Properties

Label 5929.2.a.ca.1.7
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,16,0,0,0,0,20,0,0,0,0,0,28,16,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 28x^{10} + 279x^{8} - 1174x^{6} + 1857x^{4} - 752x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.150034\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.390854 q^{2} -0.150034 q^{3} -1.84723 q^{4} +1.62035 q^{5} -0.0586413 q^{6} -1.50370 q^{8} -2.97749 q^{9} +0.633321 q^{10} +0.277148 q^{12} +6.47530 q^{13} -0.243108 q^{15} +3.10674 q^{16} +4.38277 q^{17} -1.16376 q^{18} +4.11799 q^{19} -2.99317 q^{20} -5.37685 q^{23} +0.225607 q^{24} -2.37446 q^{25} +2.53090 q^{26} +0.896826 q^{27} -5.92658 q^{29} -0.0950195 q^{30} +1.38975 q^{31} +4.22169 q^{32} +1.71302 q^{34} +5.50012 q^{36} +1.62655 q^{37} +1.60953 q^{38} -0.971515 q^{39} -2.43653 q^{40} +0.566034 q^{41} +6.93016 q^{43} -4.82458 q^{45} -2.10156 q^{46} +7.62601 q^{47} -0.466116 q^{48} -0.928065 q^{50} -0.657564 q^{51} -11.9614 q^{52} -8.36462 q^{53} +0.350528 q^{54} -0.617838 q^{57} -2.31642 q^{58} -9.96152 q^{59} +0.449077 q^{60} -2.87463 q^{61} +0.543188 q^{62} -4.56341 q^{64} +10.4923 q^{65} -7.57680 q^{67} -8.09600 q^{68} +0.806709 q^{69} +13.6302 q^{71} +4.47727 q^{72} -1.35649 q^{73} +0.635743 q^{74} +0.356249 q^{75} -7.60689 q^{76} -0.379720 q^{78} -15.9894 q^{79} +5.03401 q^{80} +8.79792 q^{81} +0.221237 q^{82} -3.49831 q^{83} +7.10163 q^{85} +2.70868 q^{86} +0.889187 q^{87} +14.0768 q^{89} -1.88571 q^{90} +9.93229 q^{92} -0.208509 q^{93} +2.98065 q^{94} +6.67260 q^{95} -0.633396 q^{96} +11.2806 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 20 q^{9} + 28 q^{15} + 16 q^{16} - 4 q^{18} + 36 q^{23} + 24 q^{25} - 12 q^{29} + 84 q^{30} - 40 q^{32} + 60 q^{36} + 20 q^{37} - 16 q^{39} + 12 q^{43} - 24 q^{46} + 4 q^{50} - 24 q^{51}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.390854 0.276375 0.138188 0.990406i \(-0.455872\pi\)
0.138188 + 0.990406i \(0.455872\pi\)
\(3\) −0.150034 −0.0866221 −0.0433110 0.999062i \(-0.513791\pi\)
−0.0433110 + 0.999062i \(0.513791\pi\)
\(4\) −1.84723 −0.923617
\(5\) 1.62035 0.724644 0.362322 0.932053i \(-0.381984\pi\)
0.362322 + 0.932053i \(0.381984\pi\)
\(6\) −0.0586413 −0.0239402
\(7\) 0 0
\(8\) −1.50370 −0.531640
\(9\) −2.97749 −0.992497
\(10\) 0.633321 0.200274
\(11\) 0 0
\(12\) 0.277148 0.0800056
\(13\) 6.47530 1.79593 0.897963 0.440071i \(-0.145047\pi\)
0.897963 + 0.440071i \(0.145047\pi\)
\(14\) 0 0
\(15\) −0.243108 −0.0627702
\(16\) 3.10674 0.776685
\(17\) 4.38277 1.06298 0.531489 0.847065i \(-0.321633\pi\)
0.531489 + 0.847065i \(0.321633\pi\)
\(18\) −1.16376 −0.274301
\(19\) 4.11799 0.944731 0.472366 0.881403i \(-0.343400\pi\)
0.472366 + 0.881403i \(0.343400\pi\)
\(20\) −2.99317 −0.669293
\(21\) 0 0
\(22\) 0 0
\(23\) −5.37685 −1.12115 −0.560575 0.828104i \(-0.689420\pi\)
−0.560575 + 0.828104i \(0.689420\pi\)
\(24\) 0.225607 0.0460518
\(25\) −2.37446 −0.474891
\(26\) 2.53090 0.496349
\(27\) 0.896826 0.172594
\(28\) 0 0
\(29\) −5.92658 −1.10054 −0.550269 0.834987i \(-0.685475\pi\)
−0.550269 + 0.834987i \(0.685475\pi\)
\(30\) −0.0950195 −0.0173481
\(31\) 1.38975 0.249606 0.124803 0.992182i \(-0.460170\pi\)
0.124803 + 0.992182i \(0.460170\pi\)
\(32\) 4.22169 0.746296
\(33\) 0 0
\(34\) 1.71302 0.293781
\(35\) 0 0
\(36\) 5.50012 0.916686
\(37\) 1.62655 0.267403 0.133702 0.991022i \(-0.457314\pi\)
0.133702 + 0.991022i \(0.457314\pi\)
\(38\) 1.60953 0.261100
\(39\) −0.971515 −0.155567
\(40\) −2.43653 −0.385250
\(41\) 0.566034 0.0883997 0.0441999 0.999023i \(-0.485926\pi\)
0.0441999 + 0.999023i \(0.485926\pi\)
\(42\) 0 0
\(43\) 6.93016 1.05684 0.528420 0.848983i \(-0.322785\pi\)
0.528420 + 0.848983i \(0.322785\pi\)
\(44\) 0 0
\(45\) −4.82458 −0.719207
\(46\) −2.10156 −0.309858
\(47\) 7.62601 1.11237 0.556184 0.831059i \(-0.312265\pi\)
0.556184 + 0.831059i \(0.312265\pi\)
\(48\) −0.466116 −0.0672780
\(49\) 0 0
\(50\) −0.928065 −0.131248
\(51\) −0.657564 −0.0920773
\(52\) −11.9614 −1.65875
\(53\) −8.36462 −1.14897 −0.574484 0.818516i \(-0.694797\pi\)
−0.574484 + 0.818516i \(0.694797\pi\)
\(54\) 0.350528 0.0477008
\(55\) 0 0
\(56\) 0 0
\(57\) −0.617838 −0.0818346
\(58\) −2.31642 −0.304161
\(59\) −9.96152 −1.29688 −0.648439 0.761266i \(-0.724578\pi\)
−0.648439 + 0.761266i \(0.724578\pi\)
\(60\) 0.449077 0.0579756
\(61\) −2.87463 −0.368058 −0.184029 0.982921i \(-0.558914\pi\)
−0.184029 + 0.982921i \(0.558914\pi\)
\(62\) 0.543188 0.0689850
\(63\) 0 0
\(64\) −4.56341 −0.570427
\(65\) 10.4923 1.30141
\(66\) 0 0
\(67\) −7.57680 −0.925653 −0.462827 0.886449i \(-0.653165\pi\)
−0.462827 + 0.886449i \(0.653165\pi\)
\(68\) −8.09600 −0.981784
\(69\) 0.806709 0.0971163
\(70\) 0 0
\(71\) 13.6302 1.61761 0.808806 0.588076i \(-0.200114\pi\)
0.808806 + 0.588076i \(0.200114\pi\)
\(72\) 4.47727 0.527651
\(73\) −1.35649 −0.158765 −0.0793825 0.996844i \(-0.525295\pi\)
−0.0793825 + 0.996844i \(0.525295\pi\)
\(74\) 0.635743 0.0739037
\(75\) 0.356249 0.0411361
\(76\) −7.60689 −0.872570
\(77\) 0 0
\(78\) −0.379720 −0.0429948
\(79\) −15.9894 −1.79895 −0.899473 0.436975i \(-0.856050\pi\)
−0.899473 + 0.436975i \(0.856050\pi\)
\(80\) 5.03401 0.562820
\(81\) 8.79792 0.977546
\(82\) 0.221237 0.0244315
\(83\) −3.49831 −0.383989 −0.191995 0.981396i \(-0.561496\pi\)
−0.191995 + 0.981396i \(0.561496\pi\)
\(84\) 0 0
\(85\) 7.10163 0.770280
\(86\) 2.70868 0.292084
\(87\) 0.889187 0.0953309
\(88\) 0 0
\(89\) 14.0768 1.49214 0.746071 0.665866i \(-0.231938\pi\)
0.746071 + 0.665866i \(0.231938\pi\)
\(90\) −1.88571 −0.198771
\(91\) 0 0
\(92\) 9.93229 1.03551
\(93\) −0.208509 −0.0216214
\(94\) 2.98065 0.307431
\(95\) 6.67260 0.684594
\(96\) −0.633396 −0.0646457
\(97\) 11.2806 1.14537 0.572686 0.819775i \(-0.305901\pi\)
0.572686 + 0.819775i \(0.305901\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.38618 0.438618
\(101\) 0.960584 0.0955816 0.0477908 0.998857i \(-0.484782\pi\)
0.0477908 + 0.998857i \(0.484782\pi\)
\(102\) −0.257011 −0.0254479
\(103\) 16.5567 1.63138 0.815689 0.578490i \(-0.196358\pi\)
0.815689 + 0.578490i \(0.196358\pi\)
\(104\) −9.73694 −0.954786
\(105\) 0 0
\(106\) −3.26934 −0.317547
\(107\) −3.94786 −0.381654 −0.190827 0.981624i \(-0.561117\pi\)
−0.190827 + 0.981624i \(0.561117\pi\)
\(108\) −1.65665 −0.159411
\(109\) −5.49990 −0.526795 −0.263397 0.964687i \(-0.584843\pi\)
−0.263397 + 0.964687i \(0.584843\pi\)
\(110\) 0 0
\(111\) −0.244038 −0.0231630
\(112\) 0 0
\(113\) 2.31863 0.218118 0.109059 0.994035i \(-0.465216\pi\)
0.109059 + 0.994035i \(0.465216\pi\)
\(114\) −0.241484 −0.0226171
\(115\) −8.71239 −0.812434
\(116\) 10.9478 1.01648
\(117\) −19.2801 −1.78245
\(118\) −3.89349 −0.358425
\(119\) 0 0
\(120\) 0.365562 0.0333711
\(121\) 0 0
\(122\) −1.12356 −0.101722
\(123\) −0.0849243 −0.00765737
\(124\) −2.56719 −0.230541
\(125\) −11.9492 −1.06877
\(126\) 0 0
\(127\) 13.0605 1.15893 0.579467 0.814996i \(-0.303261\pi\)
0.579467 + 0.814996i \(0.303261\pi\)
\(128\) −10.2270 −0.903948
\(129\) −1.03976 −0.0915457
\(130\) 4.10094 0.359677
\(131\) 19.1739 1.67523 0.837617 0.546258i \(-0.183948\pi\)
0.837617 + 0.546258i \(0.183948\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.96142 −0.255828
\(135\) 1.45317 0.125069
\(136\) −6.59039 −0.565121
\(137\) 10.3760 0.886486 0.443243 0.896402i \(-0.353828\pi\)
0.443243 + 0.896402i \(0.353828\pi\)
\(138\) 0.315305 0.0268405
\(139\) 14.7997 1.25530 0.627648 0.778497i \(-0.284018\pi\)
0.627648 + 0.778497i \(0.284018\pi\)
\(140\) 0 0
\(141\) −1.14416 −0.0963556
\(142\) 5.32743 0.447068
\(143\) 0 0
\(144\) −9.25028 −0.770857
\(145\) −9.60315 −0.797498
\(146\) −0.530189 −0.0438787
\(147\) 0 0
\(148\) −3.00462 −0.246978
\(149\) 0.0904789 0.00741232 0.00370616 0.999993i \(-0.498820\pi\)
0.00370616 + 0.999993i \(0.498820\pi\)
\(150\) 0.139241 0.0113690
\(151\) 4.65886 0.379133 0.189566 0.981868i \(-0.439292\pi\)
0.189566 + 0.981868i \(0.439292\pi\)
\(152\) −6.19224 −0.502257
\(153\) −13.0497 −1.05500
\(154\) 0 0
\(155\) 2.25188 0.180876
\(156\) 1.79461 0.143684
\(157\) −18.1474 −1.44832 −0.724159 0.689633i \(-0.757772\pi\)
−0.724159 + 0.689633i \(0.757772\pi\)
\(158\) −6.24951 −0.497184
\(159\) 1.25498 0.0995261
\(160\) 6.84063 0.540799
\(161\) 0 0
\(162\) 3.43870 0.270170
\(163\) −9.64052 −0.755104 −0.377552 0.925988i \(-0.623234\pi\)
−0.377552 + 0.925988i \(0.623234\pi\)
\(164\) −1.04560 −0.0816475
\(165\) 0 0
\(166\) −1.36733 −0.106125
\(167\) 14.7298 1.13982 0.569912 0.821705i \(-0.306977\pi\)
0.569912 + 0.821705i \(0.306977\pi\)
\(168\) 0 0
\(169\) 28.9295 2.22535
\(170\) 2.77570 0.212886
\(171\) −12.2613 −0.937643
\(172\) −12.8016 −0.976115
\(173\) 19.6782 1.49611 0.748054 0.663638i \(-0.230988\pi\)
0.748054 + 0.663638i \(0.230988\pi\)
\(174\) 0.347542 0.0263471
\(175\) 0 0
\(176\) 0 0
\(177\) 1.49456 0.112338
\(178\) 5.50199 0.412391
\(179\) 9.40597 0.703035 0.351518 0.936181i \(-0.385666\pi\)
0.351518 + 0.936181i \(0.385666\pi\)
\(180\) 8.91213 0.664271
\(181\) 11.9270 0.886528 0.443264 0.896391i \(-0.353820\pi\)
0.443264 + 0.896391i \(0.353820\pi\)
\(182\) 0 0
\(183\) 0.431291 0.0318820
\(184\) 8.08519 0.596048
\(185\) 2.63559 0.193772
\(186\) −0.0814966 −0.00597562
\(187\) 0 0
\(188\) −14.0870 −1.02740
\(189\) 0 0
\(190\) 2.60801 0.189205
\(191\) 23.7059 1.71530 0.857648 0.514237i \(-0.171925\pi\)
0.857648 + 0.514237i \(0.171925\pi\)
\(192\) 0.684667 0.0494116
\(193\) −2.59815 −0.187019 −0.0935095 0.995618i \(-0.529809\pi\)
−0.0935095 + 0.995618i \(0.529809\pi\)
\(194\) 4.40907 0.316553
\(195\) −1.57420 −0.112731
\(196\) 0 0
\(197\) 23.5003 1.67433 0.837163 0.546953i \(-0.184212\pi\)
0.837163 + 0.546953i \(0.184212\pi\)
\(198\) 0 0
\(199\) 1.53318 0.108684 0.0543422 0.998522i \(-0.482694\pi\)
0.0543422 + 0.998522i \(0.482694\pi\)
\(200\) 3.57048 0.252471
\(201\) 1.13678 0.0801820
\(202\) 0.375448 0.0264164
\(203\) 0 0
\(204\) 1.21467 0.0850442
\(205\) 0.917176 0.0640583
\(206\) 6.47124 0.450873
\(207\) 16.0095 1.11274
\(208\) 20.1171 1.39487
\(209\) 0 0
\(210\) 0 0
\(211\) −26.6554 −1.83503 −0.917516 0.397700i \(-0.869809\pi\)
−0.917516 + 0.397700i \(0.869809\pi\)
\(212\) 15.4514 1.06121
\(213\) −2.04500 −0.140121
\(214\) −1.54303 −0.105480
\(215\) 11.2293 0.765833
\(216\) −1.34856 −0.0917580
\(217\) 0 0
\(218\) −2.14965 −0.145593
\(219\) 0.203519 0.0137526
\(220\) 0 0
\(221\) 28.3798 1.90903
\(222\) −0.0953830 −0.00640169
\(223\) −7.38239 −0.494362 −0.247181 0.968969i \(-0.579504\pi\)
−0.247181 + 0.968969i \(0.579504\pi\)
\(224\) 0 0
\(225\) 7.06992 0.471328
\(226\) 0.906244 0.0602825
\(227\) 18.2778 1.21314 0.606568 0.795031i \(-0.292546\pi\)
0.606568 + 0.795031i \(0.292546\pi\)
\(228\) 1.14129 0.0755838
\(229\) −8.30699 −0.548941 −0.274471 0.961596i \(-0.588503\pi\)
−0.274471 + 0.961596i \(0.588503\pi\)
\(230\) −3.40527 −0.224537
\(231\) 0 0
\(232\) 8.91183 0.585090
\(233\) 12.4590 0.816215 0.408107 0.912934i \(-0.366189\pi\)
0.408107 + 0.912934i \(0.366189\pi\)
\(234\) −7.53571 −0.492625
\(235\) 12.3568 0.806071
\(236\) 18.4012 1.19782
\(237\) 2.39895 0.155829
\(238\) 0 0
\(239\) 6.93875 0.448831 0.224415 0.974494i \(-0.427953\pi\)
0.224415 + 0.974494i \(0.427953\pi\)
\(240\) −0.755272 −0.0487526
\(241\) −26.4038 −1.70082 −0.850410 0.526121i \(-0.823646\pi\)
−0.850410 + 0.526121i \(0.823646\pi\)
\(242\) 0 0
\(243\) −4.01046 −0.257271
\(244\) 5.31011 0.339945
\(245\) 0 0
\(246\) −0.0331930 −0.00211631
\(247\) 26.6652 1.69667
\(248\) −2.08977 −0.132701
\(249\) 0.524865 0.0332620
\(250\) −4.67040 −0.295382
\(251\) −16.4261 −1.03681 −0.518404 0.855136i \(-0.673474\pi\)
−0.518404 + 0.855136i \(0.673474\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 5.10475 0.320301
\(255\) −1.06549 −0.0667233
\(256\) 5.12957 0.320598
\(257\) 23.0935 1.44053 0.720267 0.693697i \(-0.244019\pi\)
0.720267 + 0.693697i \(0.244019\pi\)
\(258\) −0.406394 −0.0253010
\(259\) 0 0
\(260\) −19.3817 −1.20200
\(261\) 17.6463 1.09228
\(262\) 7.49420 0.462993
\(263\) 15.5989 0.961871 0.480936 0.876756i \(-0.340297\pi\)
0.480936 + 0.876756i \(0.340297\pi\)
\(264\) 0 0
\(265\) −13.5536 −0.832593
\(266\) 0 0
\(267\) −2.11200 −0.129253
\(268\) 13.9961 0.854949
\(269\) −17.3982 −1.06079 −0.530393 0.847752i \(-0.677956\pi\)
−0.530393 + 0.847752i \(0.677956\pi\)
\(270\) 0.567978 0.0345661
\(271\) −18.2149 −1.10648 −0.553239 0.833022i \(-0.686608\pi\)
−0.553239 + 0.833022i \(0.686608\pi\)
\(272\) 13.6161 0.825598
\(273\) 0 0
\(274\) 4.05552 0.245003
\(275\) 0 0
\(276\) −1.49018 −0.0896983
\(277\) 1.55924 0.0936858 0.0468429 0.998902i \(-0.485084\pi\)
0.0468429 + 0.998902i \(0.485084\pi\)
\(278\) 5.78453 0.346933
\(279\) −4.13796 −0.247733
\(280\) 0 0
\(281\) −27.9232 −1.66576 −0.832878 0.553457i \(-0.813308\pi\)
−0.832878 + 0.553457i \(0.813308\pi\)
\(282\) −0.447199 −0.0266303
\(283\) 10.9002 0.647949 0.323974 0.946066i \(-0.394981\pi\)
0.323974 + 0.946066i \(0.394981\pi\)
\(284\) −25.1782 −1.49405
\(285\) −1.00112 −0.0593009
\(286\) 0 0
\(287\) 0 0
\(288\) −12.5700 −0.740697
\(289\) 2.20867 0.129922
\(290\) −3.75343 −0.220409
\(291\) −1.69247 −0.0992146
\(292\) 2.50575 0.146638
\(293\) 16.5313 0.965768 0.482884 0.875684i \(-0.339589\pi\)
0.482884 + 0.875684i \(0.339589\pi\)
\(294\) 0 0
\(295\) −16.1412 −0.939775
\(296\) −2.44585 −0.142162
\(297\) 0 0
\(298\) 0.0353640 0.00204858
\(299\) −34.8167 −2.01350
\(300\) −0.658075 −0.0379940
\(301\) 0 0
\(302\) 1.82093 0.104783
\(303\) −0.144120 −0.00827948
\(304\) 12.7935 0.733758
\(305\) −4.65791 −0.266711
\(306\) −5.10050 −0.291576
\(307\) 1.73356 0.0989392 0.0494696 0.998776i \(-0.484247\pi\)
0.0494696 + 0.998776i \(0.484247\pi\)
\(308\) 0 0
\(309\) −2.48406 −0.141313
\(310\) 0.880157 0.0499895
\(311\) 27.3012 1.54811 0.774055 0.633118i \(-0.218225\pi\)
0.774055 + 0.633118i \(0.218225\pi\)
\(312\) 1.46087 0.0827055
\(313\) 17.5897 0.994229 0.497114 0.867685i \(-0.334393\pi\)
0.497114 + 0.867685i \(0.334393\pi\)
\(314\) −7.09297 −0.400279
\(315\) 0 0
\(316\) 29.5361 1.66154
\(317\) 3.35447 0.188406 0.0942030 0.995553i \(-0.469970\pi\)
0.0942030 + 0.995553i \(0.469970\pi\)
\(318\) 0.490512 0.0275065
\(319\) 0 0
\(320\) −7.39434 −0.413356
\(321\) 0.592312 0.0330597
\(322\) 0 0
\(323\) 18.0482 1.00423
\(324\) −16.2518 −0.902878
\(325\) −15.3753 −0.852869
\(326\) −3.76803 −0.208692
\(327\) 0.825171 0.0456320
\(328\) −0.851149 −0.0469968
\(329\) 0 0
\(330\) 0 0
\(331\) 20.4149 1.12210 0.561051 0.827781i \(-0.310397\pi\)
0.561051 + 0.827781i \(0.310397\pi\)
\(332\) 6.46220 0.354659
\(333\) −4.84304 −0.265397
\(334\) 5.75719 0.315019
\(335\) −12.2771 −0.670769
\(336\) 0 0
\(337\) −7.34145 −0.399914 −0.199957 0.979805i \(-0.564080\pi\)
−0.199957 + 0.979805i \(0.564080\pi\)
\(338\) 11.3072 0.615031
\(339\) −0.347873 −0.0188939
\(340\) −13.1184 −0.711444
\(341\) 0 0
\(342\) −4.79236 −0.259141
\(343\) 0 0
\(344\) −10.4209 −0.561859
\(345\) 1.30715 0.0703748
\(346\) 7.69130 0.413487
\(347\) −29.6156 −1.58985 −0.794925 0.606708i \(-0.792490\pi\)
−0.794925 + 0.606708i \(0.792490\pi\)
\(348\) −1.64254 −0.0880492
\(349\) −34.6627 −1.85545 −0.927727 0.373260i \(-0.878240\pi\)
−0.927727 + 0.373260i \(0.878240\pi\)
\(350\) 0 0
\(351\) 5.80722 0.309966
\(352\) 0 0
\(353\) 15.5315 0.826657 0.413328 0.910582i \(-0.364366\pi\)
0.413328 + 0.910582i \(0.364366\pi\)
\(354\) 0.584156 0.0310475
\(355\) 22.0858 1.17219
\(356\) −26.0032 −1.37817
\(357\) 0 0
\(358\) 3.67636 0.194301
\(359\) −32.0749 −1.69285 −0.846425 0.532509i \(-0.821249\pi\)
−0.846425 + 0.532509i \(0.821249\pi\)
\(360\) 7.25475 0.382359
\(361\) −2.04217 −0.107483
\(362\) 4.66171 0.245014
\(363\) 0 0
\(364\) 0 0
\(365\) −2.19799 −0.115048
\(366\) 0.168572 0.00881139
\(367\) 14.6368 0.764037 0.382019 0.924155i \(-0.375229\pi\)
0.382019 + 0.924155i \(0.375229\pi\)
\(368\) −16.7045 −0.870780
\(369\) −1.68536 −0.0877364
\(370\) 1.03013 0.0535538
\(371\) 0 0
\(372\) 0.385165 0.0199699
\(373\) 9.05631 0.468918 0.234459 0.972126i \(-0.424668\pi\)
0.234459 + 0.972126i \(0.424668\pi\)
\(374\) 0 0
\(375\) 1.79279 0.0925792
\(376\) −11.4673 −0.591379
\(377\) −38.3764 −1.97648
\(378\) 0 0
\(379\) 12.6037 0.647411 0.323705 0.946158i \(-0.395071\pi\)
0.323705 + 0.946158i \(0.395071\pi\)
\(380\) −12.3258 −0.632302
\(381\) −1.95952 −0.100389
\(382\) 9.26552 0.474065
\(383\) −9.42359 −0.481523 −0.240762 0.970584i \(-0.577397\pi\)
−0.240762 + 0.970584i \(0.577397\pi\)
\(384\) 1.53440 0.0783019
\(385\) 0 0
\(386\) −1.01550 −0.0516874
\(387\) −20.6345 −1.04891
\(388\) −20.8379 −1.05789
\(389\) −2.01979 −0.102408 −0.0512038 0.998688i \(-0.516306\pi\)
−0.0512038 + 0.998688i \(0.516306\pi\)
\(390\) −0.615280 −0.0311559
\(391\) −23.5655 −1.19176
\(392\) 0 0
\(393\) −2.87674 −0.145112
\(394\) 9.18518 0.462742
\(395\) −25.9085 −1.30360
\(396\) 0 0
\(397\) 15.4181 0.773812 0.386906 0.922119i \(-0.373544\pi\)
0.386906 + 0.922119i \(0.373544\pi\)
\(398\) 0.599249 0.0300376
\(399\) 0 0
\(400\) −7.37681 −0.368841
\(401\) −11.8274 −0.590633 −0.295317 0.955399i \(-0.595425\pi\)
−0.295317 + 0.955399i \(0.595425\pi\)
\(402\) 0.444313 0.0221603
\(403\) 8.99904 0.448274
\(404\) −1.77442 −0.0882808
\(405\) 14.2557 0.708373
\(406\) 0 0
\(407\) 0 0
\(408\) 0.988782 0.0489520
\(409\) 11.7016 0.578607 0.289304 0.957237i \(-0.406576\pi\)
0.289304 + 0.957237i \(0.406576\pi\)
\(410\) 0.358481 0.0177041
\(411\) −1.55676 −0.0767892
\(412\) −30.5841 −1.50677
\(413\) 0 0
\(414\) 6.25737 0.307533
\(415\) −5.66850 −0.278256
\(416\) 27.3367 1.34029
\(417\) −2.22046 −0.108736
\(418\) 0 0
\(419\) 25.6328 1.25224 0.626122 0.779725i \(-0.284641\pi\)
0.626122 + 0.779725i \(0.284641\pi\)
\(420\) 0 0
\(421\) 26.3965 1.28649 0.643243 0.765662i \(-0.277589\pi\)
0.643243 + 0.765662i \(0.277589\pi\)
\(422\) −10.4183 −0.507157
\(423\) −22.7064 −1.10402
\(424\) 12.5779 0.610838
\(425\) −10.4067 −0.504799
\(426\) −0.799294 −0.0387259
\(427\) 0 0
\(428\) 7.29262 0.352502
\(429\) 0 0
\(430\) 4.38902 0.211657
\(431\) 19.6410 0.946072 0.473036 0.881043i \(-0.343158\pi\)
0.473036 + 0.881043i \(0.343158\pi\)
\(432\) 2.78620 0.134051
\(433\) −9.98232 −0.479720 −0.239860 0.970808i \(-0.577101\pi\)
−0.239860 + 0.970808i \(0.577101\pi\)
\(434\) 0 0
\(435\) 1.44080 0.0690809
\(436\) 10.1596 0.486556
\(437\) −22.1418 −1.05919
\(438\) 0.0795463 0.00380087
\(439\) 37.9959 1.81345 0.906723 0.421727i \(-0.138576\pi\)
0.906723 + 0.421727i \(0.138576\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.0923 0.527608
\(443\) 14.5129 0.689530 0.344765 0.938689i \(-0.387959\pi\)
0.344765 + 0.938689i \(0.387959\pi\)
\(444\) 0.450795 0.0213938
\(445\) 22.8095 1.08127
\(446\) −2.88543 −0.136629
\(447\) −0.0135749 −0.000642070 0
\(448\) 0 0
\(449\) −7.19788 −0.339689 −0.169844 0.985471i \(-0.554327\pi\)
−0.169844 + 0.985471i \(0.554327\pi\)
\(450\) 2.76330 0.130263
\(451\) 0 0
\(452\) −4.28305 −0.201458
\(453\) −0.698987 −0.0328413
\(454\) 7.14392 0.335281
\(455\) 0 0
\(456\) 0.929046 0.0435065
\(457\) −22.4301 −1.04924 −0.524618 0.851338i \(-0.675792\pi\)
−0.524618 + 0.851338i \(0.675792\pi\)
\(458\) −3.24682 −0.151714
\(459\) 3.93058 0.183464
\(460\) 16.0938 0.750378
\(461\) 7.01660 0.326796 0.163398 0.986560i \(-0.447755\pi\)
0.163398 + 0.986560i \(0.447755\pi\)
\(462\) 0 0
\(463\) 3.85090 0.178966 0.0894832 0.995988i \(-0.471478\pi\)
0.0894832 + 0.995988i \(0.471478\pi\)
\(464\) −18.4123 −0.854771
\(465\) −0.337859 −0.0156678
\(466\) 4.86963 0.225581
\(467\) −6.50146 −0.300852 −0.150426 0.988621i \(-0.548064\pi\)
−0.150426 + 0.988621i \(0.548064\pi\)
\(468\) 35.6149 1.64630
\(469\) 0 0
\(470\) 4.82971 0.222778
\(471\) 2.72272 0.125456
\(472\) 14.9792 0.689473
\(473\) 0 0
\(474\) 0.937638 0.0430671
\(475\) −9.77798 −0.448645
\(476\) 0 0
\(477\) 24.9056 1.14035
\(478\) 2.71204 0.124046
\(479\) 34.0519 1.55587 0.777935 0.628344i \(-0.216267\pi\)
0.777935 + 0.628344i \(0.216267\pi\)
\(480\) −1.02633 −0.0468451
\(481\) 10.5324 0.480237
\(482\) −10.3200 −0.470064
\(483\) 0 0
\(484\) 0 0
\(485\) 18.2786 0.829987
\(486\) −1.56750 −0.0711034
\(487\) −1.13879 −0.0516035 −0.0258017 0.999667i \(-0.508214\pi\)
−0.0258017 + 0.999667i \(0.508214\pi\)
\(488\) 4.32259 0.195675
\(489\) 1.44640 0.0654087
\(490\) 0 0
\(491\) −6.99706 −0.315773 −0.157886 0.987457i \(-0.550468\pi\)
−0.157886 + 0.987457i \(0.550468\pi\)
\(492\) 0.156875 0.00707247
\(493\) −25.9748 −1.16985
\(494\) 10.4222 0.468917
\(495\) 0 0
\(496\) 4.31759 0.193865
\(497\) 0 0
\(498\) 0.205145 0.00919278
\(499\) 9.42232 0.421801 0.210901 0.977508i \(-0.432360\pi\)
0.210901 + 0.977508i \(0.432360\pi\)
\(500\) 22.0730 0.987135
\(501\) −2.20997 −0.0987340
\(502\) −6.42021 −0.286548
\(503\) −17.1632 −0.765270 −0.382635 0.923900i \(-0.624983\pi\)
−0.382635 + 0.923900i \(0.624983\pi\)
\(504\) 0 0
\(505\) 1.55648 0.0692626
\(506\) 0 0
\(507\) −4.34041 −0.192764
\(508\) −24.1258 −1.07041
\(509\) −23.5858 −1.04542 −0.522711 0.852510i \(-0.675079\pi\)
−0.522711 + 0.852510i \(0.675079\pi\)
\(510\) −0.416449 −0.0184407
\(511\) 0 0
\(512\) 22.4589 0.992554
\(513\) 3.69312 0.163055
\(514\) 9.02618 0.398128
\(515\) 26.8277 1.18217
\(516\) 1.92068 0.0845531
\(517\) 0 0
\(518\) 0 0
\(519\) −2.95240 −0.129596
\(520\) −15.7773 −0.691880
\(521\) −20.1506 −0.882814 −0.441407 0.897307i \(-0.645521\pi\)
−0.441407 + 0.897307i \(0.645521\pi\)
\(522\) 6.89713 0.301879
\(523\) −4.76234 −0.208243 −0.104121 0.994565i \(-0.533203\pi\)
−0.104121 + 0.994565i \(0.533203\pi\)
\(524\) −35.4187 −1.54727
\(525\) 0 0
\(526\) 6.09690 0.265837
\(527\) 6.09095 0.265326
\(528\) 0 0
\(529\) 5.91047 0.256977
\(530\) −5.29749 −0.230108
\(531\) 29.6603 1.28715
\(532\) 0 0
\(533\) 3.66524 0.158759
\(534\) −0.825484 −0.0357222
\(535\) −6.39692 −0.276563
\(536\) 11.3933 0.492114
\(537\) −1.41121 −0.0608984
\(538\) −6.80015 −0.293175
\(539\) 0 0
\(540\) −2.68435 −0.115516
\(541\) 0.667605 0.0287026 0.0143513 0.999897i \(-0.495432\pi\)
0.0143513 + 0.999897i \(0.495432\pi\)
\(542\) −7.11937 −0.305803
\(543\) −1.78946 −0.0767929
\(544\) 18.5027 0.793296
\(545\) −8.91177 −0.381738
\(546\) 0 0
\(547\) −33.9259 −1.45057 −0.725283 0.688451i \(-0.758291\pi\)
−0.725283 + 0.688451i \(0.758291\pi\)
\(548\) −19.1670 −0.818773
\(549\) 8.55917 0.365297
\(550\) 0 0
\(551\) −24.4056 −1.03971
\(552\) −1.21305 −0.0516309
\(553\) 0 0
\(554\) 0.609436 0.0258924
\(555\) −0.395427 −0.0167850
\(556\) −27.3386 −1.15941
\(557\) −18.0539 −0.764967 −0.382484 0.923962i \(-0.624931\pi\)
−0.382484 + 0.923962i \(0.624931\pi\)
\(558\) −1.61734 −0.0684674
\(559\) 44.8749 1.89801
\(560\) 0 0
\(561\) 0 0
\(562\) −10.9139 −0.460374
\(563\) 30.7445 1.29573 0.647863 0.761757i \(-0.275663\pi\)
0.647863 + 0.761757i \(0.275663\pi\)
\(564\) 2.11353 0.0889957
\(565\) 3.75700 0.158058
\(566\) 4.26038 0.179077
\(567\) 0 0
\(568\) −20.4959 −0.859987
\(569\) −11.6065 −0.486569 −0.243285 0.969955i \(-0.578225\pi\)
−0.243285 + 0.969955i \(0.578225\pi\)
\(570\) −0.391289 −0.0163893
\(571\) 6.86083 0.287117 0.143558 0.989642i \(-0.454146\pi\)
0.143558 + 0.989642i \(0.454146\pi\)
\(572\) 0 0
\(573\) −3.55668 −0.148582
\(574\) 0 0
\(575\) 12.7671 0.532424
\(576\) 13.5875 0.566147
\(577\) 6.29056 0.261879 0.130940 0.991390i \(-0.458201\pi\)
0.130940 + 0.991390i \(0.458201\pi\)
\(578\) 0.863266 0.0359071
\(579\) 0.389810 0.0162000
\(580\) 17.7393 0.736583
\(581\) 0 0
\(582\) −0.661509 −0.0274205
\(583\) 0 0
\(584\) 2.03976 0.0844059
\(585\) −31.2406 −1.29164
\(586\) 6.46131 0.266914
\(587\) 19.0046 0.784405 0.392203 0.919879i \(-0.371713\pi\)
0.392203 + 0.919879i \(0.371713\pi\)
\(588\) 0 0
\(589\) 5.72297 0.235811
\(590\) −6.30883 −0.259731
\(591\) −3.52584 −0.145034
\(592\) 5.05327 0.207688
\(593\) −38.7873 −1.59280 −0.796401 0.604769i \(-0.793265\pi\)
−0.796401 + 0.604769i \(0.793265\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.167136 −0.00684614
\(597\) −0.230029 −0.00941446
\(598\) −13.6082 −0.556482
\(599\) 5.73320 0.234252 0.117126 0.993117i \(-0.462632\pi\)
0.117126 + 0.993117i \(0.462632\pi\)
\(600\) −0.535693 −0.0218696
\(601\) 28.4836 1.16187 0.580934 0.813950i \(-0.302687\pi\)
0.580934 + 0.813950i \(0.302687\pi\)
\(602\) 0 0
\(603\) 22.5598 0.918708
\(604\) −8.60600 −0.350173
\(605\) 0 0
\(606\) −0.0563298 −0.00228824
\(607\) 34.6147 1.40497 0.702484 0.711700i \(-0.252074\pi\)
0.702484 + 0.711700i \(0.252074\pi\)
\(608\) 17.3849 0.705050
\(609\) 0 0
\(610\) −1.82056 −0.0737124
\(611\) 49.3807 1.99773
\(612\) 24.1058 0.974417
\(613\) −20.5920 −0.831702 −0.415851 0.909433i \(-0.636516\pi\)
−0.415851 + 0.909433i \(0.636516\pi\)
\(614\) 0.677566 0.0273443
\(615\) −0.137607 −0.00554887
\(616\) 0 0
\(617\) 38.5159 1.55059 0.775296 0.631598i \(-0.217601\pi\)
0.775296 + 0.631598i \(0.217601\pi\)
\(618\) −0.970905 −0.0390555
\(619\) 21.6451 0.869991 0.434995 0.900433i \(-0.356750\pi\)
0.434995 + 0.900433i \(0.356750\pi\)
\(620\) −4.15975 −0.167060
\(621\) −4.82209 −0.193504
\(622\) 10.6708 0.427859
\(623\) 0 0
\(624\) −3.01824 −0.120826
\(625\) −7.48968 −0.299587
\(626\) 6.87500 0.274780
\(627\) 0 0
\(628\) 33.5224 1.33769
\(629\) 7.12880 0.284244
\(630\) 0 0
\(631\) −32.4472 −1.29170 −0.645850 0.763464i \(-0.723497\pi\)
−0.645850 + 0.763464i \(0.723497\pi\)
\(632\) 24.0433 0.956392
\(633\) 3.99921 0.158954
\(634\) 1.31111 0.0520707
\(635\) 21.1627 0.839814
\(636\) −2.31823 −0.0919239
\(637\) 0 0
\(638\) 0 0
\(639\) −40.5839 −1.60547
\(640\) −16.5714 −0.655041
\(641\) −10.4994 −0.414701 −0.207351 0.978267i \(-0.566484\pi\)
−0.207351 + 0.978267i \(0.566484\pi\)
\(642\) 0.231507 0.00913687
\(643\) 49.7066 1.96024 0.980119 0.198411i \(-0.0635781\pi\)
0.980119 + 0.198411i \(0.0635781\pi\)
\(644\) 0 0
\(645\) −1.68478 −0.0663380
\(646\) 7.05420 0.277544
\(647\) 7.53355 0.296174 0.148087 0.988974i \(-0.452688\pi\)
0.148087 + 0.988974i \(0.452688\pi\)
\(648\) −13.2295 −0.519703
\(649\) 0 0
\(650\) −6.00950 −0.235712
\(651\) 0 0
\(652\) 17.8083 0.697427
\(653\) −14.8697 −0.581895 −0.290947 0.956739i \(-0.593970\pi\)
−0.290947 + 0.956739i \(0.593970\pi\)
\(654\) 0.322521 0.0126116
\(655\) 31.0685 1.21395
\(656\) 1.75852 0.0686587
\(657\) 4.03893 0.157574
\(658\) 0 0
\(659\) 5.75268 0.224093 0.112046 0.993703i \(-0.464259\pi\)
0.112046 + 0.993703i \(0.464259\pi\)
\(660\) 0 0
\(661\) −37.5643 −1.46108 −0.730540 0.682870i \(-0.760732\pi\)
−0.730540 + 0.682870i \(0.760732\pi\)
\(662\) 7.97922 0.310121
\(663\) −4.25792 −0.165364
\(664\) 5.26043 0.204144
\(665\) 0 0
\(666\) −1.89292 −0.0733491
\(667\) 31.8663 1.23387
\(668\) −27.2094 −1.05276
\(669\) 1.10761 0.0428226
\(670\) −4.79854 −0.185384
\(671\) 0 0
\(672\) 0 0
\(673\) −15.9009 −0.612934 −0.306467 0.951881i \(-0.599147\pi\)
−0.306467 + 0.951881i \(0.599147\pi\)
\(674\) −2.86943 −0.110526
\(675\) −2.12947 −0.0819635
\(676\) −53.4396 −2.05537
\(677\) 17.1999 0.661044 0.330522 0.943798i \(-0.392775\pi\)
0.330522 + 0.943798i \(0.392775\pi\)
\(678\) −0.135967 −0.00522179
\(679\) 0 0
\(680\) −10.6788 −0.409512
\(681\) −2.74228 −0.105084
\(682\) 0 0
\(683\) −15.8072 −0.604847 −0.302423 0.953174i \(-0.597796\pi\)
−0.302423 + 0.953174i \(0.597796\pi\)
\(684\) 22.6494 0.866023
\(685\) 16.8129 0.642386
\(686\) 0 0
\(687\) 1.24633 0.0475504
\(688\) 21.5302 0.820832
\(689\) −54.1634 −2.06346
\(690\) 0.510905 0.0194498
\(691\) −31.6899 −1.20554 −0.602770 0.797915i \(-0.705936\pi\)
−0.602770 + 0.797915i \(0.705936\pi\)
\(692\) −36.3503 −1.38183
\(693\) 0 0
\(694\) −11.5754 −0.439395
\(695\) 23.9808 0.909643
\(696\) −1.33708 −0.0506817
\(697\) 2.48080 0.0939669
\(698\) −13.5481 −0.512801
\(699\) −1.86927 −0.0707022
\(700\) 0 0
\(701\) −2.90049 −0.109550 −0.0547750 0.998499i \(-0.517444\pi\)
−0.0547750 + 0.998499i \(0.517444\pi\)
\(702\) 2.26977 0.0856670
\(703\) 6.69812 0.252624
\(704\) 0 0
\(705\) −1.85394 −0.0698235
\(706\) 6.07053 0.228467
\(707\) 0 0
\(708\) −2.76081 −0.103758
\(709\) −8.27951 −0.310944 −0.155472 0.987840i \(-0.549690\pi\)
−0.155472 + 0.987840i \(0.549690\pi\)
\(710\) 8.63231 0.323965
\(711\) 47.6082 1.78545
\(712\) −21.1674 −0.793283
\(713\) −7.47246 −0.279846
\(714\) 0 0
\(715\) 0 0
\(716\) −17.3750 −0.649335
\(717\) −1.04105 −0.0388786
\(718\) −12.5366 −0.467862
\(719\) 16.7701 0.625419 0.312709 0.949849i \(-0.398763\pi\)
0.312709 + 0.949849i \(0.398763\pi\)
\(720\) −14.9887 −0.558597
\(721\) 0 0
\(722\) −0.798189 −0.0297055
\(723\) 3.96147 0.147328
\(724\) −22.0320 −0.818812
\(725\) 14.0724 0.522636
\(726\) 0 0
\(727\) 7.41874 0.275146 0.137573 0.990492i \(-0.456070\pi\)
0.137573 + 0.990492i \(0.456070\pi\)
\(728\) 0 0
\(729\) −25.7920 −0.955261
\(730\) −0.859093 −0.0317965
\(731\) 30.3733 1.12340
\(732\) −0.796696 −0.0294467
\(733\) 37.9087 1.40019 0.700095 0.714050i \(-0.253141\pi\)
0.700095 + 0.714050i \(0.253141\pi\)
\(734\) 5.72087 0.211161
\(735\) 0 0
\(736\) −22.6994 −0.836710
\(737\) 0 0
\(738\) −0.658730 −0.0242482
\(739\) −31.6278 −1.16345 −0.581724 0.813386i \(-0.697622\pi\)
−0.581724 + 0.813386i \(0.697622\pi\)
\(740\) −4.86855 −0.178971
\(741\) −4.00069 −0.146969
\(742\) 0 0
\(743\) −0.547186 −0.0200743 −0.0100372 0.999950i \(-0.503195\pi\)
−0.0100372 + 0.999950i \(0.503195\pi\)
\(744\) 0.313537 0.0114948
\(745\) 0.146608 0.00537129
\(746\) 3.53969 0.129597
\(747\) 10.4162 0.381108
\(748\) 0 0
\(749\) 0 0
\(750\) 0.700717 0.0255866
\(751\) −15.3541 −0.560280 −0.280140 0.959959i \(-0.590381\pi\)
−0.280140 + 0.959959i \(0.590381\pi\)
\(752\) 23.6920 0.863959
\(753\) 2.46448 0.0898105
\(754\) −14.9995 −0.546251
\(755\) 7.54900 0.274736
\(756\) 0 0
\(757\) 38.2354 1.38969 0.694845 0.719160i \(-0.255473\pi\)
0.694845 + 0.719160i \(0.255473\pi\)
\(758\) 4.92622 0.178928
\(759\) 0 0
\(760\) −10.0336 −0.363957
\(761\) 13.9482 0.505622 0.252811 0.967516i \(-0.418645\pi\)
0.252811 + 0.967516i \(0.418645\pi\)
\(762\) −0.765885 −0.0277451
\(763\) 0 0
\(764\) −43.7903 −1.58428
\(765\) −21.1450 −0.764501
\(766\) −3.68325 −0.133081
\(767\) −64.5038 −2.32910
\(768\) −0.769609 −0.0277709
\(769\) 5.40411 0.194877 0.0974385 0.995242i \(-0.468935\pi\)
0.0974385 + 0.995242i \(0.468935\pi\)
\(770\) 0 0
\(771\) −3.46481 −0.124782
\(772\) 4.79939 0.172734
\(773\) 29.2118 1.05067 0.525337 0.850894i \(-0.323939\pi\)
0.525337 + 0.850894i \(0.323939\pi\)
\(774\) −8.06507 −0.289893
\(775\) −3.29990 −0.118536
\(776\) −16.9627 −0.608926
\(777\) 0 0
\(778\) −0.789444 −0.0283029
\(779\) 2.33092 0.0835140
\(780\) 2.90791 0.104120
\(781\) 0 0
\(782\) −9.21065 −0.329372
\(783\) −5.31511 −0.189946
\(784\) 0 0
\(785\) −29.4052 −1.04952
\(786\) −1.12438 −0.0401054
\(787\) 22.8478 0.814435 0.407217 0.913331i \(-0.366499\pi\)
0.407217 + 0.913331i \(0.366499\pi\)
\(788\) −43.4105 −1.54644
\(789\) −2.34037 −0.0833193
\(790\) −10.1264 −0.360282
\(791\) 0 0
\(792\) 0 0
\(793\) −18.6141 −0.661005
\(794\) 6.02622 0.213863
\(795\) 2.03350 0.0721210
\(796\) −2.83214 −0.100383
\(797\) −14.3818 −0.509429 −0.254715 0.967016i \(-0.581981\pi\)
−0.254715 + 0.967016i \(0.581981\pi\)
\(798\) 0 0
\(799\) 33.4230 1.18242
\(800\) −10.0242 −0.354410
\(801\) −41.9137 −1.48095
\(802\) −4.62279 −0.163236
\(803\) 0 0
\(804\) −2.09989 −0.0740575
\(805\) 0 0
\(806\) 3.51731 0.123892
\(807\) 2.61032 0.0918876
\(808\) −1.44443 −0.0508150
\(809\) −34.0006 −1.19540 −0.597699 0.801721i \(-0.703918\pi\)
−0.597699 + 0.801721i \(0.703918\pi\)
\(810\) 5.57190 0.195777
\(811\) 19.7225 0.692552 0.346276 0.938133i \(-0.387446\pi\)
0.346276 + 0.938133i \(0.387446\pi\)
\(812\) 0 0
\(813\) 2.73286 0.0958454
\(814\) 0 0
\(815\) −15.6210 −0.547181
\(816\) −2.04288 −0.0715151
\(817\) 28.5383 0.998430
\(818\) 4.57362 0.159913
\(819\) 0 0
\(820\) −1.69424 −0.0591653
\(821\) −0.307769 −0.0107412 −0.00537061 0.999986i \(-0.501710\pi\)
−0.00537061 + 0.999986i \(0.501710\pi\)
\(822\) −0.608465 −0.0212226
\(823\) −19.8794 −0.692953 −0.346477 0.938059i \(-0.612622\pi\)
−0.346477 + 0.938059i \(0.612622\pi\)
\(824\) −24.8964 −0.867306
\(825\) 0 0
\(826\) 0 0
\(827\) 46.0495 1.60130 0.800648 0.599134i \(-0.204488\pi\)
0.800648 + 0.599134i \(0.204488\pi\)
\(828\) −29.5733 −1.02774
\(829\) −15.2483 −0.529595 −0.264798 0.964304i \(-0.585305\pi\)
−0.264798 + 0.964304i \(0.585305\pi\)
\(830\) −2.21555 −0.0769030
\(831\) −0.233939 −0.00811526
\(832\) −29.5495 −1.02444
\(833\) 0 0
\(834\) −0.867875 −0.0300520
\(835\) 23.8675 0.825967
\(836\) 0 0
\(837\) 1.24636 0.0430806
\(838\) 10.0187 0.346089
\(839\) −43.6834 −1.50812 −0.754060 0.656806i \(-0.771907\pi\)
−0.754060 + 0.656806i \(0.771907\pi\)
\(840\) 0 0
\(841\) 6.12433 0.211184
\(842\) 10.3172 0.355553
\(843\) 4.18942 0.144291
\(844\) 49.2387 1.69487
\(845\) 46.8761 1.61259
\(846\) −8.87487 −0.305124
\(847\) 0 0
\(848\) −25.9867 −0.892386
\(849\) −1.63540 −0.0561267
\(850\) −4.06749 −0.139514
\(851\) −8.74572 −0.299799
\(852\) 3.77759 0.129418
\(853\) −12.6550 −0.433298 −0.216649 0.976250i \(-0.569513\pi\)
−0.216649 + 0.976250i \(0.569513\pi\)
\(854\) 0 0
\(855\) −19.8676 −0.679457
\(856\) 5.93642 0.202902
\(857\) 38.8928 1.32855 0.664277 0.747486i \(-0.268739\pi\)
0.664277 + 0.747486i \(0.268739\pi\)
\(858\) 0 0
\(859\) −0.833120 −0.0284257 −0.0142128 0.999899i \(-0.504524\pi\)
−0.0142128 + 0.999899i \(0.504524\pi\)
\(860\) −20.7432 −0.707336
\(861\) 0 0
\(862\) 7.67674 0.261471
\(863\) −1.64405 −0.0559640 −0.0279820 0.999608i \(-0.508908\pi\)
−0.0279820 + 0.999608i \(0.508908\pi\)
\(864\) 3.78612 0.128806
\(865\) 31.8857 1.08415
\(866\) −3.90162 −0.132583
\(867\) −0.331375 −0.0112541
\(868\) 0 0
\(869\) 0 0
\(870\) 0.563141 0.0190923
\(871\) −49.0621 −1.66240
\(872\) 8.27022 0.280065
\(873\) −33.5879 −1.13678
\(874\) −8.65420 −0.292733
\(875\) 0 0
\(876\) −0.375948 −0.0127021
\(877\) −47.2358 −1.59504 −0.797520 0.603293i \(-0.793855\pi\)
−0.797520 + 0.603293i \(0.793855\pi\)
\(878\) 14.8508 0.501191
\(879\) −2.48025 −0.0836568
\(880\) 0 0
\(881\) 30.6325 1.03203 0.516017 0.856578i \(-0.327414\pi\)
0.516017 + 0.856578i \(0.327414\pi\)
\(882\) 0 0
\(883\) −45.2525 −1.52287 −0.761434 0.648242i \(-0.775504\pi\)
−0.761434 + 0.648242i \(0.775504\pi\)
\(884\) −52.4240 −1.76321
\(885\) 2.42172 0.0814053
\(886\) 5.67243 0.190569
\(887\) −24.1232 −0.809977 −0.404988 0.914322i \(-0.632724\pi\)
−0.404988 + 0.914322i \(0.632724\pi\)
\(888\) 0.366961 0.0123144
\(889\) 0 0
\(890\) 8.91516 0.298837
\(891\) 0 0
\(892\) 13.6370 0.456601
\(893\) 31.4038 1.05089
\(894\) −0.00530579 −0.000177452 0
\(895\) 15.2410 0.509450
\(896\) 0 0
\(897\) 5.22368 0.174414
\(898\) −2.81332 −0.0938816
\(899\) −8.23646 −0.274701
\(900\) −13.0598 −0.435326
\(901\) −36.6602 −1.22133
\(902\) 0 0
\(903\) 0 0
\(904\) −3.48653 −0.115960
\(905\) 19.3260 0.642417
\(906\) −0.273201 −0.00907651
\(907\) 23.9188 0.794209 0.397105 0.917773i \(-0.370015\pi\)
0.397105 + 0.917773i \(0.370015\pi\)
\(908\) −33.7633 −1.12047
\(909\) −2.86013 −0.0948645
\(910\) 0 0
\(911\) −3.68709 −0.122159 −0.0610794 0.998133i \(-0.519454\pi\)
−0.0610794 + 0.998133i \(0.519454\pi\)
\(912\) −1.91946 −0.0635597
\(913\) 0 0
\(914\) −8.76689 −0.289983
\(915\) 0.698844 0.0231031
\(916\) 15.3449 0.507011
\(917\) 0 0
\(918\) 1.53628 0.0507048
\(919\) −25.3877 −0.837464 −0.418732 0.908110i \(-0.637525\pi\)
−0.418732 + 0.908110i \(0.637525\pi\)
\(920\) 13.1009 0.431923
\(921\) −0.260092 −0.00857032
\(922\) 2.74246 0.0903182
\(923\) 88.2599 2.90511
\(924\) 0 0
\(925\) −3.86218 −0.126988
\(926\) 1.50514 0.0494619
\(927\) −49.2973 −1.61914
\(928\) −25.0202 −0.821328
\(929\) −56.4056 −1.85061 −0.925304 0.379226i \(-0.876190\pi\)
−0.925304 + 0.379226i \(0.876190\pi\)
\(930\) −0.132053 −0.00433020
\(931\) 0 0
\(932\) −23.0146 −0.753869
\(933\) −4.09611 −0.134101
\(934\) −2.54112 −0.0831480
\(935\) 0 0
\(936\) 28.9917 0.947622
\(937\) −20.4951 −0.669547 −0.334774 0.942299i \(-0.608660\pi\)
−0.334774 + 0.942299i \(0.608660\pi\)
\(938\) 0 0
\(939\) −2.63905 −0.0861222
\(940\) −22.8259 −0.744500
\(941\) 27.7752 0.905444 0.452722 0.891652i \(-0.350453\pi\)
0.452722 + 0.891652i \(0.350453\pi\)
\(942\) 1.06419 0.0346730
\(943\) −3.04348 −0.0991093
\(944\) −30.9478 −1.00727
\(945\) 0 0
\(946\) 0 0
\(947\) 41.8885 1.36119 0.680597 0.732658i \(-0.261721\pi\)
0.680597 + 0.732658i \(0.261721\pi\)
\(948\) −4.43142 −0.143926
\(949\) −8.78368 −0.285130
\(950\) −3.82176 −0.123994
\(951\) −0.503284 −0.0163201
\(952\) 0 0
\(953\) 34.0129 1.10179 0.550893 0.834576i \(-0.314287\pi\)
0.550893 + 0.834576i \(0.314287\pi\)
\(954\) 9.73443 0.315164
\(955\) 38.4119 1.24298
\(956\) −12.8175 −0.414547
\(957\) 0 0
\(958\) 13.3093 0.430004
\(959\) 0 0
\(960\) 1.10940 0.0358058
\(961\) −29.0686 −0.937697
\(962\) 4.11663 0.132726
\(963\) 11.7547 0.378790
\(964\) 48.7740 1.57091
\(965\) −4.20992 −0.135522
\(966\) 0 0
\(967\) −28.6521 −0.921390 −0.460695 0.887558i \(-0.652400\pi\)
−0.460695 + 0.887558i \(0.652400\pi\)
\(968\) 0 0
\(969\) −2.70784 −0.0869884
\(970\) 7.14425 0.229388
\(971\) −51.0701 −1.63892 −0.819459 0.573137i \(-0.805726\pi\)
−0.819459 + 0.573137i \(0.805726\pi\)
\(972\) 7.40826 0.237620
\(973\) 0 0
\(974\) −0.445100 −0.0142619
\(975\) 2.30682 0.0738773
\(976\) −8.93072 −0.285865
\(977\) −7.34009 −0.234830 −0.117415 0.993083i \(-0.537461\pi\)
−0.117415 + 0.993083i \(0.537461\pi\)
\(978\) 0.565332 0.0180773
\(979\) 0 0
\(980\) 0 0
\(981\) 16.3759 0.522842
\(982\) −2.73483 −0.0872718
\(983\) 29.0560 0.926741 0.463370 0.886165i \(-0.346640\pi\)
0.463370 + 0.886165i \(0.346640\pi\)
\(984\) 0.127701 0.00407096
\(985\) 38.0788 1.21329
\(986\) −10.1524 −0.323317
\(987\) 0 0
\(988\) −49.2569 −1.56707
\(989\) −37.2624 −1.18488
\(990\) 0 0
\(991\) 17.5473 0.557407 0.278703 0.960377i \(-0.410095\pi\)
0.278703 + 0.960377i \(0.410095\pi\)
\(992\) 5.86709 0.186280
\(993\) −3.06292 −0.0971988
\(994\) 0 0
\(995\) 2.48429 0.0787574
\(996\) −0.969548 −0.0307213
\(997\) 24.9683 0.790753 0.395376 0.918519i \(-0.370614\pi\)
0.395376 + 0.918519i \(0.370614\pi\)
\(998\) 3.68275 0.116575
\(999\) 1.45873 0.0461523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.ca.1.7 12
7.6 odd 2 inner 5929.2.a.ca.1.8 yes 12
11.10 odd 2 5929.2.a.cb.1.5 yes 12
77.76 even 2 5929.2.a.cb.1.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5929.2.a.ca.1.7 12 1.1 even 1 trivial
5929.2.a.ca.1.8 yes 12 7.6 odd 2 inner
5929.2.a.cb.1.5 yes 12 11.10 odd 2
5929.2.a.cb.1.6 yes 12 77.76 even 2