675 0.628375 0.777910i \(-0.283720\pi\)
0.628375 + 0.777910i \(0.283720\pi\)
\(228\) −25.9349 −1.71758
\(229\) −15.7077 −1.03799 −0.518997 0.854776i \(-0.673694\pi\)
−0.518997 + 0.854776i \(0.673694\pi\)
\(230\) −9.73598 −0.641972
\(231\) −4.95328 −0.325902
\(232\) 36.8054 2.41639
\(233\) −18.4933 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(234\) −2.55553 −0.167060
\(235\) −5.95328 −0.388349
\(236\) −31.0382 −2.02041
\(237\) −24.1260 −1.56715
\(238\) −2.37720 −0.154091
\(239\) −18.8988 −1.22246 −0.611231 0.791452i \(-0.709325\pi\)
−0.611231 + 0.791452i \(0.709325\pi\)
\(240\) −3.34891 −0.216171
\(241\) 7.29151 0.469688 0.234844 0.972033i \(-0.424542\pi\)
0.234844 + 0.972033i \(0.424542\pi\)
\(242\) 4.75441 0.305625
\(243\) 2.83717 0.182005
\(244\) −16.2272 −1.03884
\(245\) −1.00000 −0.0638877
\(246\) 29.7664 1.89784
\(247\) 16.8860 1.07443
\(248\) −21.8860 −1.38976
\(249\) −17.8032 −1.12824
\(250\) 2.37720 0.150348
\(251\) 17.6249 1.11248 0.556238 0.831023i \(-0.312244\pi\)
0.556238 + 0.831023i \(0.312244\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 12.2867 0.772457
\(254\) 1.20955 0.0758938
\(255\) −1.65109 −0.103395
\(256\) −26.6970 −1.66856
\(257\) 9.75441 0.608463 0.304232 0.952598i \(-0.401600\pi\)
0.304232 + 0.952598i \(0.401600\pi\)
\(258\) −28.9554 −1.80268
\(259\) 10.2555 0.637244
\(260\) 14.3305 0.888739
\(261\) 2.56833 0.158975
\(262\) −32.2293 −1.99113
\(263\) −27.9504 −1.72349 −0.861746 0.507339i \(-0.830629\pi\)
−0.861746 + 0.507339i \(0.830629\pi\)
\(264\) 19.4415 1.19654
\(265\) 7.93273 0.487304
\(266\) 10.2272 0.627068
\(267\) 12.8032 0.783546
\(268\) −27.7926 −1.69770
\(269\) −2.09344 −0.127639 −0.0638196 0.997961i \(-0.520328\pi\)
−0.0638196 + 0.997961i \(0.520328\pi\)
\(270\) −12.8500 −0.782024
\(271\) 2.11399 0.128415 0.0642077 0.997937i \(-0.479548\pi\)
0.0642077 + 0.997937i \(0.479548\pi\)
\(272\) 2.02830 0.122984
\(273\) −6.48052 −0.392219
\(274\) −30.0120 −1.81309
\(275\) −3.00000 −0.180907
\(276\) −24.6893 −1.48612
\(277\) −10.9709 −0.659178 −0.329589 0.944125i \(-0.606910\pi\)
−0.329589 + 0.944125i \(0.606910\pi\)
\(278\) −8.07714 −0.484435
\(279\) −1.52723 −0.0914332
\(280\) 3.92498 0.234563
\(281\) 2.59450 0.154775 0.0773875 0.997001i \(-0.475342\pi\)
0.0773875 + 0.997001i \(0.475342\pi\)
\(282\) −23.3665 −1.39146
\(283\) −20.1620 −1.19851 −0.599254 0.800559i \(-0.704536\pi\)
−0.599254 + 0.800559i \(0.704536\pi\)
\(284\) −8.92498 −0.529600
\(285\) 7.10331 0.420764
\(286\) −27.9914 −1.65517
\(287\) −7.58383 −0.447659
\(288\) −0.829422 −0.0488741
\(289\) 1.00000 0.0588235
\(290\) −22.2915 −1.30900
\(291\) 1.19887 0.0702793
\(292\) 26.2087 1.53375
\(293\) 14.8548 0.867826 0.433913 0.900955i \(-0.357132\pi\)
0.433913 + 0.900955i \(0.357132\pi\)
\(294\) −3.92498 −0.228910
\(295\) 8.50106 0.494951
\(296\) −40.2525 −2.33963
\(297\) 16.2165 0.940977
\(298\) −2.69006 −0.155831
\(299\) 16.0750 0.929642
\(300\) 6.02830 0.348044
\(301\) 7.37720 0.425215
\(302\) −21.0750 −1.21273
\(303\) 18.1316 1.04163
\(304\) −8.72611 −0.500477
\(305\) 4.44447 0.254490
\(306\) 0.651093 0.0372205
\(307\) 24.0099 1.37032 0.685158 0.728395i \(-0.259733\pi\)
0.685158 + 0.728395i \(0.259733\pi\)
\(308\) −10.9533 −0.624121
\(309\) −12.8500 −0.731009
\(310\) 13.2555 0.752860
\(311\) 24.1239 1.36794 0.683969 0.729511i \(-0.260252\pi\)
0.683969 + 0.729511i \(0.260252\pi\)
\(312\) 25.4359 1.44003
\(313\) 29.5315 1.66922 0.834609 0.550843i \(-0.185694\pi\)
0.834609 + 0.550843i \(0.185694\pi\)
\(314\) 38.7352 2.18595
\(315\) 0.273891 0.0154320
\(316\) −53.3502 −3.00118
\(317\) −3.53499 −0.198545 −0.0992723 0.995060i \(-0.531651\pi\)
−0.0992723 + 0.995060i \(0.531651\pi\)
\(318\) 31.1359 1.74601
\(319\) 28.1316 1.57507
\(320\) 11.2555 0.629200
\(321\) −4.15990 −0.232183
\(322\) 9.73598 0.542565
\(323\) −4.30219 −0.239380
\(324\) −29.5860 −1.64366
\(325\) −3.92498 −0.217719
\(326\) 6.32756 0.350451
\(327\) −4.00212 −0.221318
\(328\) 29.7664 1.64357
\(329\) 5.95328 0.328215
\(330\) −11.7750 −0.648190
\(331\) 22.8598 1.25649 0.628245 0.778015i \(-0.283773\pi\)
0.628245 + 0.778015i \(0.283773\pi\)
\(332\) −39.3687 −2.16064
\(333\) −2.80888 −0.153925
\(334\) −5.49814 −0.300845
\(335\) 7.61212 0.415895
\(336\) 3.34891 0.182698
\(337\) −26.6580 −1.45216 −0.726078 0.687612i \(-0.758659\pi\)
−0.726078 + 0.687612i \(0.758659\pi\)
\(338\) −5.71836 −0.311038
\(339\) 26.3871 1.43315
\(340\) −3.65109 −0.198008
\(341\) −16.7282 −0.905885
\(342\) −2.80113 −0.151468
\(343\) 1.00000 0.0539949
\(344\) −28.9554 −1.56117
\(345\) 6.76216 0.364062
\(346\) 59.9447 3.22265
\(347\) −21.7771 −1.16905 −0.584527 0.811374i \(-0.698720\pi\)
−0.584527 + 0.811374i \(0.698720\pi\)
\(348\) −56.5286 −3.03025
\(349\) −10.3206 −0.552450 −0.276225 0.961093i \(-0.589083\pi\)
−0.276225 + 0.961093i \(0.589083\pi\)
\(350\) −2.37720 −0.127067
\(351\) 21.2165 1.13245
\(352\) −9.08489 −0.484226
\(353\) −29.7176 −1.58171 −0.790853 0.612006i \(-0.790363\pi\)
−0.790853 + 0.612006i \(0.790363\pi\)
\(354\) 33.3665 1.77341
\(355\) 2.44447 0.129739
\(356\) 28.3121 1.50054
\(357\) 1.65109 0.0873851
\(358\) −47.1436 −2.49162
\(359\) −20.2010 −1.06617 −0.533084 0.846062i \(-0.678967\pi\)
−0.533084 + 0.846062i \(0.678967\pi\)
\(360\) −1.07502 −0.0566583
\(361\) −0.491189 −0.0258520
\(362\) 39.8775 2.09591
\(363\) −3.30219 −0.173320
\(364\) −14.3305 −0.751121
\(365\) −7.17833 −0.375731
\(366\) 17.4445 0.911837
\(367\) 11.0595 0.577302 0.288651 0.957434i \(-0.406793\pi\)
0.288651 + 0.957434i \(0.406793\pi\)
\(368\) −8.30701 −0.433033
\(369\) 2.07714 0.108132
\(370\) 24.3793 1.26742
\(371\) −7.93273 −0.411847
\(372\) 33.6142 1.74282
\(373\) −27.3043 −1.41376 −0.706882 0.707332i \(-0.749899\pi\)
−0.706882 + 0.707332i \(0.749899\pi\)
\(374\) 7.13161 0.368767
\(375\) −1.65109 −0.0852621
\(376\) −23.3665 −1.20504
\(377\) 36.8054 1.89557
\(378\) 12.8500 0.660931
\(379\) 8.92498 0.458446 0.229223 0.973374i \(-0.426382\pi\)
0.229223 + 0.973374i \(0.426382\pi\)
\(380\) 15.7077 0.805787
\(381\) −0.840095 −0.0430394
\(382\) −20.9271 −1.07072
\(383\) 0.0955622 0.00488300 0.00244150 0.999997i \(-0.499223\pi\)
0.00244150 + 0.999997i \(0.499223\pi\)
\(384\) 34.1775 1.74411
\(385\) 3.00000 0.152894
\(386\) −45.6142 −2.32170
\(387\) −2.02055 −0.102710
\(388\) 2.65109 0.134589
\(389\) 16.2632 0.824578 0.412289 0.911053i \(-0.364729\pi\)
0.412289 + 0.911053i \(0.364729\pi\)
\(390\) −15.4055 −0.780088
\(391\) −4.09556 −0.207121
\(392\) −3.92498 −0.198242
\(393\) 22.3850 1.12917
\(394\) −39.0899 −1.96932
\(395\) 14.6121 0.735216
\(396\) 3.00000 0.150756
\(397\) 3.16283 0.158738 0.0793689 0.996845i \(-0.474709\pi\)
0.0793689 + 0.996845i \(0.474709\pi\)
\(398\) −27.6901 −1.38798
\(399\) −7.10331 −0.355610
\(400\) 2.02830 0.101415
\(401\) −15.4728 −0.772673 −0.386337 0.922358i \(-0.626260\pi\)
−0.386337 + 0.922358i \(0.626260\pi\)
\(402\) 29.8775 1.49015
\(403\) −21.8860 −1.09022
\(404\) 40.0948 1.99479
\(405\) 8.10331 0.402657
\(406\) 22.2915 1.10631
\(407\) −30.7664 −1.52503
\(408\) −6.48052 −0.320833
\(409\) −29.2739 −1.44750 −0.723750 0.690062i \(-0.757583\pi\)
−0.723750 + 0.690062i \(0.757583\pi\)
\(410\) −18.0283 −0.890354
\(411\) 20.8449 1.02820
\(412\) −28.4154 −1.39992
\(413\) −8.50106 −0.418310
\(414\) −2.66659 −0.131056
\(415\) 10.7827 0.529302
\(416\) −11.8860 −0.582760
\(417\) 5.61000 0.274723
\(418\) −30.6815 −1.50068
\(419\) 3.80595 0.185933 0.0929665 0.995669i \(-0.470365\pi\)
0.0929665 + 0.995669i \(0.470365\pi\)
\(420\) −6.02830 −0.294151
\(421\) −0.395626 −0.0192816 −0.00964082 0.999954i \(-0.503069\pi\)
−0.00964082 + 0.999954i \(0.503069\pi\)
\(422\) 44.5577 2.16903
\(423\) −1.63055 −0.0792799
\(424\) 31.1359 1.51209
\(425\) 1.00000 0.0485071
\(426\) 9.59450 0.464855
\(427\) −4.44447 −0.215083
\(428\) −9.19887 −0.444644
\(429\) 19.4415 0.938647
\(430\) 17.5371 0.845714
\(431\) 15.1337 0.728966 0.364483 0.931210i \(-0.381246\pi\)
0.364483 + 0.931210i \(0.381246\pi\)
\(432\) −10.9640 −0.527503
\(433\) 34.5422 1.65999 0.829995 0.557771i \(-0.188343\pi\)
0.829995 + 0.557771i \(0.188343\pi\)
\(434\) −13.2555 −0.636283
\(435\) 15.4826 0.742336
\(436\) −8.84997 −0.423837
\(437\) 17.6199 0.842873
\(438\) −28.1748 −1.34625
\(439\) −24.9709 −1.19180 −0.595898 0.803060i \(-0.703204\pi\)
−0.595898 + 0.803060i \(0.703204\pi\)
\(440\) −11.7750 −0.561349
\(441\) −0.273891 −0.0130424
\(442\) 9.33048 0.443806
\(443\) 8.75653 0.416035 0.208018 0.978125i \(-0.433299\pi\)
0.208018 + 0.978125i \(0.433299\pi\)
\(444\) 61.8230 2.93399
\(445\) −7.75441 −0.367594
\(446\) −10.3198 −0.488657
\(447\) 1.86839 0.0883719
\(448\) −11.2555 −0.531771
\(449\) −29.2944 −1.38249 −0.691245 0.722621i \(-0.742937\pi\)
−0.691245 + 0.722621i \(0.742937\pi\)
\(450\) 0.651093 0.0306928
\(451\) 22.7515 1.07133
\(452\) 58.3502 2.74456
\(453\) 14.6377 0.687740
\(454\) −45.0120 −2.11252
\(455\) 3.92498 0.184006
\(456\) 27.8804 1.30562
\(457\) −24.8131 −1.16071 −0.580354 0.814364i \(-0.697086\pi\)
−0.580354 + 0.814364i \(0.697086\pi\)
\(458\) 37.3404 1.74480
\(459\) −5.40550 −0.252307
\(460\) 14.9533 0.697200
\(461\) −4.15990 −0.193746 −0.0968730 0.995297i \(-0.530884\pi\)
−0.0968730 + 0.995297i \(0.530884\pi\)
\(462\) 11.7750 0.547820
\(463\) 4.87534 0.226576 0.113288 0.993562i \(-0.463862\pi\)
0.113288 + 0.993562i \(0.463862\pi\)
\(464\) −19.0197 −0.882970
\(465\) −9.20662 −0.426947
\(466\) 43.9624 2.03652
\(467\) −10.1834 −0.471230 −0.235615 0.971846i \(-0.575710\pi\)
−0.235615 + 0.971846i \(0.575710\pi\)
\(468\) 3.92498 0.181432
\(469\) −7.61212 −0.351495
\(470\) 14.1522 0.652790
\(471\) −26.9036 −1.23965
\(472\) 33.3665 1.53582
\(473\) −22.1316 −1.01761
\(474\) 57.3524 2.63428
\(475\) −4.30219 −0.197398
\(476\) 3.65109 0.167348
\(477\) 2.17270 0.0994811
\(478\) 44.9263 2.05488
\(479\) 14.1890 0.648312 0.324156 0.946004i \(-0.394920\pi\)
0.324156 + 0.946004i \(0.394920\pi\)
\(480\) −5.00000 −0.228218
\(481\) −40.2525 −1.83536
\(482\) −17.3334 −0.789515
\(483\) −6.76216 −0.307689
\(484\) −7.30219 −0.331918
\(485\) −0.726109 −0.0329709
\(486\) −6.74453 −0.305938
\(487\) 0.235722 0.0106816 0.00534078 0.999986i \(-0.498300\pi\)
0.00534078 + 0.999986i \(0.498300\pi\)
\(488\) 17.4445 0.789674
\(489\) −4.39483 −0.198741
\(490\) 2.37720 0.107391
\(491\) −16.6220 −0.750140 −0.375070 0.926996i \(-0.622381\pi\)
−0.375070 + 0.926996i \(0.622381\pi\)
\(492\) −45.7176 −2.06111
\(493\) −9.37720 −0.422328
\(494\) −40.1415 −1.80605
\(495\) −0.821672 −0.0369314
\(496\) 11.3099 0.507831
\(497\) −2.44447 −0.109649
\(498\) 42.3219 1.89649
\(499\) 30.4671 1.36390 0.681948 0.731400i \(-0.261133\pi\)
0.681948 + 0.731400i \(0.261133\pi\)
\(500\) −3.65109 −0.163282
\(501\) 3.81875 0.170609
\(502\) −41.8980 −1.87000
\(503\) 15.1209 0.674209 0.337105 0.941467i \(-0.390552\pi\)
0.337105 + 0.941467i \(0.390552\pi\)
\(504\) 1.07502 0.0478850
\(505\) −10.9816 −0.488674
\(506\) −29.2079 −1.29845
\(507\) 3.97170 0.176390
\(508\) −1.85772 −0.0824229
\(509\) −20.8959 −0.926194 −0.463097 0.886308i \(-0.653262\pi\)
−0.463097 + 0.886308i \(0.653262\pi\)
\(510\) 3.92498 0.173801
\(511\) 7.17833 0.317551
\(512\) 22.0643 0.975115
\(513\) 23.2555 1.02675
\(514\) −23.1882 −1.02279
\(515\) 7.78270 0.342947
\(516\) 44.4720 1.95777
\(517\) −17.8598 −0.785475
\(518\) −24.3793 −1.07117
\(519\) −41.6348 −1.82756
\(520\) −15.4055 −0.675576
\(521\) 34.2165 1.49905 0.749526 0.661975i \(-0.230281\pi\)
0.749526 + 0.661975i \(0.230281\pi\)
\(522\) −6.10543 −0.267228
\(523\) 7.15508 0.312870 0.156435 0.987688i \(-0.450000\pi\)
0.156435 + 0.987688i \(0.450000\pi\)
\(524\) 49.5003 2.16243
\(525\) 1.65109 0.0720596
\(526\) 66.4437 2.89708
\(527\) 5.57608 0.242898
\(528\) −10.0467 −0.437227
\(529\) −6.22637 −0.270712
\(530\) −18.8577 −0.819127
\(531\) 2.32836 0.101042
\(532\) −15.7077 −0.681015
\(533\) 29.7664 1.28933
\(534\) −30.4359 −1.31709
\(535\) 2.51948 0.108927
\(536\) 29.8775 1.29051
\(537\) 32.7437 1.41300
\(538\) 4.97653 0.214553
\(539\) −3.00000 −0.129219
\(540\) 19.7360 0.849301
\(541\) −21.7154 −0.933620 −0.466810 0.884358i \(-0.654597\pi\)
−0.466810 + 0.884358i \(0.654597\pi\)
\(542\) −5.02537 −0.215858
\(543\) −27.6970 −1.18859
\(544\) 3.02830 0.129837
\(545\) 2.42392 0.103829
\(546\) 15.4055 0.659294
\(547\) −43.1124 −1.84335 −0.921676 0.387960i \(-0.873180\pi\)
−0.921676 + 0.387960i \(0.873180\pi\)
\(548\) 46.0948 1.96907
\(549\) 1.21730 0.0519530
\(550\) 7.13161 0.304093
\(551\) 40.3425 1.71865
\(552\) 26.5414 1.12968
\(553\) −14.6121 −0.621371
\(554\) 26.0801 1.10804
\(555\) −16.9327 −0.718755
\(556\) 12.4055 0.526110
\(557\) 1.40045 0.0593391 0.0296696 0.999560i \(-0.490555\pi\)
0.0296696 + 0.999560i \(0.490555\pi\)
\(558\) 3.63055 0.153693
\(559\) −28.9554 −1.22468
\(560\) −2.02830 −0.0857112
\(561\) −4.95328 −0.209128
\(562\) −6.16765 −0.260167
\(563\) 21.0438 0.886890 0.443445 0.896302i \(-0.353756\pi\)
0.443445 + 0.896302i \(0.353756\pi\)
\(564\) 35.8881 1.51116
\(565\) −15.9816 −0.672350
\(566\) 47.9292 2.01462
\(567\) −8.10331 −0.340307
\(568\) 9.59450 0.402576
\(569\) 11.7467 0.492445 0.246223 0.969213i \(-0.420811\pi\)
0.246223 + 0.969213i \(0.420811\pi\)
\(570\) −16.8860 −0.707277
\(571\) 15.8470 0.663178 0.331589 0.943424i \(-0.392415\pi\)
0.331589 + 0.943424i \(0.392415\pi\)
\(572\) 42.9914 1.79756
\(573\) 14.5350 0.607208
\(574\) 18.0283 0.752487
\(575\) −4.09556 −0.170797
\(576\) 3.08277 0.128449
\(577\) −2.47277 −0.102943 −0.0514713 0.998674i \(-0.516391\pi\)
−0.0514713 + 0.998674i \(0.516391\pi\)
\(578\) −2.37720 −0.0988786
\(579\) 31.6815 1.31664
\(580\) 34.2370 1.42162
\(581\) −10.7827 −0.447342
\(582\) −2.84997 −0.118135
\(583\) 23.7982 0.985621
\(584\) −28.1748 −1.16588
\(585\) −1.07502 −0.0444464
\(586\) −35.3129 −1.45876
\(587\) 20.4162 0.842666 0.421333 0.906906i \(-0.361562\pi\)
0.421333 + 0.906906i \(0.361562\pi\)
\(588\) 6.02830 0.248603
\(589\) −23.9893 −0.988463
\(590\) −20.2087 −0.831981
\(591\) 27.1500 1.11680
\(592\) 20.8011 0.854921
\(593\) −24.2760 −0.996896 −0.498448 0.866919i \(-0.666097\pi\)
−0.498448 + 0.866919i \(0.666097\pi\)
\(594\) −38.5499 −1.58172
\(595\) −1.00000 −0.0409960
\(596\) 4.13161 0.169237
\(597\) 19.2322 0.787122
\(598\) −38.2136 −1.56267
\(599\) 1.50398 0.0614511 0.0307256 0.999528i \(-0.490218\pi\)
0.0307256 + 0.999528i \(0.490218\pi\)
\(600\) −6.48052 −0.264566
\(601\) −13.6241 −0.555739 −0.277870 0.960619i \(-0.589628\pi\)
−0.277870 + 0.960619i \(0.589628\pi\)
\(602\) −17.5371 −0.714759
\(603\) 2.08489 0.0849032
\(604\) 32.3687 1.31706
\(605\) 2.00000 0.0813116
\(606\) −43.1025 −1.75092
\(607\) −19.2349 −0.780721 −0.390361 0.920662i \(-0.627650\pi\)
−0.390361 + 0.920662i \(0.627650\pi\)
\(608\) −13.0283 −0.528367
\(609\) −15.4826 −0.627388
\(610\) −10.5654 −0.427781
\(611\) −23.3665 −0.945309
\(612\) −1.00000 −0.0404226
\(613\) 42.2341 1.70582 0.852910 0.522058i \(-0.174836\pi\)
0.852910 + 0.522058i \(0.174836\pi\)
\(614\) −57.0763 −2.30341
\(615\) 12.5216 0.504920
\(616\) 11.7750 0.474426
\(617\) −35.5675 −1.43189 −0.715947 0.698154i \(-0.754005\pi\)
−0.715947 + 0.698154i \(0.754005\pi\)
\(618\) 30.5470 1.22878
\(619\) −8.60145 −0.345721 −0.172861 0.984946i \(-0.555301\pi\)
−0.172861 + 0.984946i \(0.555301\pi\)
\(620\) −20.3588 −0.817628
\(621\) 22.1386 0.888390
\(622\) −57.3473 −2.29942
\(623\) 7.75441 0.310674
\(624\) −13.1444 −0.526197
\(625\) 1.00000 0.0400000
\(626\) −70.2023 −2.80585
\(627\) 21.3099 0.851037
\(628\) −59.4925 −2.37401
\(629\) 10.2555 0.408912
\(630\) −0.651093 −0.0259402
\(631\) −39.4407 −1.57011 −0.785056 0.619425i \(-0.787366\pi\)
−0.785056 + 0.619425i \(0.787366\pi\)
\(632\) 57.3524 2.28135
\(633\) −30.9477 −1.23006
\(634\) 8.40338 0.333741
\(635\) 0.508811 0.0201916
\(636\) −47.8209 −1.89622
\(637\) −3.92498 −0.155514
\(638\) −66.8745 −2.64759
\(639\) 0.669517 0.0264857
\(640\) −20.6999 −0.818237
\(641\) −42.1690 −1.66557 −0.832787 0.553593i \(-0.813256\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(642\) 9.88894 0.390285
\(643\) 22.1981 0.875407 0.437703 0.899119i \(-0.355792\pi\)
0.437703 + 0.899119i \(0.355792\pi\)
\(644\) −14.9533 −0.589242
\(645\) −12.1805 −0.479605
\(646\) 10.2272 0.402383
\(647\) 41.7557 1.64159 0.820794 0.571225i \(-0.193532\pi\)
0.820794 + 0.571225i \(0.193532\pi\)
\(648\) 31.8054 1.24943
\(649\) 25.5032 1.00109
\(650\) 9.33048 0.365972
\(651\) 9.20662 0.360836
\(652\) −9.71836 −0.380600
\(653\) −19.9250 −0.779725 −0.389862 0.920873i \(-0.627477\pi\)
−0.389862 + 0.920873i \(0.627477\pi\)
\(654\) 9.51386 0.372021
\(655\) −13.5577 −0.529741
\(656\) −15.3822 −0.600576
\(657\) −1.96608 −0.0767039
\(658\) −14.1522 −0.551708
\(659\) −8.45726 −0.329448 −0.164724 0.986340i \(-0.552673\pi\)
−0.164724 + 0.986340i \(0.552673\pi\)
\(660\) 18.0849 0.703953
\(661\) −21.6172 −0.840810 −0.420405 0.907336i \(-0.638112\pi\)
−0.420405 + 0.907336i \(0.638112\pi\)
\(662\) −54.3425 −2.11208
\(663\) −6.48052 −0.251682
\(664\) 42.3219 1.64241
\(665\) 4.30219 0.166832
\(666\) 6.67727 0.258739
\(667\) 38.4049 1.48704
\(668\) 8.44447 0.326726
\(669\) 7.16765 0.277118
\(670\) −18.0956 −0.699093
\(671\) 13.3334 0.514730
\(672\) 5.00000 0.192879
\(673\) −37.4097 −1.44204 −0.721020 0.692914i \(-0.756326\pi\)
−0.721020 + 0.692914i \(0.756326\pi\)
\(674\) 63.3716 2.44098
\(675\) −5.40550 −0.208058
\(676\) 8.78270 0.337796
\(677\) −14.9765 −0.575595 −0.287797 0.957691i \(-0.592923\pi\)
−0.287797 + 0.957691i \(0.592923\pi\)
\(678\) −62.7274 −2.40903
\(679\) 0.726109 0.0278655
\(680\) 3.92498 0.150516
\(681\) 31.2632 1.19801
\(682\) 39.7664 1.52273
\(683\) 24.5011 0.937507 0.468754 0.883329i \(-0.344703\pi\)
0.468754 + 0.883329i \(0.344703\pi\)
\(684\) 4.30219 0.164498
\(685\) −12.6249 −0.482373
\(686\) −2.37720 −0.0907620
\(687\) −25.9349 −0.989477
\(688\) 14.9632 0.570465
\(689\) 31.1359 1.18618
\(690\) −16.0750 −0.611965
\(691\) 37.5958 1.43021 0.715106 0.699016i \(-0.246378\pi\)
0.715106 + 0.699016i \(0.246378\pi\)
\(692\) −92.0678 −3.49989
\(693\) 0.821672 0.0312127
\(694\) 51.7685 1.96511
\(695\) −3.39775 −0.128884
\(696\) 60.7691 2.30345
\(697\) −7.58383 −0.287258
\(698\) 24.5342 0.928633
\(699\) −30.5342 −1.15491
\(700\) 3.65109 0.137998
\(701\) −41.1386 −1.55378 −0.776891 0.629635i \(-0.783204\pi\)
−0.776891 + 0.629635i \(0.783204\pi\)
\(702\) −50.4359 −1.90358
\(703\) −44.1209 −1.66405
\(704\) 33.7664 1.27262
\(705\) −9.82942 −0.370197
\(706\) 70.6447 2.65875
\(707\) 10.9816 0.413005
\(708\) −51.2469 −1.92598
\(709\) −36.1677 −1.35830 −0.679152 0.733997i \(-0.737652\pi\)
−0.679152 + 0.733997i \(0.737652\pi\)
\(710\) −5.81100 −0.218083
\(711\) 4.00212 0.150091
\(712\) −30.4359 −1.14063
\(713\) −22.8372 −0.855259
\(714\) −3.92498 −0.146889
\(715\) −11.7750 −0.440358
\(716\) 72.4068 2.70597
\(717\) −31.2037 −1.16532
\(718\) 48.0219 1.79216
\(719\) −3.31074 −0.123470 −0.0617348 0.998093i \(-0.519663\pi\)
−0.0617348 + 0.998093i \(0.519663\pi\)
\(720\) 0.555531 0.0207034
\(721\) −7.78270 −0.289843
\(722\) 1.16765 0.0434556
\(723\) 12.0390 0.447734
\(724\) −61.2469 −2.27622
\(725\) −9.37720 −0.348261
\(726\) 7.84997 0.291340
\(727\) 15.3404 0.568942 0.284471 0.958685i \(-0.408182\pi\)
0.284471 + 0.958685i \(0.408182\pi\)
\(728\) 15.4055 0.570966
\(729\) 28.9944 1.07387
\(730\) 17.0643 0.631580
\(731\) 7.37720 0.272856
\(732\) −26.7926 −0.990282
\(733\) −14.3665 −0.530640 −0.265320 0.964160i \(-0.585478\pi\)
−0.265320 + 0.964160i \(0.585478\pi\)
\(734\) −26.2907 −0.970408
\(735\) −1.65109 −0.0609015
\(736\) −12.4026 −0.457165
\(737\) 22.8364 0.841189
\(738\) −4.93778 −0.181762
\(739\) −0.198875 −0.00731572 −0.00365786 0.999993i \(-0.501164\pi\)
−0.00365786 + 0.999993i \(0.501164\pi\)
\(740\) −37.4437 −1.37646
\(741\) 27.8804 1.02421
\(742\) 18.8577 0.692289
\(743\) 2.04804 0.0751354 0.0375677 0.999294i \(-0.488039\pi\)
0.0375677 + 0.999294i \(0.488039\pi\)
\(744\) −36.1359 −1.32480
\(745\) −1.13161 −0.0414589
\(746\) 64.9079 2.37645
\(747\) 2.95328 0.108055
\(748\) −10.9533 −0.400492
\(749\) −2.51948 −0.0920600
\(750\) 3.92498 0.143320
\(751\) −47.1415 −1.72022 −0.860109 0.510111i \(-0.829604\pi\)
−0.860109 + 0.510111i \(0.829604\pi\)
\(752\) 12.0750 0.440331
\(753\) 29.1004 1.06048
\(754\) −87.4938 −3.18634
\(755\) −8.86547 −0.322647
\(756\) −19.7360 −0.717791
\(757\) 5.46209 0.198523 0.0992615 0.995061i \(-0.468352\pi\)
0.0992615 + 0.995061i \(0.468352\pi\)
\(758\) −21.2165 −0.770618
\(759\) 20.2865 0.736352
\(760\) −16.8860 −0.612520
\(761\) 23.5080 0.852165 0.426082 0.904684i \(-0.359893\pi\)
0.426082 + 0.904684i \(0.359893\pi\)
\(762\) 1.99708 0.0723465
\(763\) −2.42392 −0.0877519
\(764\) 32.1415 1.16284
\(765\) 0.273891 0.00990253
\(766\) −0.227171 −0.00820801
\(767\) 33.3665 1.20480
\(768\) −44.0793 −1.59057
\(769\) −1.98933 −0.0717370 −0.0358685 0.999357i \(-0.511420\pi\)
−0.0358685 + 0.999357i \(0.511420\pi\)
\(770\) −7.13161 −0.257005
\(771\) 16.1054 0.580023
\(772\) 70.0579 2.52144
\(773\) −14.0977 −0.507058 −0.253529 0.967328i \(-0.581591\pi\)
−0.253529 + 0.967328i \(0.581591\pi\)
\(774\) 4.80325 0.172649
\(775\) 5.57608 0.200299
\(776\) −2.84997 −0.102308
\(777\) 16.9327 0.607458
\(778\) −38.6610 −1.38606
\(779\) 32.6270 1.16899
\(780\) 23.6610 0.847198
\(781\) 7.33341 0.262410
\(782\) 9.73598 0.348158
\(783\) 50.6885 1.81146
\(784\) 2.02830 0.0724392
\(785\) 16.2944 0.581573
\(786\) −53.2136 −1.89807
\(787\) 33.1444 1.18147 0.590735 0.806865i \(-0.298838\pi\)
0.590735 + 0.806865i \(0.298838\pi\)
\(788\) 60.0374 2.13874
\(789\) −46.1487 −1.64294
\(790\) −34.7360 −1.23585
\(791\) 15.9816 0.568239
\(792\) −3.22505 −0.114597
\(793\) 17.4445 0.619471
\(794\) −7.51868 −0.266828
\(795\) 13.0977 0.464527
\(796\) 42.5286 1.50738
\(797\) −8.07019 −0.285861 −0.142930 0.989733i \(-0.545653\pi\)
−0.142930 + 0.989733i \(0.545653\pi\)
\(798\) 16.8860 0.597758
\(799\) 5.95328 0.210612
\(800\) 3.02830 0.107066
\(801\) −2.12386 −0.0750428
\(802\) 36.7819 1.29881
\(803\) −21.5350 −0.759953
\(804\) −45.8881 −1.61835
\(805\) 4.09556 0.144350
\(806\) 52.0275 1.83259
\(807\) −3.45646 −0.121673
\(808\) −43.1025 −1.51634
\(809\) 20.8783 0.734041 0.367020 0.930213i \(-0.380378\pi\)
0.367020 + 0.930213i \(0.380378\pi\)
\(810\) −19.2632 −0.676840
\(811\) 42.3318 1.48647 0.743235 0.669030i \(-0.233290\pi\)
0.743235 + 0.669030i \(0.233290\pi\)
\(812\) −34.2370 −1.20148
\(813\) 3.49039 0.122413
\(814\) 73.1380 2.56348
\(815\) 2.66177 0.0932376
\(816\) 3.34891 0.117235
\(817\) −31.7381 −1.11038
\(818\) 69.5900 2.43316
\(819\) 1.07502 0.0375641
\(820\) 27.6893 0.966951
\(821\) −31.7918 −1.10954 −0.554770 0.832004i \(-0.687194\pi\)
−0.554770 + 0.832004i \(0.687194\pi\)
\(822\) −49.5526 −1.72835
\(823\) 29.1463 1.01598 0.507988 0.861364i \(-0.330389\pi\)
0.507988 + 0.861364i \(0.330389\pi\)
\(824\) 30.5470 1.06415
\(825\) −4.95328 −0.172451
\(826\) 20.2087 0.703152
\(827\) −9.99225 −0.347465 −0.173732 0.984793i \(-0.555583\pi\)
−0.173732 + 0.984793i \(0.555583\pi\)
\(828\) 4.09556 0.142331
\(829\) 45.5675 1.58263 0.791313 0.611412i \(-0.209398\pi\)
0.791313 + 0.611412i \(0.209398\pi\)
\(830\) −25.6327 −0.889723
\(831\) −18.1140 −0.628367
\(832\) 44.1775 1.53158
\(833\) 1.00000 0.0346479
\(834\) −13.3361 −0.461792
\(835\) −2.31286 −0.0800398
\(836\) 47.1231 1.62979
\(837\) −30.1415 −1.04184
\(838\) −9.04752 −0.312541
\(839\) −49.8131 −1.71974 −0.859870 0.510513i \(-0.829455\pi\)
−0.859870 + 0.510513i \(0.829455\pi\)
\(840\) 6.48052 0.223599
\(841\) 58.9319 2.03214
\(842\) 0.940484 0.0324112
\(843\) 4.28376 0.147541
\(844\) −68.4351 −2.35563
\(845\) −2.40550 −0.0827517
\(846\) 3.87614 0.133264
\(847\) −2.00000 −0.0687208
\(848\) −16.0899 −0.552531
\(849\) −33.2894 −1.14249
\(850\) −2.37720 −0.0815374
\(851\) −42.0019 −1.43981
\(852\) −14.7360 −0.504846
\(853\) −21.1442 −0.723963 −0.361982 0.932185i \(-0.617900\pi\)
−0.361982 + 0.932185i \(0.617900\pi\)
\(854\) 10.5654 0.361541
\(855\) −1.17833 −0.0402980
\(856\) 9.88894 0.337997
\(857\) −45.1669 −1.54287 −0.771435 0.636308i \(-0.780461\pi\)
−0.771435 + 0.636308i \(0.780461\pi\)
\(858\) −46.2165 −1.57781
\(859\) −29.4309 −1.00417 −0.502084 0.864819i \(-0.667433\pi\)
−0.502084 + 0.864819i \(0.667433\pi\)
\(860\) −26.9349 −0.918471
\(861\) −12.5216 −0.426735
\(862\) −35.9759 −1.22535
\(863\) −16.2322 −0.552551 −0.276276 0.961078i \(-0.589100\pi\)
−0.276276 + 0.961078i \(0.589100\pi\)
\(864\) −16.3695 −0.556900
\(865\) 25.2165 0.857387
\(866\) −82.1137 −2.79034
\(867\) 1.65109 0.0560741
\(868\) 20.3588 0.691022
\(869\) 43.8364 1.48705
\(870\) −36.8054 −1.24782
\(871\) 29.8775 1.01236
\(872\) 9.51386 0.322180
\(873\) −0.198875 −0.00673088
\(874\) −41.8860 −1.41682
\(875\) −1.00000 −0.0338062
\(876\) 43.2731 1.46206
\(877\) 26.6842 0.901062 0.450531 0.892761i \(-0.351235\pi\)
0.450531 + 0.892761i \(0.351235\pi\)
\(878\) 59.3609 2.00333
\(879\) 24.5267 0.827263
\(880\) 6.08489 0.205122
\(881\) 10.0184 0.337529 0.168765 0.985656i \(-0.446022\pi\)
0.168765 + 0.985656i \(0.446022\pi\)
\(882\) 0.651093 0.0219235
\(883\) −35.7976 −1.20469 −0.602343 0.798237i \(-0.705766\pi\)
−0.602343 + 0.798237i \(0.705766\pi\)
\(884\) −14.3305 −0.481986
\(885\) 14.0360 0.471817
\(886\) −20.8160 −0.699329
\(887\) 57.4202 1.92798 0.963991 0.265936i \(-0.0856809\pi\)
0.963991 + 0.265936i \(0.0856809\pi\)
\(888\) −66.4607 −2.23028
\(889\) −0.508811 −0.0170650
\(890\) 18.4338 0.617902
\(891\) 24.3099 0.814414
\(892\) 15.8500 0.530696
\(893\) −25.6121 −0.857077
\(894\) −4.44155 −0.148548
\(895\) −19.8315 −0.662895
\(896\) 20.6999 0.691536
\(897\) 26.5414 0.886190
\(898\) 69.6388 2.32388
\(899\) −52.2880 −1.74390
\(900\) −1.00000 −0.0333333
\(901\) −7.93273 −0.264278
\(902\) −54.0849 −1.80083
\(903\) 12.1805 0.405340
\(904\) −62.7274 −2.08628
\(905\) 16.7750 0.557618
\(906\) −34.7968 −1.15605
\(907\) −48.5088 −1.61071 −0.805354 0.592794i \(-0.798025\pi\)
−0.805354 + 0.592794i \(0.798025\pi\)
\(908\) 69.1329 2.29426
\(909\) −3.00775 −0.0997608
\(910\) −9.33048 −0.309303
\(911\) −37.8881 −1.25529 −0.627645 0.778500i \(-0.715981\pi\)
−0.627645 + 0.778500i \(0.715981\pi\)
\(912\) −14.4076 −0.477084
\(913\) 32.3481 1.07057
\(914\) 58.9858 1.95108
\(915\) 7.33823 0.242595
\(916\) −57.3502 −1.89490
\(917\) 13.5577 0.447713
\(918\) 12.8500 0.424112
\(919\) −43.8521 −1.44655 −0.723273 0.690562i \(-0.757363\pi\)
−0.723273 + 0.690562i \(0.757363\pi\)
\(920\) −16.0750 −0.529978
\(921\) 39.6425 1.30627
\(922\) 9.88894 0.325675
\(923\) 9.59450 0.315807
\(924\) −18.0849 −0.594949
\(925\) 10.2555 0.337198
\(926\) −11.5897 −0.380860
\(927\) 2.13161 0.0700112
\(928\) −28.3969 −0.932175
\(929\) 15.7614 0.517113 0.258557 0.965996i \(-0.416753\pi\)
0.258557 + 0.965996i \(0.416753\pi\)
\(930\) 21.8860 0.717671
\(931\) −4.30219 −0.140998
\(932\) −67.5208 −2.21172
\(933\) 39.8307 1.30400
\(934\) 24.2079 0.792108
\(935\) 3.00000 0.0981105
\(936\) −4.21942 −0.137916
\(937\) 58.0502 1.89642 0.948208 0.317650i \(-0.102894\pi\)
0.948208 + 0.317650i \(0.102894\pi\)
\(938\) 18.0956 0.590841
\(939\) 48.7592 1.59120
\(940\) −21.7360 −0.708950
\(941\) −52.8435 −1.72265 −0.861325 0.508054i \(-0.830365\pi\)
−0.861325 + 0.508054i \(0.830365\pi\)
\(942\) 63.9554 2.08378
\(943\) 31.0600 1.01145
\(944\) −17.2427 −0.561201
\(945\) 5.40550 0.175841
\(946\) 52.6113 1.71054
\(947\) −43.7402 −1.42137 −0.710683 0.703512i \(-0.751614\pi\)
−0.710683 + 0.703512i \(0.751614\pi\)
\(948\) −88.0862 −2.86091
\(949\) −28.1748 −0.914593
\(950\) 10.2272 0.331813
\(951\) −5.83659 −0.189264
\(952\) −3.92498 −0.127209
\(953\) 44.3863 1.43781 0.718906 0.695107i \(-0.244643\pi\)
0.718906 + 0.695107i \(0.244643\pi\)
\(954\) −5.16495 −0.167221
\(955\) −8.80325 −0.284866
\(956\) −69.0013 −2.23166
\(957\) 46.4479 1.50145
\(958\) −33.7301 −1.08977
\(959\) 12.6249 0.407680
\(960\) 18.5838 0.599790
\(961\) 0.0926389 0.00298835
\(962\) 95.6885 3.08512
\(963\) 0.690063 0.0222370
\(964\) 26.6220 0.857437
\(965\) −19.1882 −0.617690
\(966\) 16.0750 0.517205
\(967\) 12.9512 0.416481 0.208241 0.978078i \(-0.433226\pi\)
0.208241 + 0.978078i \(0.433226\pi\)
\(968\) 7.84997 0.252308
\(969\) −7.10331 −0.228191
\(970\) 1.72611 0.0554220
\(971\) 35.3969 1.13594 0.567971 0.823049i \(-0.307729\pi\)
0.567971 + 0.823049i \(0.307729\pi\)
\(972\) 10.3588 0.332258
\(973\) 3.39775 0.108927
\(974\) −0.560358 −0.0179550
\(975\) −6.48052 −0.207543
\(976\) −9.01470 −0.288553
\(977\) 40.3072 1.28954 0.644771 0.764376i \(-0.276953\pi\)
0.644771 + 0.764376i \(0.276953\pi\)
\(978\) 10.4474 0.334071
\(979\) −23.2632 −0.743496
\(980\) −3.65109 −0.116630
\(981\) 0.663890 0.0211964
\(982\) 39.5139 1.26094
\(983\) −33.0275 −1.05341 −0.526707 0.850047i \(-0.676573\pi\)
−0.526707 + 0.850047i \(0.676573\pi\)
\(984\) 49.1471 1.56675
\(985\) −16.4437 −0.523939
\(986\) 22.2915 0.709906
\(987\) 9.82942 0.312874
\(988\) 61.6524 1.96142
\(989\) −30.2138 −0.960743
\(990\) 1.95328 0.0620793
\(991\) 3.30994 0.105144 0.0525718 0.998617i \(-0.483258\pi\)
0.0525718 + 0.998617i \(0.483258\pi\)
\(992\) 16.8860 0.536131
\(993\) 37.7437 1.19776
\(994\) 5.81100 0.184314
\(995\) −11.6482 −0.369272
\(996\) −65.0013 −2.05965
\(997\) 29.5667 0.936388 0.468194 0.883626i \(-0.344905\pi\)
0.468194 + 0.883626i \(0.344905\pi\)
\(998\) −72.4266 −2.29262
\(999\) −55.4359 −1.75391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 595.2.a.f.1.1 3
3.2 odd 2 5355.2.a.bf.1.3 3
4.3 odd 2 9520.2.a.ba.1.1 3
5.4 even 2 2975.2.a.f.1.3 3
7.6 odd 2 4165.2.a.z.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
595.2.a.f.1.1 3 1.1 even 1 trivial
2975.2.a.f.1.3 3 5.4 even 2
4165.2.a.z.1.1 3 7.6 odd 2
5355.2.a.bf.1.3 3 3.2 odd 2
9520.2.a.ba.1.1 3 4.3 odd 2