Properties

Label 5929.2.a.y.1.1
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,1,8,-1,-12,0,6,4,4,0,-2,-8,0,-5,10,-8,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 847)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.12489\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12489 q^{2} +3.12489 q^{3} +2.51514 q^{4} -0.484862 q^{5} -6.64002 q^{6} -1.09461 q^{8} +6.76491 q^{9} +1.03028 q^{10} +7.85952 q^{12} -5.60975 q^{13} -1.51514 q^{15} -2.70436 q^{16} -5.60975 q^{17} -14.3747 q^{18} +5.28005 q^{19} -1.21949 q^{20} +2.48486 q^{23} -3.42053 q^{24} -4.76491 q^{25} +11.9201 q^{26} +11.7649 q^{27} +5.28005 q^{29} +3.21949 q^{30} +7.12489 q^{31} +7.93567 q^{32} +11.9201 q^{34} +17.0147 q^{36} -0.235091 q^{37} -11.2195 q^{38} -17.5298 q^{39} +0.530734 q^{40} -2.39025 q^{41} +1.03028 q^{43} -3.28005 q^{45} -5.28005 q^{46} +1.60975 q^{47} -8.45080 q^{48} +10.1249 q^{50} -17.5298 q^{51} -14.1093 q^{52} -3.03028 q^{53} -24.9991 q^{54} +16.4995 q^{57} -11.2195 q^{58} -3.12489 q^{59} -3.81078 q^{60} +2.39025 q^{61} -15.1396 q^{62} -11.4537 q^{64} +2.71995 q^{65} +10.0147 q^{67} -14.1093 q^{68} +7.76491 q^{69} +12.0752 q^{71} -7.40493 q^{72} -2.39025 q^{73} +0.499542 q^{74} -14.8898 q^{75} +13.2800 q^{76} +37.2489 q^{78} +9.03028 q^{79} +1.31124 q^{80} +16.4693 q^{81} +5.07901 q^{82} +3.21949 q^{83} +2.71995 q^{85} -2.18922 q^{86} +16.4995 q^{87} +1.26537 q^{89} +6.96972 q^{90} +6.24977 q^{92} +22.2645 q^{93} -3.42053 q^{94} -2.56009 q^{95} +24.7980 q^{96} +8.79518 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + q^{3} + 8 q^{4} - q^{5} - 12 q^{6} + 6 q^{8} + 4 q^{9} + 4 q^{10} - 2 q^{12} - 8 q^{13} - 5 q^{15} + 10 q^{16} - 8 q^{17} - 18 q^{18} + 14 q^{20} + 7 q^{23} - 20 q^{24} + 2 q^{25} + 12 q^{26}+ \cdots + 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12489 −1.50252 −0.751260 0.660006i \(-0.770554\pi\)
−0.751260 + 0.660006i \(0.770554\pi\)
\(3\) 3.12489 1.80415 0.902077 0.431576i \(-0.142042\pi\)
0.902077 + 0.431576i \(0.142042\pi\)
\(4\) 2.51514 1.25757
\(5\) −0.484862 −0.216837 −0.108418 0.994105i \(-0.534579\pi\)
−0.108418 + 0.994105i \(0.534579\pi\)
\(6\) −6.64002 −2.71078
\(7\) 0 0
\(8\) −1.09461 −0.387003
\(9\) 6.76491 2.25497
\(10\) 1.03028 0.325802
\(11\) 0 0
\(12\) 7.85952 2.26885
\(13\) −5.60975 −1.55586 −0.777932 0.628348i \(-0.783731\pi\)
−0.777932 + 0.628348i \(0.783731\pi\)
\(14\) 0 0
\(15\) −1.51514 −0.391207
\(16\) −2.70436 −0.676089
\(17\) −5.60975 −1.36056 −0.680282 0.732951i \(-0.738143\pi\)
−0.680282 + 0.732951i \(0.738143\pi\)
\(18\) −14.3747 −3.38814
\(19\) 5.28005 1.21133 0.605663 0.795721i \(-0.292908\pi\)
0.605663 + 0.795721i \(0.292908\pi\)
\(20\) −1.21949 −0.272687
\(21\) 0 0
\(22\) 0 0
\(23\) 2.48486 0.518130 0.259065 0.965860i \(-0.416586\pi\)
0.259065 + 0.965860i \(0.416586\pi\)
\(24\) −3.42053 −0.698213
\(25\) −4.76491 −0.952982
\(26\) 11.9201 2.33772
\(27\) 11.7649 2.26416
\(28\) 0 0
\(29\) 5.28005 0.980480 0.490240 0.871587i \(-0.336909\pi\)
0.490240 + 0.871587i \(0.336909\pi\)
\(30\) 3.21949 0.587797
\(31\) 7.12489 1.27967 0.639834 0.768513i \(-0.279003\pi\)
0.639834 + 0.768513i \(0.279003\pi\)
\(32\) 7.93567 1.40284
\(33\) 0 0
\(34\) 11.9201 2.04428
\(35\) 0 0
\(36\) 17.0147 2.83578
\(37\) −0.235091 −0.0386487 −0.0193244 0.999813i \(-0.506152\pi\)
−0.0193244 + 0.999813i \(0.506152\pi\)
\(38\) −11.2195 −1.82004
\(39\) −17.5298 −2.80702
\(40\) 0.530734 0.0839165
\(41\) −2.39025 −0.373295 −0.186647 0.982427i \(-0.559762\pi\)
−0.186647 + 0.982427i \(0.559762\pi\)
\(42\) 0 0
\(43\) 1.03028 0.157116 0.0785578 0.996910i \(-0.474968\pi\)
0.0785578 + 0.996910i \(0.474968\pi\)
\(44\) 0 0
\(45\) −3.28005 −0.488961
\(46\) −5.28005 −0.778500
\(47\) 1.60975 0.234806 0.117403 0.993084i \(-0.462543\pi\)
0.117403 + 0.993084i \(0.462543\pi\)
\(48\) −8.45080 −1.21977
\(49\) 0 0
\(50\) 10.1249 1.43188
\(51\) −17.5298 −2.45467
\(52\) −14.1093 −1.95661
\(53\) −3.03028 −0.416240 −0.208120 0.978103i \(-0.566735\pi\)
−0.208120 + 0.978103i \(0.566735\pi\)
\(54\) −24.9991 −3.40194
\(55\) 0 0
\(56\) 0 0
\(57\) 16.4995 2.18542
\(58\) −11.2195 −1.47319
\(59\) −3.12489 −0.406825 −0.203413 0.979093i \(-0.565203\pi\)
−0.203413 + 0.979093i \(0.565203\pi\)
\(60\) −3.81078 −0.491970
\(61\) 2.39025 0.306040 0.153020 0.988223i \(-0.451100\pi\)
0.153020 + 0.988223i \(0.451100\pi\)
\(62\) −15.1396 −1.92273
\(63\) 0 0
\(64\) −11.4537 −1.43171
\(65\) 2.71995 0.337369
\(66\) 0 0
\(67\) 10.0147 1.22349 0.611744 0.791056i \(-0.290468\pi\)
0.611744 + 0.791056i \(0.290468\pi\)
\(68\) −14.1093 −1.71100
\(69\) 7.76491 0.934785
\(70\) 0 0
\(71\) 12.0752 1.43307 0.716533 0.697553i \(-0.245728\pi\)
0.716533 + 0.697553i \(0.245728\pi\)
\(72\) −7.40493 −0.872680
\(73\) −2.39025 −0.279758 −0.139879 0.990169i \(-0.544671\pi\)
−0.139879 + 0.990169i \(0.544671\pi\)
\(74\) 0.499542 0.0580705
\(75\) −14.8898 −1.71933
\(76\) 13.2800 1.52333
\(77\) 0 0
\(78\) 37.2489 4.21760
\(79\) 9.03028 1.01599 0.507993 0.861361i \(-0.330388\pi\)
0.507993 + 0.861361i \(0.330388\pi\)
\(80\) 1.31124 0.146601
\(81\) 16.4693 1.82992
\(82\) 5.07901 0.560883
\(83\) 3.21949 0.353385 0.176693 0.984266i \(-0.443460\pi\)
0.176693 + 0.984266i \(0.443460\pi\)
\(84\) 0 0
\(85\) 2.71995 0.295020
\(86\) −2.18922 −0.236070
\(87\) 16.4995 1.76894
\(88\) 0 0
\(89\) 1.26537 0.134129 0.0670643 0.997749i \(-0.478637\pi\)
0.0670643 + 0.997749i \(0.478637\pi\)
\(90\) 6.96972 0.734673
\(91\) 0 0
\(92\) 6.24977 0.651584
\(93\) 22.2645 2.30872
\(94\) −3.42053 −0.352801
\(95\) −2.56009 −0.262660
\(96\) 24.7980 2.53094
\(97\) 8.79518 0.893016 0.446508 0.894780i \(-0.352667\pi\)
0.446508 + 0.894780i \(0.352667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −11.9844 −1.19844
\(101\) 12.9503 1.28861 0.644304 0.764770i \(-0.277147\pi\)
0.644304 + 0.764770i \(0.277147\pi\)
\(102\) 37.2489 3.68819
\(103\) −12.1698 −1.19913 −0.599565 0.800326i \(-0.704660\pi\)
−0.599565 + 0.800326i \(0.704660\pi\)
\(104\) 6.14048 0.602124
\(105\) 0 0
\(106\) 6.43899 0.625410
\(107\) 10.5601 1.02088 0.510441 0.859913i \(-0.329482\pi\)
0.510441 + 0.859913i \(0.329482\pi\)
\(108\) 29.5904 2.84733
\(109\) −7.34060 −0.703102 −0.351551 0.936169i \(-0.614346\pi\)
−0.351551 + 0.936169i \(0.614346\pi\)
\(110\) 0 0
\(111\) −0.734633 −0.0697283
\(112\) 0 0
\(113\) 13.7649 1.29489 0.647447 0.762111i \(-0.275837\pi\)
0.647447 + 0.762111i \(0.275837\pi\)
\(114\) −35.0596 −3.28364
\(115\) −1.20482 −0.112350
\(116\) 13.2800 1.23302
\(117\) −37.9494 −3.50843
\(118\) 6.64002 0.611264
\(119\) 0 0
\(120\) 1.65848 0.151398
\(121\) 0 0
\(122\) −5.07901 −0.459832
\(123\) −7.46927 −0.673481
\(124\) 17.9201 1.60927
\(125\) 4.73463 0.423478
\(126\) 0 0
\(127\) 2.56009 0.227172 0.113586 0.993528i \(-0.463766\pi\)
0.113586 + 0.993528i \(0.463766\pi\)
\(128\) 8.46640 0.748331
\(129\) 3.21949 0.283461
\(130\) −5.77959 −0.506903
\(131\) 2.71995 0.237643 0.118822 0.992916i \(-0.462088\pi\)
0.118822 + 0.992916i \(0.462088\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −21.2800 −1.83832
\(135\) −5.70436 −0.490953
\(136\) 6.14048 0.526542
\(137\) −9.70436 −0.829099 −0.414550 0.910027i \(-0.636061\pi\)
−0.414550 + 0.910027i \(0.636061\pi\)
\(138\) −16.4995 −1.40453
\(139\) 19.7190 1.67255 0.836273 0.548313i \(-0.184730\pi\)
0.836273 + 0.548313i \(0.184730\pi\)
\(140\) 0 0
\(141\) 5.03028 0.423626
\(142\) −25.6585 −2.15321
\(143\) 0 0
\(144\) −18.2947 −1.52456
\(145\) −2.56009 −0.212604
\(146\) 5.07901 0.420342
\(147\) 0 0
\(148\) −0.591287 −0.0486035
\(149\) 10.5601 0.865117 0.432558 0.901606i \(-0.357611\pi\)
0.432558 + 0.901606i \(0.357611\pi\)
\(150\) 31.6391 2.58332
\(151\) 15.4693 1.25887 0.629435 0.777053i \(-0.283286\pi\)
0.629435 + 0.777053i \(0.283286\pi\)
\(152\) −5.77959 −0.468787
\(153\) −37.9494 −3.06803
\(154\) 0 0
\(155\) −3.45459 −0.277479
\(156\) −44.0899 −3.53002
\(157\) −9.10551 −0.726699 −0.363349 0.931653i \(-0.618367\pi\)
−0.363349 + 0.931653i \(0.618367\pi\)
\(158\) −19.1883 −1.52654
\(159\) −9.46927 −0.750962
\(160\) −3.84770 −0.304188
\(161\) 0 0
\(162\) −34.9953 −2.74949
\(163\) −13.2800 −1.04017 −0.520087 0.854113i \(-0.674100\pi\)
−0.520087 + 0.854113i \(0.674100\pi\)
\(164\) −6.01182 −0.469444
\(165\) 0 0
\(166\) −6.84106 −0.530969
\(167\) −10.0606 −0.778509 −0.389254 0.921130i \(-0.627267\pi\)
−0.389254 + 0.921130i \(0.627267\pi\)
\(168\) 0 0
\(169\) 18.4693 1.42071
\(170\) −5.77959 −0.443274
\(171\) 35.7190 2.73150
\(172\) 2.59129 0.197584
\(173\) 8.16984 0.621142 0.310571 0.950550i \(-0.399480\pi\)
0.310571 + 0.950550i \(0.399480\pi\)
\(174\) −35.0596 −2.65786
\(175\) 0 0
\(176\) 0 0
\(177\) −9.76491 −0.733975
\(178\) −2.68876 −0.201531
\(179\) −12.2645 −0.916688 −0.458344 0.888775i \(-0.651557\pi\)
−0.458344 + 0.888775i \(0.651557\pi\)
\(180\) −8.24977 −0.614902
\(181\) 7.04496 0.523647 0.261824 0.965116i \(-0.415676\pi\)
0.261824 + 0.965116i \(0.415676\pi\)
\(182\) 0 0
\(183\) 7.46927 0.552144
\(184\) −2.71995 −0.200518
\(185\) 0.113987 0.00838047
\(186\) −47.3094 −3.46889
\(187\) 0 0
\(188\) 4.04874 0.295284
\(189\) 0 0
\(190\) 5.43991 0.394652
\(191\) 18.7952 1.35997 0.679986 0.733225i \(-0.261986\pi\)
0.679986 + 0.733225i \(0.261986\pi\)
\(192\) −35.7914 −2.58302
\(193\) 16.4995 1.18766 0.593831 0.804589i \(-0.297615\pi\)
0.593831 + 0.804589i \(0.297615\pi\)
\(194\) −18.6888 −1.34177
\(195\) 8.49954 0.608665
\(196\) 0 0
\(197\) 24.4995 1.74552 0.872760 0.488149i \(-0.162328\pi\)
0.872760 + 0.488149i \(0.162328\pi\)
\(198\) 0 0
\(199\) 15.3893 1.09092 0.545461 0.838136i \(-0.316355\pi\)
0.545461 + 0.838136i \(0.316355\pi\)
\(200\) 5.21571 0.368807
\(201\) 31.2947 2.20736
\(202\) −27.5180 −1.93616
\(203\) 0 0
\(204\) −44.0899 −3.08691
\(205\) 1.15894 0.0809441
\(206\) 25.8595 1.80172
\(207\) 16.8099 1.16837
\(208\) 15.1708 1.05190
\(209\) 0 0
\(210\) 0 0
\(211\) −14.4390 −0.994021 −0.497011 0.867745i \(-0.665569\pi\)
−0.497011 + 0.867745i \(0.665569\pi\)
\(212\) −7.62156 −0.523451
\(213\) 37.7337 2.58547
\(214\) −22.4390 −1.53390
\(215\) −0.499542 −0.0340685
\(216\) −12.8780 −0.876235
\(217\) 0 0
\(218\) 15.5979 1.05643
\(219\) −7.46927 −0.504726
\(220\) 0 0
\(221\) 31.4693 2.11685
\(222\) 1.56101 0.104768
\(223\) −17.2536 −1.15538 −0.577692 0.816255i \(-0.696046\pi\)
−0.577692 + 0.816255i \(0.696046\pi\)
\(224\) 0 0
\(225\) −32.2342 −2.14894
\(226\) −29.2489 −1.94560
\(227\) −10.7200 −0.711508 −0.355754 0.934580i \(-0.615776\pi\)
−0.355754 + 0.934580i \(0.615776\pi\)
\(228\) 41.4986 2.74831
\(229\) −5.45459 −0.360449 −0.180225 0.983625i \(-0.557682\pi\)
−0.180225 + 0.983625i \(0.557682\pi\)
\(230\) 2.56009 0.168808
\(231\) 0 0
\(232\) −5.77959 −0.379449
\(233\) 29.7796 1.95093 0.975463 0.220164i \(-0.0706593\pi\)
0.975463 + 0.220164i \(0.0706593\pi\)
\(234\) 80.6382 5.27148
\(235\) −0.780505 −0.0509145
\(236\) −7.85952 −0.511611
\(237\) 28.2186 1.83299
\(238\) 0 0
\(239\) 2.56009 0.165599 0.0827994 0.996566i \(-0.473614\pi\)
0.0827994 + 0.996566i \(0.473614\pi\)
\(240\) 4.09747 0.264491
\(241\) −27.3893 −1.76430 −0.882151 0.470966i \(-0.843905\pi\)
−0.882151 + 0.470966i \(0.843905\pi\)
\(242\) 0 0
\(243\) 16.1698 1.03730
\(244\) 6.01182 0.384867
\(245\) 0 0
\(246\) 15.8713 1.01192
\(247\) −29.6197 −1.88466
\(248\) −7.79897 −0.495235
\(249\) 10.0606 0.637562
\(250\) −10.0606 −0.636285
\(251\) −9.84484 −0.621401 −0.310700 0.950508i \(-0.600564\pi\)
−0.310700 + 0.950508i \(0.600564\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −5.43991 −0.341330
\(255\) 8.49954 0.532262
\(256\) 4.91721 0.307325
\(257\) 22.4995 1.40348 0.701741 0.712432i \(-0.252406\pi\)
0.701741 + 0.712432i \(0.252406\pi\)
\(258\) −6.84106 −0.425906
\(259\) 0 0
\(260\) 6.84106 0.424264
\(261\) 35.7190 2.21095
\(262\) −5.77959 −0.357064
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 1.46927 0.0902563
\(266\) 0 0
\(267\) 3.95413 0.241989
\(268\) 25.1883 1.53862
\(269\) −9.21949 −0.562123 −0.281061 0.959690i \(-0.590686\pi\)
−0.281061 + 0.959690i \(0.590686\pi\)
\(270\) 12.1211 0.737667
\(271\) −10.5601 −0.641480 −0.320740 0.947167i \(-0.603932\pi\)
−0.320740 + 0.947167i \(0.603932\pi\)
\(272\) 15.1708 0.919862
\(273\) 0 0
\(274\) 20.6206 1.24574
\(275\) 0 0
\(276\) 19.5298 1.17556
\(277\) −18.5601 −1.11517 −0.557584 0.830121i \(-0.688272\pi\)
−0.557584 + 0.830121i \(0.688272\pi\)
\(278\) −41.9007 −2.51304
\(279\) 48.1992 2.88561
\(280\) 0 0
\(281\) 25.6585 1.53066 0.765328 0.643640i \(-0.222577\pi\)
0.765328 + 0.643640i \(0.222577\pi\)
\(282\) −10.6888 −0.636506
\(283\) −30.2791 −1.79991 −0.899954 0.435985i \(-0.856400\pi\)
−0.899954 + 0.435985i \(0.856400\pi\)
\(284\) 30.3709 1.80218
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 0 0
\(288\) 53.6841 3.16336
\(289\) 14.4693 0.851133
\(290\) 5.43991 0.319442
\(291\) 27.4839 1.61114
\(292\) −6.01182 −0.351815
\(293\) −3.04965 −0.178163 −0.0890813 0.996024i \(-0.528393\pi\)
−0.0890813 + 0.996024i \(0.528393\pi\)
\(294\) 0 0
\(295\) 1.51514 0.0882147
\(296\) 0.257333 0.0149572
\(297\) 0 0
\(298\) −22.4390 −1.29986
\(299\) −13.9394 −0.806139
\(300\) −37.4499 −2.16217
\(301\) 0 0
\(302\) −32.8704 −1.89148
\(303\) 40.4683 2.32485
\(304\) −14.2791 −0.818964
\(305\) −1.15894 −0.0663609
\(306\) 80.6382 4.60978
\(307\) −3.71904 −0.212257 −0.106128 0.994352i \(-0.533845\pi\)
−0.106128 + 0.994352i \(0.533845\pi\)
\(308\) 0 0
\(309\) −38.0294 −2.16341
\(310\) 7.34060 0.416918
\(311\) −4.16984 −0.236450 −0.118225 0.992987i \(-0.537720\pi\)
−0.118225 + 0.992987i \(0.537720\pi\)
\(312\) 19.1883 1.08632
\(313\) 11.7044 0.661569 0.330785 0.943706i \(-0.392687\pi\)
0.330785 + 0.943706i \(0.392687\pi\)
\(314\) 19.3482 1.09188
\(315\) 0 0
\(316\) 22.7124 1.27767
\(317\) −2.23509 −0.125535 −0.0627676 0.998028i \(-0.519993\pi\)
−0.0627676 + 0.998028i \(0.519993\pi\)
\(318\) 20.1211 1.12834
\(319\) 0 0
\(320\) 5.55345 0.310447
\(321\) 32.9991 1.84183
\(322\) 0 0
\(323\) −29.6197 −1.64809
\(324\) 41.4225 2.30125
\(325\) 26.7299 1.48271
\(326\) 28.2186 1.56288
\(327\) −22.9385 −1.26850
\(328\) 2.61639 0.144466
\(329\) 0 0
\(330\) 0 0
\(331\) 22.3250 1.22709 0.613547 0.789659i \(-0.289742\pi\)
0.613547 + 0.789659i \(0.289742\pi\)
\(332\) 8.09747 0.444407
\(333\) −1.59037 −0.0871517
\(334\) 21.3775 1.16973
\(335\) −4.85574 −0.265297
\(336\) 0 0
\(337\) −13.2800 −0.723410 −0.361705 0.932293i \(-0.617805\pi\)
−0.361705 + 0.932293i \(0.617805\pi\)
\(338\) −39.2451 −2.13465
\(339\) 43.0138 2.33619
\(340\) 6.84106 0.371008
\(341\) 0 0
\(342\) −75.8989 −4.10414
\(343\) 0 0
\(344\) −1.12775 −0.0608042
\(345\) −3.76491 −0.202696
\(346\) −17.3600 −0.933278
\(347\) −18.0294 −0.967867 −0.483933 0.875105i \(-0.660792\pi\)
−0.483933 + 0.875105i \(0.660792\pi\)
\(348\) 41.4986 2.22456
\(349\) 21.9494 1.17493 0.587463 0.809251i \(-0.300127\pi\)
0.587463 + 0.809251i \(0.300127\pi\)
\(350\) 0 0
\(351\) −65.9982 −3.52272
\(352\) 0 0
\(353\) −18.8557 −1.00359 −0.501795 0.864987i \(-0.667327\pi\)
−0.501795 + 0.864987i \(0.667327\pi\)
\(354\) 20.7493 1.10281
\(355\) −5.85482 −0.310742
\(356\) 3.18257 0.168676
\(357\) 0 0
\(358\) 26.0606 1.37734
\(359\) 1.52982 0.0807407 0.0403703 0.999185i \(-0.487146\pi\)
0.0403703 + 0.999185i \(0.487146\pi\)
\(360\) 3.59037 0.189229
\(361\) 8.87890 0.467310
\(362\) −14.9697 −0.786791
\(363\) 0 0
\(364\) 0 0
\(365\) 1.15894 0.0606618
\(366\) −15.8713 −0.829608
\(367\) −14.6547 −0.764969 −0.382485 0.923962i \(-0.624932\pi\)
−0.382485 + 0.923962i \(0.624932\pi\)
\(368\) −6.71995 −0.350302
\(369\) −16.1698 −0.841768
\(370\) −0.242209 −0.0125918
\(371\) 0 0
\(372\) 55.9982 2.90337
\(373\) 10.0606 0.520916 0.260458 0.965485i \(-0.416127\pi\)
0.260458 + 0.965485i \(0.416127\pi\)
\(374\) 0 0
\(375\) 14.7952 0.764020
\(376\) −1.76204 −0.0908705
\(377\) −29.6197 −1.52549
\(378\) 0 0
\(379\) −17.8936 −0.919131 −0.459566 0.888144i \(-0.651995\pi\)
−0.459566 + 0.888144i \(0.651995\pi\)
\(380\) −6.43899 −0.330313
\(381\) 8.00000 0.409852
\(382\) −39.9376 −2.04339
\(383\) 18.9650 0.969068 0.484534 0.874773i \(-0.338989\pi\)
0.484534 + 0.874773i \(0.338989\pi\)
\(384\) 26.4565 1.35010
\(385\) 0 0
\(386\) −35.0596 −1.78449
\(387\) 6.96972 0.354291
\(388\) 22.1211 1.12303
\(389\) 34.2645 1.73728 0.868638 0.495447i \(-0.164996\pi\)
0.868638 + 0.495447i \(0.164996\pi\)
\(390\) −18.0606 −0.914532
\(391\) −13.9394 −0.704948
\(392\) 0 0
\(393\) 8.49954 0.428745
\(394\) −52.0587 −2.62268
\(395\) −4.37844 −0.220303
\(396\) 0 0
\(397\) −16.2791 −0.817026 −0.408513 0.912752i \(-0.633953\pi\)
−0.408513 + 0.912752i \(0.633953\pi\)
\(398\) −32.7006 −1.63913
\(399\) 0 0
\(400\) 12.8860 0.644301
\(401\) 28.9385 1.44512 0.722561 0.691308i \(-0.242965\pi\)
0.722561 + 0.691308i \(0.242965\pi\)
\(402\) −66.4977 −3.31660
\(403\) −39.9688 −1.99099
\(404\) 32.5719 1.62051
\(405\) −7.98532 −0.396794
\(406\) 0 0
\(407\) 0 0
\(408\) 19.1883 0.949963
\(409\) −15.5104 −0.766942 −0.383471 0.923553i \(-0.625271\pi\)
−0.383471 + 0.923553i \(0.625271\pi\)
\(410\) −2.46262 −0.121620
\(411\) −30.3250 −1.49582
\(412\) −30.6088 −1.50799
\(413\) 0 0
\(414\) −35.7190 −1.75549
\(415\) −1.56101 −0.0766270
\(416\) −44.5171 −2.18263
\(417\) 61.6197 3.01753
\(418\) 0 0
\(419\) 12.9503 0.632666 0.316333 0.948648i \(-0.397548\pi\)
0.316333 + 0.948648i \(0.397548\pi\)
\(420\) 0 0
\(421\) −17.0908 −0.832956 −0.416478 0.909146i \(-0.636736\pi\)
−0.416478 + 0.909146i \(0.636736\pi\)
\(422\) 30.6812 1.49354
\(423\) 10.8898 0.529480
\(424\) 3.31697 0.161086
\(425\) 26.7299 1.29659
\(426\) −80.1798 −3.88473
\(427\) 0 0
\(428\) 26.5601 1.28383
\(429\) 0 0
\(430\) 1.06147 0.0511886
\(431\) 19.3482 0.931968 0.465984 0.884793i \(-0.345700\pi\)
0.465984 + 0.884793i \(0.345700\pi\)
\(432\) −31.8165 −1.53077
\(433\) −15.8255 −0.760523 −0.380262 0.924879i \(-0.624166\pi\)
−0.380262 + 0.924879i \(0.624166\pi\)
\(434\) 0 0
\(435\) −8.00000 −0.383571
\(436\) −18.4626 −0.884199
\(437\) 13.1202 0.627624
\(438\) 15.8713 0.758362
\(439\) 11.0596 0.527848 0.263924 0.964544i \(-0.414983\pi\)
0.263924 + 0.964544i \(0.414983\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −66.8686 −3.18061
\(443\) −34.7034 −1.64881 −0.824405 0.566000i \(-0.808490\pi\)
−0.824405 + 0.566000i \(0.808490\pi\)
\(444\) −1.84770 −0.0876881
\(445\) −0.613528 −0.0290840
\(446\) 36.6618 1.73599
\(447\) 32.9991 1.56080
\(448\) 0 0
\(449\) −36.2938 −1.71281 −0.856405 0.516304i \(-0.827307\pi\)
−0.856405 + 0.516304i \(0.827307\pi\)
\(450\) 68.4939 3.22883
\(451\) 0 0
\(452\) 34.6206 1.62842
\(453\) 48.3397 2.27120
\(454\) 22.7787 1.06906
\(455\) 0 0
\(456\) −18.0606 −0.845763
\(457\) −2.06055 −0.0963886 −0.0481943 0.998838i \(-0.515347\pi\)
−0.0481943 + 0.998838i \(0.515347\pi\)
\(458\) 11.5904 0.541582
\(459\) −65.9982 −3.08053
\(460\) −3.03028 −0.141287
\(461\) 7.17076 0.333975 0.166988 0.985959i \(-0.446596\pi\)
0.166988 + 0.985959i \(0.446596\pi\)
\(462\) 0 0
\(463\) 3.45459 0.160548 0.0802741 0.996773i \(-0.474420\pi\)
0.0802741 + 0.996773i \(0.474420\pi\)
\(464\) −14.2791 −0.662892
\(465\) −10.7952 −0.500615
\(466\) −63.2782 −2.93131
\(467\) 13.4958 0.624509 0.312255 0.949998i \(-0.398916\pi\)
0.312255 + 0.949998i \(0.398916\pi\)
\(468\) −95.4481 −4.41209
\(469\) 0 0
\(470\) 1.65848 0.0765002
\(471\) −28.4537 −1.31108
\(472\) 3.42053 0.157443
\(473\) 0 0
\(474\) −59.9612 −2.75411
\(475\) −25.1589 −1.15437
\(476\) 0 0
\(477\) −20.4995 −0.938610
\(478\) −5.43991 −0.248816
\(479\) −35.0596 −1.60192 −0.800958 0.598721i \(-0.795676\pi\)
−0.800958 + 0.598721i \(0.795676\pi\)
\(480\) −12.0236 −0.548801
\(481\) 1.31880 0.0601322
\(482\) 58.1992 2.65090
\(483\) 0 0
\(484\) 0 0
\(485\) −4.26445 −0.193639
\(486\) −34.3591 −1.55856
\(487\) 29.6656 1.34428 0.672138 0.740426i \(-0.265376\pi\)
0.672138 + 0.740426i \(0.265376\pi\)
\(488\) −2.61639 −0.118439
\(489\) −41.4986 −1.87663
\(490\) 0 0
\(491\) 25.5298 1.15214 0.576072 0.817399i \(-0.304585\pi\)
0.576072 + 0.817399i \(0.304585\pi\)
\(492\) −18.7862 −0.846949
\(493\) −29.6197 −1.33401
\(494\) 62.9385 2.83174
\(495\) 0 0
\(496\) −19.2682 −0.865169
\(497\) 0 0
\(498\) −21.3775 −0.957950
\(499\) −25.6585 −1.14863 −0.574316 0.818634i \(-0.694732\pi\)
−0.574316 + 0.818634i \(0.694732\pi\)
\(500\) 11.9083 0.532553
\(501\) −31.4381 −1.40455
\(502\) 20.9192 0.933668
\(503\) −2.56009 −0.114149 −0.0570745 0.998370i \(-0.518177\pi\)
−0.0570745 + 0.998370i \(0.518177\pi\)
\(504\) 0 0
\(505\) −6.27913 −0.279418
\(506\) 0 0
\(507\) 57.7143 2.56318
\(508\) 6.43899 0.285684
\(509\) −13.4546 −0.596364 −0.298182 0.954509i \(-0.596380\pi\)
−0.298182 + 0.954509i \(0.596380\pi\)
\(510\) −18.0606 −0.799735
\(511\) 0 0
\(512\) −27.3813 −1.21009
\(513\) 62.1193 2.74263
\(514\) −47.8089 −2.10876
\(515\) 5.90069 0.260016
\(516\) 8.09747 0.356471
\(517\) 0 0
\(518\) 0 0
\(519\) 25.5298 1.12063
\(520\) −2.97729 −0.130563
\(521\) 32.2333 1.41216 0.706082 0.708130i \(-0.250461\pi\)
0.706082 + 0.708130i \(0.250461\pi\)
\(522\) −75.8989 −3.32200
\(523\) 32.3397 1.41412 0.707058 0.707156i \(-0.250022\pi\)
0.707058 + 0.707156i \(0.250022\pi\)
\(524\) 6.84106 0.298853
\(525\) 0 0
\(526\) 33.9982 1.48239
\(527\) −39.9688 −1.74107
\(528\) 0 0
\(529\) −16.8255 −0.731542
\(530\) −3.12202 −0.135612
\(531\) −21.1396 −0.917379
\(532\) 0 0
\(533\) 13.4087 0.580796
\(534\) −8.40207 −0.363593
\(535\) −5.12019 −0.221365
\(536\) −10.9622 −0.473493
\(537\) −38.3250 −1.65385
\(538\) 19.5904 0.844601
\(539\) 0 0
\(540\) −14.3472 −0.617407
\(541\) −23.5005 −1.01036 −0.505182 0.863013i \(-0.668575\pi\)
−0.505182 + 0.863013i \(0.668575\pi\)
\(542\) 22.4390 0.963837
\(543\) 22.0147 0.944740
\(544\) −44.5171 −1.90865
\(545\) 3.55918 0.152458
\(546\) 0 0
\(547\) −4.12110 −0.176206 −0.0881028 0.996111i \(-0.528080\pi\)
−0.0881028 + 0.996111i \(0.528080\pi\)
\(548\) −24.4078 −1.04265
\(549\) 16.1698 0.690112
\(550\) 0 0
\(551\) 27.8789 1.18768
\(552\) −8.49954 −0.361765
\(553\) 0 0
\(554\) 39.4381 1.67556
\(555\) 0.356195 0.0151197
\(556\) 49.5961 2.10334
\(557\) −13.9394 −0.590633 −0.295317 0.955399i \(-0.595425\pi\)
−0.295317 + 0.955399i \(0.595425\pi\)
\(558\) −102.418 −4.33569
\(559\) −5.77959 −0.244451
\(560\) 0 0
\(561\) 0 0
\(562\) −54.5213 −2.29984
\(563\) −2.71995 −0.114632 −0.0573162 0.998356i \(-0.518254\pi\)
−0.0573162 + 0.998356i \(0.518254\pi\)
\(564\) 12.6518 0.532739
\(565\) −6.67408 −0.280781
\(566\) 64.3397 2.70440
\(567\) 0 0
\(568\) −13.2177 −0.554601
\(569\) −27.7190 −1.16204 −0.581021 0.813888i \(-0.697347\pi\)
−0.581021 + 0.813888i \(0.697347\pi\)
\(570\) 16.9991 0.712013
\(571\) 38.1193 1.59524 0.797621 0.603159i \(-0.206092\pi\)
0.797621 + 0.603159i \(0.206092\pi\)
\(572\) 0 0
\(573\) 58.7328 2.45360
\(574\) 0 0
\(575\) −11.8401 −0.493768
\(576\) −77.4830 −3.22846
\(577\) −23.2048 −0.966029 −0.483015 0.875612i \(-0.660458\pi\)
−0.483015 + 0.875612i \(0.660458\pi\)
\(578\) −30.7455 −1.27885
\(579\) 51.5592 2.14273
\(580\) −6.43899 −0.267364
\(581\) 0 0
\(582\) −58.4002 −2.42077
\(583\) 0 0
\(584\) 2.61639 0.108267
\(585\) 18.4002 0.760756
\(586\) 6.48016 0.267693
\(587\) 11.0497 0.456068 0.228034 0.973653i \(-0.426770\pi\)
0.228034 + 0.973653i \(0.426770\pi\)
\(588\) 0 0
\(589\) 37.6197 1.55009
\(590\) −3.21949 −0.132545
\(591\) 76.5583 3.14919
\(592\) 0.635770 0.0261300
\(593\) 36.3884 1.49429 0.747147 0.664659i \(-0.231423\pi\)
0.747147 + 0.664659i \(0.231423\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 26.5601 1.08794
\(597\) 48.0899 1.96819
\(598\) 29.6197 1.21124
\(599\) 29.6585 1.21181 0.605906 0.795536i \(-0.292811\pi\)
0.605906 + 0.795536i \(0.292811\pi\)
\(600\) 16.2985 0.665384
\(601\) −1.39117 −0.0567470 −0.0283735 0.999597i \(-0.509033\pi\)
−0.0283735 + 0.999597i \(0.509033\pi\)
\(602\) 0 0
\(603\) 67.7484 2.75893
\(604\) 38.9073 1.58312
\(605\) 0 0
\(606\) −85.9906 −3.49313
\(607\) −30.9385 −1.25576 −0.627878 0.778312i \(-0.716076\pi\)
−0.627878 + 0.778312i \(0.716076\pi\)
\(608\) 41.9007 1.69930
\(609\) 0 0
\(610\) 2.46262 0.0997086
\(611\) −9.03028 −0.365326
\(612\) −95.4481 −3.85826
\(613\) 8.15986 0.329574 0.164787 0.986329i \(-0.447306\pi\)
0.164787 + 0.986329i \(0.447306\pi\)
\(614\) 7.90253 0.318920
\(615\) 3.62156 0.146036
\(616\) 0 0
\(617\) −27.5298 −1.10831 −0.554154 0.832414i \(-0.686958\pi\)
−0.554154 + 0.832414i \(0.686958\pi\)
\(618\) 80.8080 3.25058
\(619\) −19.9735 −0.802803 −0.401401 0.915902i \(-0.631477\pi\)
−0.401401 + 0.915902i \(0.631477\pi\)
\(620\) −8.68876 −0.348949
\(621\) 29.2342 1.17313
\(622\) 8.86043 0.355271
\(623\) 0 0
\(624\) 47.4069 1.89779
\(625\) 21.5289 0.861156
\(626\) −24.8704 −0.994022
\(627\) 0 0
\(628\) −22.9016 −0.913874
\(629\) 1.31880 0.0525841
\(630\) 0 0
\(631\) −17.2342 −0.686082 −0.343041 0.939320i \(-0.611457\pi\)
−0.343041 + 0.939320i \(0.611457\pi\)
\(632\) −9.88462 −0.393189
\(633\) −45.1202 −1.79337
\(634\) 4.74931 0.188619
\(635\) −1.24129 −0.0492592
\(636\) −23.8165 −0.944386
\(637\) 0 0
\(638\) 0 0
\(639\) 81.6878 3.23152
\(640\) −4.10504 −0.162266
\(641\) −44.4149 −1.75428 −0.877142 0.480231i \(-0.840553\pi\)
−0.877142 + 0.480231i \(0.840553\pi\)
\(642\) −70.1193 −2.76739
\(643\) 22.5336 0.888638 0.444319 0.895869i \(-0.353446\pi\)
0.444319 + 0.895869i \(0.353446\pi\)
\(644\) 0 0
\(645\) −1.56101 −0.0614647
\(646\) 62.9385 2.47628
\(647\) 18.7758 0.738153 0.369077 0.929399i \(-0.379674\pi\)
0.369077 + 0.929399i \(0.379674\pi\)
\(648\) −18.0274 −0.708184
\(649\) 0 0
\(650\) −56.7980 −2.22780
\(651\) 0 0
\(652\) −33.4012 −1.30809
\(653\) 31.6126 1.23710 0.618549 0.785747i \(-0.287721\pi\)
0.618549 + 0.785747i \(0.287721\pi\)
\(654\) 48.7418 1.90595
\(655\) −1.31880 −0.0515298
\(656\) 6.46410 0.252381
\(657\) −16.1698 −0.630846
\(658\) 0 0
\(659\) 19.8477 0.773157 0.386578 0.922257i \(-0.373657\pi\)
0.386578 + 0.922257i \(0.373657\pi\)
\(660\) 0 0
\(661\) −31.4234 −1.22223 −0.611114 0.791542i \(-0.709278\pi\)
−0.611114 + 0.791542i \(0.709278\pi\)
\(662\) −47.4381 −1.84373
\(663\) 98.3378 3.81913
\(664\) −3.52409 −0.136761
\(665\) 0 0
\(666\) 3.37935 0.130947
\(667\) 13.1202 0.508016
\(668\) −25.3037 −0.979029
\(669\) −53.9154 −2.08449
\(670\) 10.3179 0.398615
\(671\) 0 0
\(672\) 0 0
\(673\) −19.2195 −0.740857 −0.370429 0.928861i \(-0.620789\pi\)
−0.370429 + 0.928861i \(0.620789\pi\)
\(674\) 28.2186 1.08694
\(675\) −56.0587 −2.15770
\(676\) 46.4528 1.78664
\(677\) −25.7309 −0.988917 −0.494458 0.869201i \(-0.664634\pi\)
−0.494458 + 0.869201i \(0.664634\pi\)
\(678\) −91.3993 −3.51017
\(679\) 0 0
\(680\) −2.97729 −0.114174
\(681\) −33.4986 −1.28367
\(682\) 0 0
\(683\) −11.0596 −0.423185 −0.211593 0.977358i \(-0.567865\pi\)
−0.211593 + 0.977358i \(0.567865\pi\)
\(684\) 89.8383 3.43505
\(685\) 4.70527 0.179779
\(686\) 0 0
\(687\) −17.0450 −0.650306
\(688\) −2.78623 −0.106224
\(689\) 16.9991 0.647613
\(690\) 8.00000 0.304555
\(691\) −45.0256 −1.71285 −0.856427 0.516268i \(-0.827321\pi\)
−0.856427 + 0.516268i \(0.827321\pi\)
\(692\) 20.5483 0.781128
\(693\) 0 0
\(694\) 38.3103 1.45424
\(695\) −9.56101 −0.362670
\(696\) −18.0606 −0.684583
\(697\) 13.4087 0.507891
\(698\) −46.6400 −1.76535
\(699\) 93.0578 3.51977
\(700\) 0 0
\(701\) 46.7787 1.76681 0.883403 0.468614i \(-0.155246\pi\)
0.883403 + 0.468614i \(0.155246\pi\)
\(702\) 140.239 5.29296
\(703\) −1.24129 −0.0468162
\(704\) 0 0
\(705\) −2.43899 −0.0918577
\(706\) 40.0663 1.50791
\(707\) 0 0
\(708\) −24.5601 −0.923025
\(709\) −9.14426 −0.343420 −0.171710 0.985148i \(-0.554929\pi\)
−0.171710 + 0.985148i \(0.554929\pi\)
\(710\) 12.4408 0.466896
\(711\) 61.0890 2.29102
\(712\) −1.38508 −0.0519082
\(713\) 17.7044 0.663033
\(714\) 0 0
\(715\) 0 0
\(716\) −30.8468 −1.15280
\(717\) 8.00000 0.298765
\(718\) −3.25069 −0.121315
\(719\) 30.4655 1.13617 0.568085 0.822970i \(-0.307684\pi\)
0.568085 + 0.822970i \(0.307684\pi\)
\(720\) 8.87042 0.330581
\(721\) 0 0
\(722\) −18.8666 −0.702143
\(723\) −85.5885 −3.18307
\(724\) 17.7190 0.658523
\(725\) −25.1589 −0.934380
\(726\) 0 0
\(727\) 6.12580 0.227193 0.113597 0.993527i \(-0.463763\pi\)
0.113597 + 0.993527i \(0.463763\pi\)
\(728\) 0 0
\(729\) 1.12110 0.0415224
\(730\) −2.46262 −0.0911457
\(731\) −5.77959 −0.213766
\(732\) 18.7862 0.694359
\(733\) 42.0705 1.55391 0.776955 0.629556i \(-0.216763\pi\)
0.776955 + 0.629556i \(0.216763\pi\)
\(734\) 31.1396 1.14938
\(735\) 0 0
\(736\) 19.7190 0.726853
\(737\) 0 0
\(738\) 34.3591 1.26477
\(739\) −28.8780 −1.06229 −0.531147 0.847280i \(-0.678239\pi\)
−0.531147 + 0.847280i \(0.678239\pi\)
\(740\) 0.286692 0.0105390
\(741\) −92.5583 −3.40021
\(742\) 0 0
\(743\) −14.6812 −0.538601 −0.269300 0.963056i \(-0.586792\pi\)
−0.269300 + 0.963056i \(0.586792\pi\)
\(744\) −24.3709 −0.893480
\(745\) −5.12019 −0.187589
\(746\) −21.3775 −0.782687
\(747\) 21.7796 0.796873
\(748\) 0 0
\(749\) 0 0
\(750\) −31.4381 −1.14796
\(751\) −6.60597 −0.241055 −0.120528 0.992710i \(-0.538459\pi\)
−0.120528 + 0.992710i \(0.538459\pi\)
\(752\) −4.35333 −0.158750
\(753\) −30.7640 −1.12110
\(754\) 62.9385 2.29209
\(755\) −7.50046 −0.272970
\(756\) 0 0
\(757\) 2.49954 0.0908474 0.0454237 0.998968i \(-0.485536\pi\)
0.0454237 + 0.998968i \(0.485536\pi\)
\(758\) 38.0218 1.38101
\(759\) 0 0
\(760\) 2.80230 0.101650
\(761\) 12.0487 0.436766 0.218383 0.975863i \(-0.429922\pi\)
0.218383 + 0.975863i \(0.429922\pi\)
\(762\) −16.9991 −0.615812
\(763\) 0 0
\(764\) 47.2725 1.71026
\(765\) 18.4002 0.665262
\(766\) −40.2985 −1.45604
\(767\) 17.5298 0.632965
\(768\) 15.3657 0.554462
\(769\) −0.489560 −0.0176540 −0.00882699 0.999961i \(-0.502810\pi\)
−0.00882699 + 0.999961i \(0.502810\pi\)
\(770\) 0 0
\(771\) 70.3085 2.53210
\(772\) 41.4986 1.49357
\(773\) 46.7181 1.68033 0.840167 0.542328i \(-0.182457\pi\)
0.840167 + 0.542328i \(0.182457\pi\)
\(774\) −14.8099 −0.532330
\(775\) −33.9494 −1.21950
\(776\) −9.62729 −0.345600
\(777\) 0 0
\(778\) −72.8080 −2.61029
\(779\) −12.6206 −0.452182
\(780\) 21.3775 0.765438
\(781\) 0 0
\(782\) 29.6197 1.05920
\(783\) 62.1193 2.21996
\(784\) 0 0
\(785\) 4.41491 0.157575
\(786\) −18.0606 −0.644199
\(787\) 8.33968 0.297278 0.148639 0.988892i \(-0.452511\pi\)
0.148639 + 0.988892i \(0.452511\pi\)
\(788\) 61.6197 2.19511
\(789\) −49.9982 −1.77998
\(790\) 9.30368 0.331010
\(791\) 0 0
\(792\) 0 0
\(793\) −13.4087 −0.476157
\(794\) 34.5913 1.22760
\(795\) 4.59129 0.162836
\(796\) 38.7063 1.37191
\(797\) 31.5151 1.11632 0.558162 0.829732i \(-0.311507\pi\)
0.558162 + 0.829732i \(0.311507\pi\)
\(798\) 0 0
\(799\) −9.03028 −0.319468
\(800\) −37.8127 −1.33688
\(801\) 8.56009 0.302456
\(802\) −61.4911 −2.17132
\(803\) 0 0
\(804\) 78.7106 2.77591
\(805\) 0 0
\(806\) 84.9291 2.99150
\(807\) −28.8099 −1.01416
\(808\) −14.1756 −0.498695
\(809\) 15.5005 0.544967 0.272484 0.962160i \(-0.412155\pi\)
0.272484 + 0.962160i \(0.412155\pi\)
\(810\) 16.9679 0.596191
\(811\) 48.3397 1.69744 0.848718 0.528846i \(-0.177375\pi\)
0.848718 + 0.528846i \(0.177375\pi\)
\(812\) 0 0
\(813\) −32.9991 −1.15733
\(814\) 0 0
\(815\) 6.43899 0.225548
\(816\) 47.4069 1.65957
\(817\) 5.43991 0.190318
\(818\) 32.9579 1.15235
\(819\) 0 0
\(820\) 2.91490 0.101793
\(821\) −10.5601 −0.368550 −0.184275 0.982875i \(-0.558994\pi\)
−0.184275 + 0.982875i \(0.558994\pi\)
\(822\) 64.4372 2.24750
\(823\) 19.3241 0.673595 0.336798 0.941577i \(-0.390656\pi\)
0.336798 + 0.941577i \(0.390656\pi\)
\(824\) 13.3212 0.464067
\(825\) 0 0
\(826\) 0 0
\(827\) −0.530734 −0.0184554 −0.00922772 0.999957i \(-0.502937\pi\)
−0.00922772 + 0.999957i \(0.502937\pi\)
\(828\) 42.2791 1.46930
\(829\) 47.1954 1.63916 0.819582 0.572961i \(-0.194206\pi\)
0.819582 + 0.572961i \(0.194206\pi\)
\(830\) 3.31697 0.115134
\(831\) −57.9982 −2.01193
\(832\) 64.2522 2.22754
\(833\) 0 0
\(834\) −130.935 −4.53390
\(835\) 4.87798 0.168809
\(836\) 0 0
\(837\) 83.8236 2.89737
\(838\) −27.5180 −0.950594
\(839\) 37.9036 1.30858 0.654288 0.756245i \(-0.272968\pi\)
0.654288 + 0.756245i \(0.272968\pi\)
\(840\) 0 0
\(841\) −1.12110 −0.0386588
\(842\) 36.3161 1.25153
\(843\) 80.1798 2.76154
\(844\) −36.3161 −1.25005
\(845\) −8.95504 −0.308063
\(846\) −23.1396 −0.795555
\(847\) 0 0
\(848\) 8.19495 0.281416
\(849\) −94.6188 −3.24731
\(850\) −56.7980 −1.94816
\(851\) −0.584169 −0.0200251
\(852\) 94.9055 3.25141
\(853\) 6.26915 0.214652 0.107326 0.994224i \(-0.465771\pi\)
0.107326 + 0.994224i \(0.465771\pi\)
\(854\) 0 0
\(855\) −17.3188 −0.592291
\(856\) −11.5592 −0.395085
\(857\) −36.9503 −1.26220 −0.631100 0.775702i \(-0.717396\pi\)
−0.631100 + 0.775702i \(0.717396\pi\)
\(858\) 0 0
\(859\) −8.90447 −0.303817 −0.151908 0.988395i \(-0.548542\pi\)
−0.151908 + 0.988395i \(0.548542\pi\)
\(860\) −1.25642 −0.0428434
\(861\) 0 0
\(862\) −41.1126 −1.40030
\(863\) −42.1193 −1.43376 −0.716878 0.697198i \(-0.754430\pi\)
−0.716878 + 0.697198i \(0.754430\pi\)
\(864\) 93.3624 3.17625
\(865\) −3.96125 −0.134686
\(866\) 33.6273 1.14270
\(867\) 45.2148 1.53558
\(868\) 0 0
\(869\) 0 0
\(870\) 16.9991 0.576323
\(871\) −56.1798 −1.90358
\(872\) 8.03509 0.272102
\(873\) 59.4986 2.01372
\(874\) −27.8789 −0.943018
\(875\) 0 0
\(876\) −18.7862 −0.634728
\(877\) 24.3397 0.821893 0.410946 0.911660i \(-0.365198\pi\)
0.410946 + 0.911660i \(0.365198\pi\)
\(878\) −23.5005 −0.793102
\(879\) −9.52982 −0.321433
\(880\) 0 0
\(881\) −5.64380 −0.190145 −0.0950723 0.995470i \(-0.530308\pi\)
−0.0950723 + 0.995470i \(0.530308\pi\)
\(882\) 0 0
\(883\) 15.1807 0.510873 0.255436 0.966826i \(-0.417781\pi\)
0.255436 + 0.966826i \(0.417781\pi\)
\(884\) 79.1495 2.66209
\(885\) 4.73463 0.159153
\(886\) 73.7408 2.47737
\(887\) −26.8174 −0.900441 −0.450221 0.892917i \(-0.648655\pi\)
−0.450221 + 0.892917i \(0.648655\pi\)
\(888\) 0.804136 0.0269850
\(889\) 0 0
\(890\) 1.30368 0.0436994
\(891\) 0 0
\(892\) −43.3951 −1.45297
\(893\) 8.49954 0.284426
\(894\) −70.1193 −2.34514
\(895\) 5.94657 0.198772
\(896\) 0 0
\(897\) −43.5592 −1.45440
\(898\) 77.1202 2.57353
\(899\) 37.6197 1.25469
\(900\) −81.0734 −2.70245
\(901\) 16.9991 0.566322
\(902\) 0 0
\(903\) 0 0
\(904\) −15.0672 −0.501128
\(905\) −3.41583 −0.113546
\(906\) −102.716 −3.41252
\(907\) 32.0975 1.06578 0.532890 0.846185i \(-0.321106\pi\)
0.532890 + 0.846185i \(0.321106\pi\)
\(908\) −26.9622 −0.894771
\(909\) 87.6079 2.90577
\(910\) 0 0
\(911\) 12.1599 0.402874 0.201437 0.979501i \(-0.435439\pi\)
0.201437 + 0.979501i \(0.435439\pi\)
\(912\) −44.6206 −1.47754
\(913\) 0 0
\(914\) 4.37844 0.144826
\(915\) −3.62156 −0.119725
\(916\) −13.7190 −0.453290
\(917\) 0 0
\(918\) 140.239 4.62856
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 1.31880 0.0434796
\(921\) −11.6216 −0.382944
\(922\) −15.2370 −0.501805
\(923\) −67.7390 −2.22966
\(924\) 0 0
\(925\) 1.12019 0.0368315
\(926\) −7.34060 −0.241227
\(927\) −82.3279 −2.70400
\(928\) 41.9007 1.37546
\(929\) 21.3794 0.701434 0.350717 0.936482i \(-0.385938\pi\)
0.350717 + 0.936482i \(0.385938\pi\)
\(930\) 22.9385 0.752184
\(931\) 0 0
\(932\) 74.8998 2.45342
\(933\) −13.0303 −0.426592
\(934\) −28.6769 −0.938338
\(935\) 0 0
\(936\) 41.5398 1.35777
\(937\) 31.5104 1.02940 0.514701 0.857370i \(-0.327903\pi\)
0.514701 + 0.857370i \(0.327903\pi\)
\(938\) 0 0
\(939\) 36.5748 1.19357
\(940\) −1.96308 −0.0640286
\(941\) −42.7299 −1.39296 −0.696478 0.717578i \(-0.745251\pi\)
−0.696478 + 0.717578i \(0.745251\pi\)
\(942\) 60.4608 1.96992
\(943\) −5.93945 −0.193415
\(944\) 8.45080 0.275050
\(945\) 0 0
\(946\) 0 0
\(947\) 3.29473 0.107064 0.0535321 0.998566i \(-0.482952\pi\)
0.0535321 + 0.998566i \(0.482952\pi\)
\(948\) 70.9736 2.30512
\(949\) 13.4087 0.435265
\(950\) 53.4599 1.73447
\(951\) −6.98440 −0.226485
\(952\) 0 0
\(953\) 38.6812 1.25301 0.626503 0.779419i \(-0.284485\pi\)
0.626503 + 0.779419i \(0.284485\pi\)
\(954\) 43.5592 1.41028
\(955\) −9.11307 −0.294892
\(956\) 6.43899 0.208252
\(957\) 0 0
\(958\) 74.4977 2.40691
\(959\) 0 0
\(960\) 17.3539 0.560094
\(961\) 19.7640 0.637548
\(962\) −2.80230 −0.0903499
\(963\) 71.4381 2.30206
\(964\) −68.8880 −2.21873
\(965\) −8.00000 −0.257529
\(966\) 0 0
\(967\) −3.34816 −0.107670 −0.0538348 0.998550i \(-0.517144\pi\)
−0.0538348 + 0.998550i \(0.517144\pi\)
\(968\) 0 0
\(969\) −92.5583 −2.97340
\(970\) 9.06147 0.290946
\(971\) −58.7134 −1.88420 −0.942102 0.335327i \(-0.891153\pi\)
−0.942102 + 0.335327i \(0.891153\pi\)
\(972\) 40.6694 1.30447
\(973\) 0 0
\(974\) −63.0360 −2.01980
\(975\) 83.5280 2.67504
\(976\) −6.46410 −0.206911
\(977\) 13.7649 0.440378 0.220189 0.975457i \(-0.429333\pi\)
0.220189 + 0.975457i \(0.429333\pi\)
\(978\) 88.1798 2.81968
\(979\) 0 0
\(980\) 0 0
\(981\) −49.6585 −1.58547
\(982\) −54.2479 −1.73112
\(983\) −50.2139 −1.60157 −0.800787 0.598949i \(-0.795585\pi\)
−0.800787 + 0.598949i \(0.795585\pi\)
\(984\) 8.17593 0.260639
\(985\) −11.8789 −0.378493
\(986\) 62.9385 2.00437
\(987\) 0 0
\(988\) −74.4977 −2.37009
\(989\) 2.56009 0.0814062
\(990\) 0 0
\(991\) −4.65940 −0.148011 −0.0740054 0.997258i \(-0.523578\pi\)
−0.0740054 + 0.997258i \(0.523578\pi\)
\(992\) 56.5407 1.79517
\(993\) 69.7631 2.21386
\(994\) 0 0
\(995\) −7.46170 −0.236552
\(996\) 25.3037 0.801778
\(997\) −3.38934 −0.107341 −0.0536707 0.998559i \(-0.517092\pi\)
−0.0536707 + 0.998559i \(0.517092\pi\)
\(998\) 54.5213 1.72584
\(999\) −2.76583 −0.0875068
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.y.1.1 3
7.6 odd 2 847.2.a.j.1.1 yes 3
11.10 odd 2 5929.2.a.t.1.3 3
21.20 even 2 7623.2.a.bz.1.3 3
77.6 even 10 847.2.f.u.729.1 12
77.13 even 10 847.2.f.u.323.1 12
77.20 odd 10 847.2.f.t.323.3 12
77.27 odd 10 847.2.f.t.729.3 12
77.41 even 10 847.2.f.u.372.3 12
77.48 odd 10 847.2.f.t.148.1 12
77.62 even 10 847.2.f.u.148.3 12
77.69 odd 10 847.2.f.t.372.1 12
77.76 even 2 847.2.a.i.1.3 3
231.230 odd 2 7623.2.a.ce.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.2.a.i.1.3 3 77.76 even 2
847.2.a.j.1.1 yes 3 7.6 odd 2
847.2.f.t.148.1 12 77.48 odd 10
847.2.f.t.323.3 12 77.20 odd 10
847.2.f.t.372.1 12 77.69 odd 10
847.2.f.t.729.3 12 77.27 odd 10
847.2.f.u.148.3 12 77.62 even 10
847.2.f.u.323.1 12 77.13 even 10
847.2.f.u.372.3 12 77.41 even 10
847.2.f.u.729.1 12 77.6 even 10
5929.2.a.t.1.3 3 11.10 odd 2
5929.2.a.y.1.1 3 1.1 even 1 trivial
7623.2.a.bz.1.3 3 21.20 even 2
7623.2.a.ce.1.1 3 231.230 odd 2