Properties

Label 5929.2.a.bk.1.6
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-2,4,-4,0,0,0,8,0,0,-14,0,0,14,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.58383808.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} + 15x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 847)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.34670\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34670 q^{2} -2.28514 q^{3} +3.50702 q^{4} -3.50702 q^{5} -5.36255 q^{6} +3.53653 q^{8} +2.22188 q^{9} -8.22993 q^{10} -8.01404 q^{12} +4.05720 q^{13} +8.01404 q^{15} +1.28514 q^{16} +2.49517 q^{17} +5.21409 q^{18} -3.53653 q^{19} -12.2992 q^{20} +2.34841 q^{23} -8.08147 q^{24} +7.29918 q^{25} +9.52106 q^{26} +1.77812 q^{27} +9.01460 q^{29} +18.8066 q^{30} -6.95077 q^{31} -4.05720 q^{32} +5.85543 q^{34} +7.79216 q^{36} -2.44375 q^{37} -8.29918 q^{38} -9.27129 q^{39} -12.4027 q^{40} +6.37097 q^{41} -7.85772 q^{43} -7.79216 q^{45} +5.51102 q^{46} -2.77812 q^{47} -2.93673 q^{48} +17.1290 q^{50} -5.70182 q^{51} +14.2287 q^{52} +3.17265 q^{53} +4.17273 q^{54} +8.08147 q^{57} +21.1546 q^{58} -0.714858 q^{59} +28.1054 q^{60} -1.33829 q^{61} -16.3114 q^{62} -12.0913 q^{64} -14.2287 q^{65} +0.126533 q^{67} +8.75061 q^{68} -5.36645 q^{69} -5.22188 q^{71} +7.85772 q^{72} -4.13979 q^{73} -5.73476 q^{74} -16.6797 q^{75} -12.4027 q^{76} -21.7570 q^{78} -4.02426 q^{79} -4.50702 q^{80} -10.7289 q^{81} +14.9508 q^{82} -1.15688 q^{83} -8.75061 q^{85} -18.4397 q^{86} -20.5997 q^{87} -11.6476 q^{89} -18.2859 q^{90} +8.23591 q^{92} +15.8835 q^{93} -6.51943 q^{94} +12.4027 q^{95} +9.27129 q^{96} +5.61640 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 4 q^{4} - 4 q^{5} + 8 q^{9} - 14 q^{12} + 14 q^{15} - 4 q^{16} - 28 q^{20} - 4 q^{23} - 2 q^{25} + 6 q^{26} + 16 q^{27} - 14 q^{31} + 18 q^{36} - 4 q^{37} - 4 q^{38} - 18 q^{45} - 22 q^{47}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34670 1.65937 0.829685 0.558232i \(-0.188520\pi\)
0.829685 + 0.558232i \(0.188520\pi\)
\(3\) −2.28514 −1.31933 −0.659664 0.751561i \(-0.729301\pi\)
−0.659664 + 0.751561i \(0.729301\pi\)
\(4\) 3.50702 1.75351
\(5\) −3.50702 −1.56839 −0.784193 0.620517i \(-0.786923\pi\)
−0.784193 + 0.620517i \(0.786923\pi\)
\(6\) −5.36255 −2.18925
\(7\) 0 0
\(8\) 3.53653 1.25035
\(9\) 2.22188 0.740625
\(10\) −8.22993 −2.60253
\(11\) 0 0
\(12\) −8.01404 −2.31345
\(13\) 4.05720 1.12527 0.562633 0.826707i \(-0.309788\pi\)
0.562633 + 0.826707i \(0.309788\pi\)
\(14\) 0 0
\(15\) 8.01404 2.06922
\(16\) 1.28514 0.321286
\(17\) 2.49517 0.605168 0.302584 0.953123i \(-0.402151\pi\)
0.302584 + 0.953123i \(0.402151\pi\)
\(18\) 5.21409 1.22897
\(19\) −3.53653 −0.811335 −0.405667 0.914021i \(-0.632961\pi\)
−0.405667 + 0.914021i \(0.632961\pi\)
\(20\) −12.2992 −2.75018
\(21\) 0 0
\(22\) 0 0
\(23\) 2.34841 0.489677 0.244839 0.969564i \(-0.421265\pi\)
0.244839 + 0.969564i \(0.421265\pi\)
\(24\) −8.08147 −1.64962
\(25\) 7.29918 1.45984
\(26\) 9.52106 1.86723
\(27\) 1.77812 0.342200
\(28\) 0 0
\(29\) 9.01460 1.67397 0.836985 0.547226i \(-0.184316\pi\)
0.836985 + 0.547226i \(0.184316\pi\)
\(30\) 18.8066 3.43359
\(31\) −6.95077 −1.24840 −0.624198 0.781266i \(-0.714574\pi\)
−0.624198 + 0.781266i \(0.714574\pi\)
\(32\) −4.05720 −0.717219
\(33\) 0 0
\(34\) 5.85543 1.00420
\(35\) 0 0
\(36\) 7.79216 1.29869
\(37\) −2.44375 −0.401750 −0.200875 0.979617i \(-0.564379\pi\)
−0.200875 + 0.979617i \(0.564379\pi\)
\(38\) −8.29918 −1.34630
\(39\) −9.27129 −1.48459
\(40\) −12.4027 −1.96103
\(41\) 6.37097 0.994978 0.497489 0.867470i \(-0.334256\pi\)
0.497489 + 0.867470i \(0.334256\pi\)
\(42\) 0 0
\(43\) −7.85772 −1.19829 −0.599146 0.800640i \(-0.704493\pi\)
−0.599146 + 0.800640i \(0.704493\pi\)
\(44\) 0 0
\(45\) −7.79216 −1.16159
\(46\) 5.51102 0.812556
\(47\) −2.77812 −0.405231 −0.202616 0.979258i \(-0.564944\pi\)
−0.202616 + 0.979258i \(0.564944\pi\)
\(48\) −2.93673 −0.423881
\(49\) 0 0
\(50\) 17.1290 2.42241
\(51\) −5.70182 −0.798415
\(52\) 14.2287 1.97316
\(53\) 3.17265 0.435797 0.217898 0.975971i \(-0.430080\pi\)
0.217898 + 0.975971i \(0.430080\pi\)
\(54\) 4.17273 0.567837
\(55\) 0 0
\(56\) 0 0
\(57\) 8.08147 1.07042
\(58\) 21.1546 2.77774
\(59\) −0.714858 −0.0930665 −0.0465333 0.998917i \(-0.514817\pi\)
−0.0465333 + 0.998917i \(0.514817\pi\)
\(60\) 28.1054 3.62839
\(61\) −1.33829 −0.171350 −0.0856752 0.996323i \(-0.527305\pi\)
−0.0856752 + 0.996323i \(0.527305\pi\)
\(62\) −16.3114 −2.07155
\(63\) 0 0
\(64\) −12.0913 −1.51142
\(65\) −14.2287 −1.76485
\(66\) 0 0
\(67\) 0.126533 0.0154584 0.00772921 0.999970i \(-0.497540\pi\)
0.00772921 + 0.999970i \(0.497540\pi\)
\(68\) 8.75061 1.06117
\(69\) −5.36645 −0.646045
\(70\) 0 0
\(71\) −5.22188 −0.619723 −0.309861 0.950782i \(-0.600283\pi\)
−0.309861 + 0.950782i \(0.600283\pi\)
\(72\) 7.85772 0.926042
\(73\) −4.13979 −0.484526 −0.242263 0.970211i \(-0.577890\pi\)
−0.242263 + 0.970211i \(0.577890\pi\)
\(74\) −5.73476 −0.666653
\(75\) −16.6797 −1.92600
\(76\) −12.4027 −1.42268
\(77\) 0 0
\(78\) −21.7570 −2.46349
\(79\) −4.02426 −0.452765 −0.226382 0.974038i \(-0.572690\pi\)
−0.226382 + 0.974038i \(0.572690\pi\)
\(80\) −4.50702 −0.503900
\(81\) −10.7289 −1.19210
\(82\) 14.9508 1.65104
\(83\) −1.15688 −0.126984 −0.0634921 0.997982i \(-0.520224\pi\)
−0.0634921 + 0.997982i \(0.520224\pi\)
\(84\) 0 0
\(85\) −8.75061 −0.949137
\(86\) −18.4397 −1.98841
\(87\) −20.5997 −2.20851
\(88\) 0 0
\(89\) −11.6476 −1.23464 −0.617321 0.786711i \(-0.711782\pi\)
−0.617321 + 0.786711i \(0.711782\pi\)
\(90\) −18.2859 −1.92750
\(91\) 0 0
\(92\) 8.23591 0.858653
\(93\) 15.8835 1.64704
\(94\) −6.51943 −0.672428
\(95\) 12.4027 1.27249
\(96\) 9.27129 0.946247
\(97\) 5.61640 0.570259 0.285129 0.958489i \(-0.407963\pi\)
0.285129 + 0.958489i \(0.407963\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 25.5984 2.55984
\(101\) 5.76770 0.573908 0.286954 0.957944i \(-0.407357\pi\)
0.286954 + 0.957944i \(0.407357\pi\)
\(102\) −13.3805 −1.32487
\(103\) 3.23591 0.318844 0.159422 0.987211i \(-0.449037\pi\)
0.159422 + 0.987211i \(0.449037\pi\)
\(104\) 14.3484 1.40698
\(105\) 0 0
\(106\) 7.44526 0.723148
\(107\) −15.7081 −1.51856 −0.759282 0.650762i \(-0.774449\pi\)
−0.759282 + 0.650762i \(0.774449\pi\)
\(108\) 6.23591 0.600051
\(109\) 6.25544 0.599163 0.299581 0.954071i \(-0.403153\pi\)
0.299581 + 0.954071i \(0.403153\pi\)
\(110\) 0 0
\(111\) 5.58432 0.530040
\(112\) 0 0
\(113\) −17.8202 −1.67639 −0.838193 0.545373i \(-0.816388\pi\)
−0.838193 + 0.545373i \(0.816388\pi\)
\(114\) 18.9648 1.77622
\(115\) −8.23591 −0.768003
\(116\) 31.6144 2.93532
\(117\) 9.01460 0.833401
\(118\) −1.67756 −0.154432
\(119\) 0 0
\(120\) 28.3419 2.58725
\(121\) 0 0
\(122\) −3.14057 −0.284334
\(123\) −14.5586 −1.31270
\(124\) −24.3765 −2.18907
\(125\) −8.06327 −0.721200
\(126\) 0 0
\(127\) −15.9721 −1.41730 −0.708649 0.705561i \(-0.750695\pi\)
−0.708649 + 0.705561i \(0.750695\pi\)
\(128\) −20.2604 −1.79078
\(129\) 17.9560 1.58094
\(130\) −33.3905 −2.92854
\(131\) −12.3697 −1.08075 −0.540374 0.841425i \(-0.681717\pi\)
−0.540374 + 0.841425i \(0.681717\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.296935 0.0256512
\(135\) −6.23591 −0.536702
\(136\) 8.82424 0.756672
\(137\) 15.2851 1.30590 0.652949 0.757402i \(-0.273532\pi\)
0.652949 + 0.757402i \(0.273532\pi\)
\(138\) −12.5935 −1.07203
\(139\) −6.11428 −0.518607 −0.259303 0.965796i \(-0.583493\pi\)
−0.259303 + 0.965796i \(0.583493\pi\)
\(140\) 0 0
\(141\) 6.34841 0.534632
\(142\) −12.2542 −1.02835
\(143\) 0 0
\(144\) 2.85543 0.237952
\(145\) −31.6144 −2.62543
\(146\) −9.71486 −0.804007
\(147\) 0 0
\(148\) −8.57028 −0.704473
\(149\) −7.45257 −0.610538 −0.305269 0.952266i \(-0.598746\pi\)
−0.305269 + 0.952266i \(0.598746\pi\)
\(150\) −39.1422 −3.19595
\(151\) −19.7068 −1.60371 −0.801857 0.597516i \(-0.796154\pi\)
−0.801857 + 0.597516i \(0.796154\pi\)
\(152\) −12.5070 −1.01445
\(153\) 5.54396 0.448203
\(154\) 0 0
\(155\) 24.3765 1.95797
\(156\) −32.5146 −2.60325
\(157\) −20.5843 −1.64281 −0.821404 0.570347i \(-0.806809\pi\)
−0.821404 + 0.570347i \(0.806809\pi\)
\(158\) −9.44375 −0.751305
\(159\) −7.24995 −0.574958
\(160\) 14.2287 1.12488
\(161\) 0 0
\(162\) −25.1775 −1.97813
\(163\) 22.4578 1.75903 0.879515 0.475871i \(-0.157867\pi\)
0.879515 + 0.475871i \(0.157867\pi\)
\(164\) 22.3431 1.74470
\(165\) 0 0
\(166\) −2.71486 −0.210714
\(167\) −9.52797 −0.737297 −0.368648 0.929569i \(-0.620179\pi\)
−0.368648 + 0.929569i \(0.620179\pi\)
\(168\) 0 0
\(169\) 3.46090 0.266223
\(170\) −20.5351 −1.57497
\(171\) −7.85772 −0.600895
\(172\) −27.5572 −2.10122
\(173\) 17.3930 1.32237 0.661183 0.750225i \(-0.270055\pi\)
0.661183 + 0.750225i \(0.270055\pi\)
\(174\) −48.3413 −3.66474
\(175\) 0 0
\(176\) 0 0
\(177\) 1.63355 0.122785
\(178\) −27.3334 −2.04873
\(179\) −8.84139 −0.660837 −0.330418 0.943835i \(-0.607190\pi\)
−0.330418 + 0.943835i \(0.607190\pi\)
\(180\) −27.3273 −2.03685
\(181\) 10.7149 0.796429 0.398215 0.917292i \(-0.369630\pi\)
0.398215 + 0.917292i \(0.369630\pi\)
\(182\) 0 0
\(183\) 3.05818 0.226067
\(184\) 8.30521 0.612268
\(185\) 8.57028 0.630100
\(186\) 37.2739 2.73305
\(187\) 0 0
\(188\) −9.74293 −0.710576
\(189\) 0 0
\(190\) 29.1054 2.11153
\(191\) −11.4718 −0.830072 −0.415036 0.909805i \(-0.636231\pi\)
−0.415036 + 0.909805i \(0.636231\pi\)
\(192\) 27.6304 1.99406
\(193\) −8.00619 −0.576298 −0.288149 0.957586i \(-0.593040\pi\)
−0.288149 + 0.957586i \(0.593040\pi\)
\(194\) 13.1800 0.946271
\(195\) 32.5146 2.32842
\(196\) 0 0
\(197\) −15.8989 −1.13275 −0.566376 0.824147i \(-0.691655\pi\)
−0.566376 + 0.824147i \(0.691655\pi\)
\(198\) 0 0
\(199\) 13.1054 0.929016 0.464508 0.885569i \(-0.346231\pi\)
0.464508 + 0.885569i \(0.346231\pi\)
\(200\) 25.8137 1.82531
\(201\) −0.289145 −0.0203947
\(202\) 13.5351 0.952326
\(203\) 0 0
\(204\) −19.9964 −1.40003
\(205\) −22.3431 −1.56051
\(206\) 7.59373 0.529080
\(207\) 5.21787 0.362667
\(208\) 5.21409 0.361532
\(209\) 0 0
\(210\) 0 0
\(211\) −5.80065 −0.399333 −0.199666 0.979864i \(-0.563986\pi\)
−0.199666 + 0.979864i \(0.563986\pi\)
\(212\) 11.1265 0.764173
\(213\) 11.9327 0.817617
\(214\) −36.8623 −2.51986
\(215\) 27.5572 1.87938
\(216\) 6.28838 0.427870
\(217\) 0 0
\(218\) 14.6797 0.994232
\(219\) 9.46001 0.639248
\(220\) 0 0
\(221\) 10.1234 0.680975
\(222\) 13.1048 0.879533
\(223\) −2.97193 −0.199015 −0.0995074 0.995037i \(-0.531727\pi\)
−0.0995074 + 0.995037i \(0.531727\pi\)
\(224\) 0 0
\(225\) 16.2179 1.08119
\(226\) −41.8188 −2.78175
\(227\) −23.0122 −1.52738 −0.763688 0.645585i \(-0.776613\pi\)
−0.763688 + 0.645585i \(0.776613\pi\)
\(228\) 28.3419 1.87699
\(229\) 29.3734 1.94105 0.970523 0.241007i \(-0.0774776\pi\)
0.970523 + 0.241007i \(0.0774776\pi\)
\(230\) −19.3272 −1.27440
\(231\) 0 0
\(232\) 31.8804 2.09305
\(233\) −9.23835 −0.605224 −0.302612 0.953114i \(-0.597859\pi\)
−0.302612 + 0.953114i \(0.597859\pi\)
\(234\) 21.1546 1.38292
\(235\) 9.74293 0.635559
\(236\) −2.50702 −0.163193
\(237\) 9.19601 0.597345
\(238\) 0 0
\(239\) 11.8417 0.765978 0.382989 0.923753i \(-0.374895\pi\)
0.382989 + 0.923753i \(0.374895\pi\)
\(240\) 10.2992 0.664809
\(241\) −1.52909 −0.0984974 −0.0492487 0.998787i \(-0.515683\pi\)
−0.0492487 + 0.998787i \(0.515683\pi\)
\(242\) 0 0
\(243\) 19.1827 1.23057
\(244\) −4.69341 −0.300465
\(245\) 0 0
\(246\) −34.1646 −2.17826
\(247\) −14.3484 −0.912967
\(248\) −24.5816 −1.56093
\(249\) 2.64364 0.167534
\(250\) −18.9221 −1.19674
\(251\) 2.93273 0.185112 0.0925562 0.995707i \(-0.470496\pi\)
0.0925562 + 0.995707i \(0.470496\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −37.4819 −2.35182
\(255\) 19.9964 1.25222
\(256\) −23.3624 −1.46015
\(257\) −12.9508 −0.807847 −0.403923 0.914793i \(-0.632354\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(258\) 42.1375 2.62336
\(259\) 0 0
\(260\) −49.9003 −3.09468
\(261\) 20.0293 1.23978
\(262\) −29.0281 −1.79336
\(263\) −17.8311 −1.09951 −0.549756 0.835325i \(-0.685279\pi\)
−0.549756 + 0.835325i \(0.685279\pi\)
\(264\) 0 0
\(265\) −11.1265 −0.683497
\(266\) 0 0
\(267\) 26.6164 1.62890
\(268\) 0.443752 0.0271065
\(269\) 1.07730 0.0656844 0.0328422 0.999461i \(-0.489544\pi\)
0.0328422 + 0.999461i \(0.489544\pi\)
\(270\) −14.6338 −0.890587
\(271\) 21.5987 1.31203 0.656013 0.754749i \(-0.272242\pi\)
0.656013 + 0.754749i \(0.272242\pi\)
\(272\) 3.20665 0.194432
\(273\) 0 0
\(274\) 35.8697 2.16697
\(275\) 0 0
\(276\) −18.8202 −1.13285
\(277\) −1.76014 −0.105757 −0.0528784 0.998601i \(-0.516840\pi\)
−0.0528784 + 0.998601i \(0.516840\pi\)
\(278\) −14.3484 −0.860560
\(279\) −15.4438 −0.924593
\(280\) 0 0
\(281\) 5.21409 0.311046 0.155523 0.987832i \(-0.450294\pi\)
0.155523 + 0.987832i \(0.450294\pi\)
\(282\) 14.8978 0.887153
\(283\) −8.37840 −0.498044 −0.249022 0.968498i \(-0.580109\pi\)
−0.249022 + 0.968498i \(0.580109\pi\)
\(284\) −18.3132 −1.08669
\(285\) −28.3419 −1.67883
\(286\) 0 0
\(287\) 0 0
\(288\) −9.01460 −0.531191
\(289\) −10.7741 −0.633772
\(290\) −74.1896 −4.35656
\(291\) −12.8343 −0.752358
\(292\) −14.5183 −0.849620
\(293\) −4.31389 −0.252020 −0.126010 0.992029i \(-0.540217\pi\)
−0.126010 + 0.992029i \(0.540217\pi\)
\(294\) 0 0
\(295\) 2.50702 0.145964
\(296\) −8.64239 −0.502329
\(297\) 0 0
\(298\) −17.4890 −1.01311
\(299\) 9.52797 0.551017
\(300\) −58.4959 −3.37726
\(301\) 0 0
\(302\) −46.2459 −2.66116
\(303\) −13.1800 −0.757173
\(304\) −4.54494 −0.260670
\(305\) 4.69341 0.268744
\(306\) 13.0100 0.743734
\(307\) −10.5014 −0.599344 −0.299672 0.954042i \(-0.596877\pi\)
−0.299672 + 0.954042i \(0.596877\pi\)
\(308\) 0 0
\(309\) −7.39452 −0.420660
\(310\) 57.2044 3.24899
\(311\) 12.4226 0.704421 0.352210 0.935921i \(-0.385430\pi\)
0.352210 + 0.935921i \(0.385430\pi\)
\(312\) −32.7882 −1.85626
\(313\) 5.76409 0.325805 0.162903 0.986642i \(-0.447914\pi\)
0.162903 + 0.986642i \(0.447914\pi\)
\(314\) −48.3053 −2.72603
\(315\) 0 0
\(316\) −14.1132 −0.793928
\(317\) 4.08042 0.229179 0.114590 0.993413i \(-0.463445\pi\)
0.114590 + 0.993413i \(0.463445\pi\)
\(318\) −17.0135 −0.954069
\(319\) 0 0
\(320\) 42.4046 2.37049
\(321\) 35.8953 2.00348
\(322\) 0 0
\(323\) −8.82424 −0.490994
\(324\) −37.6264 −2.09036
\(325\) 29.6143 1.64270
\(326\) 52.7018 2.91888
\(327\) −14.2946 −0.790492
\(328\) 22.5311 1.24407
\(329\) 0 0
\(330\) 0 0
\(331\) 11.3453 0.623594 0.311797 0.950149i \(-0.399069\pi\)
0.311797 + 0.950149i \(0.399069\pi\)
\(332\) −4.05720 −0.222668
\(333\) −5.42972 −0.297547
\(334\) −22.3593 −1.22345
\(335\) −0.443752 −0.0242448
\(336\) 0 0
\(337\) 35.4149 1.92917 0.964586 0.263767i \(-0.0849650\pi\)
0.964586 + 0.263767i \(0.0849650\pi\)
\(338\) 8.12172 0.441763
\(339\) 40.7218 2.21170
\(340\) −30.6886 −1.66432
\(341\) 0 0
\(342\) −18.4397 −0.997107
\(343\) 0 0
\(344\) −27.7890 −1.49828
\(345\) 18.8202 1.01325
\(346\) 40.8162 2.19429
\(347\) −26.2189 −1.40750 −0.703752 0.710446i \(-0.748493\pi\)
−0.703752 + 0.710446i \(0.748493\pi\)
\(348\) −72.2434 −3.87265
\(349\) −35.0850 −1.87806 −0.939029 0.343837i \(-0.888273\pi\)
−0.939029 + 0.343837i \(0.888273\pi\)
\(350\) 0 0
\(351\) 7.21421 0.385066
\(352\) 0 0
\(353\) −4.91958 −0.261843 −0.130921 0.991393i \(-0.541794\pi\)
−0.130921 + 0.991393i \(0.541794\pi\)
\(354\) 3.83346 0.203746
\(355\) 18.3132 0.971965
\(356\) −40.8483 −2.16496
\(357\) 0 0
\(358\) −20.7481 −1.09657
\(359\) 23.2689 1.22809 0.614044 0.789272i \(-0.289542\pi\)
0.614044 + 0.789272i \(0.289542\pi\)
\(360\) −27.5572 −1.45239
\(361\) −6.49298 −0.341736
\(362\) 25.1446 1.32157
\(363\) 0 0
\(364\) 0 0
\(365\) 14.5183 0.759923
\(366\) 7.17665 0.375129
\(367\) 32.8162 1.71299 0.856497 0.516152i \(-0.172636\pi\)
0.856497 + 0.516152i \(0.172636\pi\)
\(368\) 3.01804 0.157326
\(369\) 14.1555 0.736906
\(370\) 20.1119 1.04557
\(371\) 0 0
\(372\) 55.7037 2.88810
\(373\) 26.4426 1.36915 0.684574 0.728943i \(-0.259988\pi\)
0.684574 + 0.728943i \(0.259988\pi\)
\(374\) 0 0
\(375\) 18.4257 0.951500
\(376\) −9.82491 −0.506681
\(377\) 36.5741 1.88366
\(378\) 0 0
\(379\) 12.5531 0.644811 0.322406 0.946602i \(-0.395509\pi\)
0.322406 + 0.946602i \(0.395509\pi\)
\(380\) 43.4964 2.23132
\(381\) 36.4986 1.86988
\(382\) −26.9210 −1.37740
\(383\) −27.9960 −1.43053 −0.715264 0.698854i \(-0.753694\pi\)
−0.715264 + 0.698854i \(0.753694\pi\)
\(384\) 46.2979 2.36263
\(385\) 0 0
\(386\) −18.7882 −0.956292
\(387\) −17.4589 −0.887485
\(388\) 19.6968 0.999954
\(389\) 18.2179 0.923683 0.461841 0.886963i \(-0.347189\pi\)
0.461841 + 0.886963i \(0.347189\pi\)
\(390\) 76.3021 3.86371
\(391\) 5.85968 0.296337
\(392\) 0 0
\(393\) 28.2666 1.42586
\(394\) −37.3101 −1.87966
\(395\) 14.1132 0.710110
\(396\) 0 0
\(397\) −13.2671 −0.665857 −0.332928 0.942952i \(-0.608037\pi\)
−0.332928 + 0.942952i \(0.608037\pi\)
\(398\) 30.7544 1.54158
\(399\) 0 0
\(400\) 9.38049 0.469024
\(401\) −2.27111 −0.113414 −0.0567068 0.998391i \(-0.518060\pi\)
−0.0567068 + 0.998391i \(0.518060\pi\)
\(402\) −0.678538 −0.0338424
\(403\) −28.2007 −1.40478
\(404\) 20.2274 1.00635
\(405\) 37.6264 1.86967
\(406\) 0 0
\(407\) 0 0
\(408\) −20.1646 −0.998299
\(409\) −35.3747 −1.74916 −0.874582 0.484877i \(-0.838864\pi\)
−0.874582 + 0.484877i \(0.838864\pi\)
\(410\) −52.4326 −2.58946
\(411\) −34.9287 −1.72291
\(412\) 11.3484 0.559096
\(413\) 0 0
\(414\) 12.2448 0.601799
\(415\) 4.05720 0.199160
\(416\) −16.4609 −0.807062
\(417\) 13.9720 0.684212
\(418\) 0 0
\(419\) −35.7249 −1.74528 −0.872638 0.488368i \(-0.837592\pi\)
−0.872638 + 0.488368i \(0.837592\pi\)
\(420\) 0 0
\(421\) −30.0873 −1.46637 −0.733184 0.680031i \(-0.761966\pi\)
−0.733184 + 0.680031i \(0.761966\pi\)
\(422\) −13.6124 −0.662641
\(423\) −6.17265 −0.300124
\(424\) 11.2202 0.544899
\(425\) 18.2127 0.883446
\(426\) 28.0026 1.35673
\(427\) 0 0
\(428\) −55.0887 −2.66281
\(429\) 0 0
\(430\) 64.6685 3.11859
\(431\) 6.41122 0.308817 0.154409 0.988007i \(-0.450653\pi\)
0.154409 + 0.988007i \(0.450653\pi\)
\(432\) 2.28514 0.109944
\(433\) −35.1686 −1.69010 −0.845049 0.534690i \(-0.820429\pi\)
−0.845049 + 0.534690i \(0.820429\pi\)
\(434\) 0 0
\(435\) 72.2434 3.46380
\(436\) 21.9379 1.05064
\(437\) −8.30521 −0.397292
\(438\) 22.1998 1.06075
\(439\) −14.6265 −0.698086 −0.349043 0.937107i \(-0.613493\pi\)
−0.349043 + 0.937107i \(0.613493\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 23.7567 1.12999
\(443\) 6.71174 0.318885 0.159442 0.987207i \(-0.449030\pi\)
0.159442 + 0.987207i \(0.449030\pi\)
\(444\) 19.5843 0.929431
\(445\) 40.8483 1.93640
\(446\) −6.97423 −0.330239
\(447\) 17.0302 0.805500
\(448\) 0 0
\(449\) 6.14057 0.289791 0.144896 0.989447i \(-0.453715\pi\)
0.144896 + 0.989447i \(0.453715\pi\)
\(450\) 38.0585 1.79410
\(451\) 0 0
\(452\) −62.4959 −2.93956
\(453\) 45.0328 2.11582
\(454\) −54.0029 −2.53448
\(455\) 0 0
\(456\) 28.5803 1.33840
\(457\) 29.4491 1.37757 0.688785 0.724965i \(-0.258144\pi\)
0.688785 + 0.724965i \(0.258144\pi\)
\(458\) 68.9306 3.22092
\(459\) 4.43672 0.207089
\(460\) −28.8835 −1.34670
\(461\) −27.8139 −1.29542 −0.647710 0.761887i \(-0.724273\pi\)
−0.647710 + 0.761887i \(0.724273\pi\)
\(462\) 0 0
\(463\) 17.2319 0.800835 0.400417 0.916333i \(-0.368865\pi\)
0.400417 + 0.916333i \(0.368865\pi\)
\(464\) 11.5851 0.537823
\(465\) −55.7037 −2.58320
\(466\) −21.6797 −1.00429
\(467\) 14.0250 0.648998 0.324499 0.945886i \(-0.394804\pi\)
0.324499 + 0.945886i \(0.394804\pi\)
\(468\) 31.6144 1.46138
\(469\) 0 0
\(470\) 22.8638 1.05463
\(471\) 47.0381 2.16740
\(472\) −2.52811 −0.116366
\(473\) 0 0
\(474\) 21.5803 0.991217
\(475\) −25.8137 −1.18442
\(476\) 0 0
\(477\) 7.04923 0.322762
\(478\) 27.7890 1.27104
\(479\) 28.3821 1.29681 0.648406 0.761295i \(-0.275436\pi\)
0.648406 + 0.761295i \(0.275436\pi\)
\(480\) −32.5146 −1.48408
\(481\) −9.91480 −0.452076
\(482\) −3.58832 −0.163444
\(483\) 0 0
\(484\) 0 0
\(485\) −19.6968 −0.894386
\(486\) 45.0161 2.04197
\(487\) −19.9820 −0.905469 −0.452735 0.891645i \(-0.649551\pi\)
−0.452735 + 0.891645i \(0.649551\pi\)
\(488\) −4.73290 −0.214248
\(489\) −51.3192 −2.32074
\(490\) 0 0
\(491\) 27.6304 1.24694 0.623471 0.781847i \(-0.285722\pi\)
0.623471 + 0.781847i \(0.285722\pi\)
\(492\) −51.0572 −2.30183
\(493\) 22.4930 1.01303
\(494\) −33.6715 −1.51495
\(495\) 0 0
\(496\) −8.93273 −0.401091
\(497\) 0 0
\(498\) 6.20384 0.278001
\(499\) 30.5632 1.36820 0.684098 0.729390i \(-0.260196\pi\)
0.684098 + 0.729390i \(0.260196\pi\)
\(500\) −28.2780 −1.26463
\(501\) 21.7728 0.972736
\(502\) 6.88225 0.307170
\(503\) −27.3737 −1.22053 −0.610266 0.792196i \(-0.708938\pi\)
−0.610266 + 0.792196i \(0.708938\pi\)
\(504\) 0 0
\(505\) −20.2274 −0.900110
\(506\) 0 0
\(507\) −7.90866 −0.351236
\(508\) −56.0146 −2.48524
\(509\) −3.62352 −0.160610 −0.0803048 0.996770i \(-0.525589\pi\)
−0.0803048 + 0.996770i \(0.525589\pi\)
\(510\) 46.9256 2.07790
\(511\) 0 0
\(512\) −14.3040 −0.632152
\(513\) −6.28838 −0.277639
\(514\) −30.3916 −1.34052
\(515\) −11.3484 −0.500071
\(516\) 62.9721 2.77219
\(517\) 0 0
\(518\) 0 0
\(519\) −39.7455 −1.74463
\(520\) −50.3201 −2.20668
\(521\) −25.9608 −1.13736 −0.568682 0.822558i \(-0.692546\pi\)
−0.568682 + 0.822558i \(0.692546\pi\)
\(522\) 47.0029 2.05726
\(523\) −0.694777 −0.0303805 −0.0151902 0.999885i \(-0.504835\pi\)
−0.0151902 + 0.999885i \(0.504835\pi\)
\(524\) −43.3808 −1.89510
\(525\) 0 0
\(526\) −41.8443 −1.82450
\(527\) −17.3434 −0.755489
\(528\) 0 0
\(529\) −17.4850 −0.760216
\(530\) −26.1107 −1.13418
\(531\) −1.58832 −0.0689274
\(532\) 0 0
\(533\) 25.8483 1.11961
\(534\) 62.4608 2.70294
\(535\) 55.0887 2.38169
\(536\) 0.447486 0.0193285
\(537\) 20.2038 0.871860
\(538\) 2.52811 0.108995
\(539\) 0 0
\(540\) −21.8695 −0.941112
\(541\) 24.4331 1.05046 0.525231 0.850960i \(-0.323979\pi\)
0.525231 + 0.850960i \(0.323979\pi\)
\(542\) 50.6857 2.17714
\(543\) −24.4850 −1.05075
\(544\) −10.1234 −0.434038
\(545\) −21.9379 −0.939718
\(546\) 0 0
\(547\) 26.9706 1.15318 0.576590 0.817033i \(-0.304383\pi\)
0.576590 + 0.817033i \(0.304383\pi\)
\(548\) 53.6053 2.28990
\(549\) −2.97351 −0.126907
\(550\) 0 0
\(551\) −31.8804 −1.35815
\(552\) −18.9786 −0.807782
\(553\) 0 0
\(554\) −4.13054 −0.175490
\(555\) −19.5843 −0.831308
\(556\) −21.4429 −0.909382
\(557\) 11.2458 0.476499 0.238250 0.971204i \(-0.423426\pi\)
0.238250 + 0.971204i \(0.423426\pi\)
\(558\) −36.2419 −1.53424
\(559\) −31.8804 −1.34840
\(560\) 0 0
\(561\) 0 0
\(562\) 12.2359 0.516141
\(563\) 22.8805 0.964297 0.482149 0.876089i \(-0.339857\pi\)
0.482149 + 0.876089i \(0.339857\pi\)
\(564\) 22.2640 0.937483
\(565\) 62.4959 2.62922
\(566\) −19.6616 −0.826440
\(567\) 0 0
\(568\) −18.4673 −0.774871
\(569\) −38.1082 −1.59758 −0.798789 0.601611i \(-0.794526\pi\)
−0.798789 + 0.601611i \(0.794526\pi\)
\(570\) −66.5099 −2.78579
\(571\) 2.85799 0.119603 0.0598015 0.998210i \(-0.480953\pi\)
0.0598015 + 0.998210i \(0.480953\pi\)
\(572\) 0 0
\(573\) 26.2148 1.09514
\(574\) 0 0
\(575\) 17.1415 0.714848
\(576\) −26.8655 −1.11939
\(577\) 10.4266 0.434065 0.217033 0.976164i \(-0.430362\pi\)
0.217033 + 0.976164i \(0.430362\pi\)
\(578\) −25.2837 −1.05166
\(579\) 18.2953 0.760326
\(580\) −110.872 −4.60372
\(581\) 0 0
\(582\) −30.1182 −1.24844
\(583\) 0 0
\(584\) −14.6405 −0.605827
\(585\) −31.6144 −1.30709
\(586\) −10.1234 −0.418195
\(587\) 16.4899 0.680610 0.340305 0.940315i \(-0.389470\pi\)
0.340305 + 0.940315i \(0.389470\pi\)
\(588\) 0 0
\(589\) 24.5816 1.01287
\(590\) 5.88323 0.242209
\(591\) 36.3313 1.49447
\(592\) −3.14057 −0.129077
\(593\) −11.8564 −0.486882 −0.243441 0.969916i \(-0.578276\pi\)
−0.243441 + 0.969916i \(0.578276\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −26.1363 −1.07058
\(597\) −29.9477 −1.22568
\(598\) 22.3593 0.914341
\(599\) −42.6084 −1.74093 −0.870466 0.492229i \(-0.836182\pi\)
−0.870466 + 0.492229i \(0.836182\pi\)
\(600\) −58.9881 −2.40818
\(601\) −20.9295 −0.853733 −0.426867 0.904315i \(-0.640383\pi\)
−0.426867 + 0.904315i \(0.640383\pi\)
\(602\) 0 0
\(603\) 0.281140 0.0114489
\(604\) −69.1120 −2.81213
\(605\) 0 0
\(606\) −30.9296 −1.25643
\(607\) 11.8747 0.481978 0.240989 0.970528i \(-0.422528\pi\)
0.240989 + 0.970528i \(0.422528\pi\)
\(608\) 14.3484 0.581905
\(609\) 0 0
\(610\) 11.0140 0.445945
\(611\) −11.2714 −0.455993
\(612\) 19.4428 0.785928
\(613\) 18.0951 0.730854 0.365427 0.930840i \(-0.380923\pi\)
0.365427 + 0.930840i \(0.380923\pi\)
\(614\) −24.6436 −0.994534
\(615\) 51.0572 2.05882
\(616\) 0 0
\(617\) −5.19672 −0.209212 −0.104606 0.994514i \(-0.533358\pi\)
−0.104606 + 0.994514i \(0.533358\pi\)
\(618\) −17.3528 −0.698030
\(619\) 16.1546 0.649308 0.324654 0.945833i \(-0.394752\pi\)
0.324654 + 0.945833i \(0.394752\pi\)
\(620\) 85.4888 3.43331
\(621\) 4.17576 0.167568
\(622\) 29.1522 1.16890
\(623\) 0 0
\(624\) −11.9149 −0.476979
\(625\) −8.21787 −0.328715
\(626\) 13.5266 0.540632
\(627\) 0 0
\(628\) −72.1896 −2.88068
\(629\) −6.09758 −0.243126
\(630\) 0 0
\(631\) 21.2148 0.844546 0.422273 0.906469i \(-0.361232\pi\)
0.422273 + 0.906469i \(0.361232\pi\)
\(632\) −14.2319 −0.566115
\(633\) 13.2553 0.526851
\(634\) 9.57553 0.380293
\(635\) 56.0146 2.22287
\(636\) −25.4257 −1.00820
\(637\) 0 0
\(638\) 0 0
\(639\) −11.6024 −0.458982
\(640\) 71.0536 2.80864
\(641\) 40.9788 1.61857 0.809284 0.587418i \(-0.199856\pi\)
0.809284 + 0.587418i \(0.199856\pi\)
\(642\) 84.2357 3.32452
\(643\) 24.8514 0.980045 0.490022 0.871710i \(-0.336989\pi\)
0.490022 + 0.871710i \(0.336989\pi\)
\(644\) 0 0
\(645\) −62.9721 −2.47952
\(646\) −20.7079 −0.814740
\(647\) −14.2188 −0.558997 −0.279499 0.960146i \(-0.590168\pi\)
−0.279499 + 0.960146i \(0.590168\pi\)
\(648\) −37.9430 −1.49054
\(649\) 0 0
\(650\) 69.4959 2.72585
\(651\) 0 0
\(652\) 78.7599 3.08448
\(653\) −49.7991 −1.94879 −0.974394 0.224846i \(-0.927812\pi\)
−0.974394 + 0.224846i \(0.927812\pi\)
\(654\) −33.5451 −1.31172
\(655\) 43.3808 1.69503
\(656\) 8.18760 0.319672
\(657\) −9.19810 −0.358852
\(658\) 0 0
\(659\) 7.27116 0.283244 0.141622 0.989921i \(-0.454768\pi\)
0.141622 + 0.989921i \(0.454768\pi\)
\(660\) 0 0
\(661\) −4.59144 −0.178586 −0.0892931 0.996005i \(-0.528461\pi\)
−0.0892931 + 0.996005i \(0.528461\pi\)
\(662\) 26.6240 1.03477
\(663\) −23.1335 −0.898429
\(664\) −4.09134 −0.158775
\(665\) 0 0
\(666\) −12.7419 −0.493740
\(667\) 21.1700 0.819705
\(668\) −33.4148 −1.29286
\(669\) 6.79127 0.262566
\(670\) −1.04136 −0.0402311
\(671\) 0 0
\(672\) 0 0
\(673\) 12.7419 0.491165 0.245583 0.969376i \(-0.421021\pi\)
0.245583 + 0.969376i \(0.421021\pi\)
\(674\) 83.1083 3.20121
\(675\) 12.9788 0.499556
\(676\) 12.1375 0.466825
\(677\) 10.9065 0.419171 0.209586 0.977790i \(-0.432788\pi\)
0.209586 + 0.977790i \(0.432788\pi\)
\(678\) 95.5619 3.67003
\(679\) 0 0
\(680\) −30.9468 −1.18675
\(681\) 52.5863 2.01511
\(682\) 0 0
\(683\) 23.0100 0.880455 0.440227 0.897886i \(-0.354898\pi\)
0.440227 + 0.897886i \(0.354898\pi\)
\(684\) −27.5572 −1.05368
\(685\) −53.6053 −2.04815
\(686\) 0 0
\(687\) −67.1223 −2.56088
\(688\) −10.0983 −0.384994
\(689\) 12.8721 0.490387
\(690\) 44.1655 1.68135
\(691\) −7.58432 −0.288521 −0.144261 0.989540i \(-0.546080\pi\)
−0.144261 + 0.989540i \(0.546080\pi\)
\(692\) 60.9976 2.31878
\(693\) 0 0
\(694\) −61.5280 −2.33557
\(695\) 21.4429 0.813376
\(696\) −72.8512 −2.76142
\(697\) 15.8967 0.602129
\(698\) −82.3342 −3.11639
\(699\) 21.1109 0.798489
\(700\) 0 0
\(701\) −24.9867 −0.943736 −0.471868 0.881669i \(-0.656420\pi\)
−0.471868 + 0.881669i \(0.656420\pi\)
\(702\) 16.9296 0.638967
\(703\) 8.64239 0.325954
\(704\) 0 0
\(705\) −22.2640 −0.838510
\(706\) −11.5448 −0.434494
\(707\) 0 0
\(708\) 5.72889 0.215305
\(709\) 6.78816 0.254935 0.127467 0.991843i \(-0.459315\pi\)
0.127467 + 0.991843i \(0.459315\pi\)
\(710\) 42.9757 1.61285
\(711\) −8.94141 −0.335329
\(712\) −41.1920 −1.54374
\(713\) −16.3233 −0.611311
\(714\) 0 0
\(715\) 0 0
\(716\) −31.0069 −1.15878
\(717\) −27.0601 −1.01058
\(718\) 54.6053 2.03785
\(719\) −27.1898 −1.01401 −0.507004 0.861944i \(-0.669247\pi\)
−0.507004 + 0.861944i \(0.669247\pi\)
\(720\) −10.0140 −0.373201
\(721\) 0 0
\(722\) −15.2371 −0.567066
\(723\) 3.49419 0.129950
\(724\) 37.5772 1.39655
\(725\) 65.7992 2.44372
\(726\) 0 0
\(727\) −43.1335 −1.59973 −0.799866 0.600179i \(-0.795096\pi\)
−0.799866 + 0.600179i \(0.795096\pi\)
\(728\) 0 0
\(729\) −11.6485 −0.431425
\(730\) 34.0702 1.26099
\(731\) −19.6064 −0.725168
\(732\) 10.7251 0.396411
\(733\) −33.3322 −1.23115 −0.615576 0.788077i \(-0.711077\pi\)
−0.615576 + 0.788077i \(0.711077\pi\)
\(734\) 77.0100 2.84249
\(735\) 0 0
\(736\) −9.52797 −0.351206
\(737\) 0 0
\(738\) 33.2188 1.22280
\(739\) 39.4392 1.45079 0.725397 0.688331i \(-0.241656\pi\)
0.725397 + 0.688331i \(0.241656\pi\)
\(740\) 30.0561 1.10489
\(741\) 32.7882 1.20450
\(742\) 0 0
\(743\) 0.240445 0.00882107 0.00441053 0.999990i \(-0.498596\pi\)
0.00441053 + 0.999990i \(0.498596\pi\)
\(744\) 56.1724 2.05938
\(745\) 26.1363 0.957560
\(746\) 62.0530 2.27192
\(747\) −2.57045 −0.0940477
\(748\) 0 0
\(749\) 0 0
\(750\) 43.2397 1.57889
\(751\) −24.1758 −0.882186 −0.441093 0.897461i \(-0.645409\pi\)
−0.441093 + 0.897461i \(0.645409\pi\)
\(752\) −3.57028 −0.130195
\(753\) −6.70171 −0.244224
\(754\) 85.8286 3.12569
\(755\) 69.1120 2.51524
\(756\) 0 0
\(757\) −41.4647 −1.50706 −0.753530 0.657413i \(-0.771651\pi\)
−0.753530 + 0.657413i \(0.771651\pi\)
\(758\) 29.4585 1.06998
\(759\) 0 0
\(760\) 43.8623 1.59105
\(761\) 48.8333 1.77021 0.885103 0.465396i \(-0.154088\pi\)
0.885103 + 0.465396i \(0.154088\pi\)
\(762\) 85.6514 3.10282
\(763\) 0 0
\(764\) −40.2319 −1.45554
\(765\) −19.4428 −0.702955
\(766\) −65.6983 −2.37378
\(767\) −2.90032 −0.104725
\(768\) 53.3865 1.92642
\(769\) −11.9149 −0.429663 −0.214832 0.976651i \(-0.568920\pi\)
−0.214832 + 0.976651i \(0.568920\pi\)
\(770\) 0 0
\(771\) 29.5944 1.06581
\(772\) −28.0779 −1.01054
\(773\) −34.9327 −1.25644 −0.628222 0.778035i \(-0.716217\pi\)
−0.628222 + 0.778035i \(0.716217\pi\)
\(774\) −40.9708 −1.47267
\(775\) −50.7349 −1.82245
\(776\) 19.8625 0.713024
\(777\) 0 0
\(778\) 42.7520 1.53273
\(779\) −22.5311 −0.807260
\(780\) 114.029 4.08290
\(781\) 0 0
\(782\) 13.7509 0.491733
\(783\) 16.0291 0.572833
\(784\) 0 0
\(785\) 72.1896 2.57656
\(786\) 66.3333 2.36603
\(787\) 13.3635 0.476358 0.238179 0.971221i \(-0.423450\pi\)
0.238179 + 0.971221i \(0.423450\pi\)
\(788\) −55.7579 −1.98629
\(789\) 40.7466 1.45062
\(790\) 33.1194 1.17834
\(791\) 0 0
\(792\) 0 0
\(793\) −5.42972 −0.192815
\(794\) −31.1340 −1.10490
\(795\) 25.4257 0.901757
\(796\) 45.9608 1.62904
\(797\) 16.4326 0.582074 0.291037 0.956712i \(-0.406000\pi\)
0.291037 + 0.956712i \(0.406000\pi\)
\(798\) 0 0
\(799\) −6.93189 −0.245233
\(800\) −29.6143 −1.04702
\(801\) −25.8795 −0.914407
\(802\) −5.32961 −0.188195
\(803\) 0 0
\(804\) −1.01404 −0.0357623
\(805\) 0 0
\(806\) −66.1787 −2.33104
\(807\) −2.46179 −0.0866592
\(808\) 20.3976 0.717586
\(809\) −39.5474 −1.39041 −0.695206 0.718811i \(-0.744687\pi\)
−0.695206 + 0.718811i \(0.744687\pi\)
\(810\) 88.2981 3.10248
\(811\) 22.1027 0.776129 0.388065 0.921632i \(-0.373144\pi\)
0.388065 + 0.921632i \(0.373144\pi\)
\(812\) 0 0
\(813\) −49.3561 −1.73099
\(814\) 0 0
\(815\) −78.7599 −2.75884
\(816\) −7.32765 −0.256519
\(817\) 27.7890 0.972216
\(818\) −83.0138 −2.90251
\(819\) 0 0
\(820\) −78.3577 −2.73637
\(821\) 43.8686 1.53102 0.765512 0.643422i \(-0.222486\pi\)
0.765512 + 0.643422i \(0.222486\pi\)
\(822\) −81.9674 −2.85894
\(823\) 13.0149 0.453672 0.226836 0.973933i \(-0.427162\pi\)
0.226836 + 0.973933i \(0.427162\pi\)
\(824\) 11.4439 0.398667
\(825\) 0 0
\(826\) 0 0
\(827\) −11.5119 −0.400307 −0.200153 0.979765i \(-0.564144\pi\)
−0.200153 + 0.979765i \(0.564144\pi\)
\(828\) 18.2992 0.635940
\(829\) −23.2148 −0.806282 −0.403141 0.915138i \(-0.632082\pi\)
−0.403141 + 0.915138i \(0.632082\pi\)
\(830\) 9.52106 0.330481
\(831\) 4.02218 0.139528
\(832\) −49.0570 −1.70075
\(833\) 0 0
\(834\) 32.7882 1.13536
\(835\) 33.4148 1.15637
\(836\) 0 0
\(837\) −12.3593 −0.427201
\(838\) −83.8357 −2.89606
\(839\) −36.1976 −1.24968 −0.624840 0.780753i \(-0.714836\pi\)
−0.624840 + 0.780753i \(0.714836\pi\)
\(840\) 0 0
\(841\) 52.2631 1.80218
\(842\) −70.6061 −2.43325
\(843\) −11.9149 −0.410372
\(844\) −20.3430 −0.700234
\(845\) −12.1375 −0.417541
\(846\) −14.4854 −0.498017
\(847\) 0 0
\(848\) 4.07730 0.140015
\(849\) 19.1458 0.657084
\(850\) 42.7398 1.46596
\(851\) −5.73893 −0.196728
\(852\) 41.8483 1.43370
\(853\) 24.9705 0.854974 0.427487 0.904022i \(-0.359399\pi\)
0.427487 + 0.904022i \(0.359399\pi\)
\(854\) 0 0
\(855\) 27.5572 0.942436
\(856\) −55.5522 −1.89874
\(857\) 8.31252 0.283950 0.141975 0.989870i \(-0.454655\pi\)
0.141975 + 0.989870i \(0.454655\pi\)
\(858\) 0 0
\(859\) 20.0521 0.684170 0.342085 0.939669i \(-0.388867\pi\)
0.342085 + 0.939669i \(0.388867\pi\)
\(860\) 96.6436 3.29552
\(861\) 0 0
\(862\) 15.0452 0.512442
\(863\) 15.0352 0.511804 0.255902 0.966703i \(-0.417628\pi\)
0.255902 + 0.966703i \(0.417628\pi\)
\(864\) −7.21421 −0.245432
\(865\) −60.9976 −2.07398
\(866\) −82.5304 −2.80450
\(867\) 24.6204 0.836153
\(868\) 0 0
\(869\) 0 0
\(870\) 169.534 5.74773
\(871\) 0.513369 0.0173948
\(872\) 22.1225 0.749163
\(873\) 12.4789 0.422348
\(874\) −19.4899 −0.659255
\(875\) 0 0
\(876\) 33.1764 1.12093
\(877\) 23.3609 0.788842 0.394421 0.918930i \(-0.370945\pi\)
0.394421 + 0.918930i \(0.370945\pi\)
\(878\) −34.3241 −1.15838
\(879\) 9.85785 0.332497
\(880\) 0 0
\(881\) −6.22276 −0.209650 −0.104825 0.994491i \(-0.533428\pi\)
−0.104825 + 0.994491i \(0.533428\pi\)
\(882\) 0 0
\(883\) 7.42571 0.249895 0.124948 0.992163i \(-0.460124\pi\)
0.124948 + 0.992163i \(0.460124\pi\)
\(884\) 35.5030 1.19410
\(885\) −5.72889 −0.192575
\(886\) 15.7505 0.529147
\(887\) −18.7899 −0.630902 −0.315451 0.948942i \(-0.602156\pi\)
−0.315451 + 0.948942i \(0.602156\pi\)
\(888\) 19.7491 0.662736
\(889\) 0 0
\(890\) 95.8589 3.21320
\(891\) 0 0
\(892\) −10.4226 −0.348974
\(893\) 9.82491 0.328778
\(894\) 39.9648 1.33662
\(895\) 31.0069 1.03645
\(896\) 0 0
\(897\) −21.7728 −0.726972
\(898\) 14.4101 0.480871
\(899\) −62.6585 −2.08978
\(900\) 56.8764 1.89588
\(901\) 7.91630 0.263730
\(902\) 0 0
\(903\) 0 0
\(904\) −63.0217 −2.09607
\(905\) −37.5772 −1.24911
\(906\) 105.679 3.51094
\(907\) 16.1063 0.534800 0.267400 0.963586i \(-0.413836\pi\)
0.267400 + 0.963586i \(0.413836\pi\)
\(908\) −80.7044 −2.67827
\(909\) 12.8151 0.425051
\(910\) 0 0
\(911\) 16.8040 0.556740 0.278370 0.960474i \(-0.410206\pi\)
0.278370 + 0.960474i \(0.410206\pi\)
\(912\) 10.3858 0.343909
\(913\) 0 0
\(914\) 69.1083 2.28590
\(915\) −10.7251 −0.354561
\(916\) 103.013 3.40364
\(917\) 0 0
\(918\) 10.4117 0.343636
\(919\) −46.3381 −1.52855 −0.764277 0.644888i \(-0.776904\pi\)
−0.764277 + 0.644888i \(0.776904\pi\)
\(920\) −29.1265 −0.960273
\(921\) 23.9971 0.790732
\(922\) −65.2709 −2.14958
\(923\) −21.1862 −0.697353
\(924\) 0 0
\(925\) −17.8374 −0.586490
\(926\) 40.4382 1.32888
\(927\) 7.18980 0.236144
\(928\) −36.5741 −1.20060
\(929\) 10.3865 0.340771 0.170385 0.985378i \(-0.445499\pi\)
0.170385 + 0.985378i \(0.445499\pi\)
\(930\) −130.720 −4.28648
\(931\) 0 0
\(932\) −32.3991 −1.06127
\(933\) −28.3874 −0.929362
\(934\) 32.9124 1.07693
\(935\) 0 0
\(936\) 31.8804 1.04204
\(937\) −13.6421 −0.445669 −0.222834 0.974856i \(-0.571531\pi\)
−0.222834 + 0.974856i \(0.571531\pi\)
\(938\) 0 0
\(939\) −13.1718 −0.429844
\(940\) 34.1686 1.11446
\(941\) −46.0647 −1.50167 −0.750834 0.660491i \(-0.770348\pi\)
−0.750834 + 0.660491i \(0.770348\pi\)
\(942\) 110.385 3.59652
\(943\) 14.9616 0.487218
\(944\) −0.918694 −0.0299009
\(945\) 0 0
\(946\) 0 0
\(947\) −18.1415 −0.589518 −0.294759 0.955572i \(-0.595239\pi\)
−0.294759 + 0.955572i \(0.595239\pi\)
\(948\) 32.2506 1.04745
\(949\) −16.7960 −0.545220
\(950\) −60.5772 −1.96538
\(951\) −9.32434 −0.302362
\(952\) 0 0
\(953\) −28.2739 −0.915881 −0.457941 0.888983i \(-0.651413\pi\)
−0.457941 + 0.888983i \(0.651413\pi\)
\(954\) 16.5425 0.535582
\(955\) 40.2319 1.30187
\(956\) 41.5292 1.34315
\(957\) 0 0
\(958\) 66.6044 2.15189
\(959\) 0 0
\(960\) −96.9005 −3.12745
\(961\) 17.3132 0.558491
\(962\) −23.2671 −0.750161
\(963\) −34.9015 −1.12469
\(964\) −5.36255 −0.172716
\(965\) 28.0779 0.903858
\(966\) 0 0
\(967\) 45.6026 1.46648 0.733241 0.679969i \(-0.238007\pi\)
0.733241 + 0.679969i \(0.238007\pi\)
\(968\) 0 0
\(969\) 20.1646 0.647782
\(970\) −46.2226 −1.48412
\(971\) −6.37648 −0.204631 −0.102316 0.994752i \(-0.532625\pi\)
−0.102316 + 0.994752i \(0.532625\pi\)
\(972\) 67.2740 2.15782
\(973\) 0 0
\(974\) −46.8917 −1.50251
\(975\) −67.6728 −2.16726
\(976\) −1.71989 −0.0550524
\(977\) −42.2419 −1.35144 −0.675720 0.737159i \(-0.736167\pi\)
−0.675720 + 0.737159i \(0.736167\pi\)
\(978\) −120.431 −3.85096
\(979\) 0 0
\(980\) 0 0
\(981\) 13.8988 0.443755
\(982\) 64.8403 2.06914
\(983\) −33.5743 −1.07085 −0.535427 0.844582i \(-0.679849\pi\)
−0.535427 + 0.844582i \(0.679849\pi\)
\(984\) −51.4868 −1.64134
\(985\) 55.7579 1.77659
\(986\) 52.7844 1.68100
\(987\) 0 0
\(988\) −50.3201 −1.60090
\(989\) −18.4531 −0.586776
\(990\) 0 0
\(991\) 36.6155 1.16313 0.581565 0.813500i \(-0.302441\pi\)
0.581565 + 0.813500i \(0.302441\pi\)
\(992\) 28.2007 0.895373
\(993\) −25.9256 −0.822724
\(994\) 0 0
\(995\) −45.9608 −1.45706
\(996\) 9.27129 0.293772
\(997\) 15.2298 0.482332 0.241166 0.970484i \(-0.422470\pi\)
0.241166 + 0.970484i \(0.422470\pi\)
\(998\) 71.7227 2.27034
\(999\) −4.34529 −0.137479
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bk.1.6 6
7.2 even 3 847.2.e.e.606.1 yes 12
7.4 even 3 847.2.e.e.485.1 12
7.6 odd 2 5929.2.a.bl.1.6 6
11.10 odd 2 inner 5929.2.a.bk.1.1 6
77.2 odd 30 847.2.n.k.81.6 48
77.4 even 15 847.2.n.k.632.1 48
77.9 even 15 847.2.n.k.81.1 48
77.16 even 15 847.2.n.k.487.6 48
77.18 odd 30 847.2.n.k.632.6 48
77.25 even 15 847.2.n.k.9.6 48
77.30 odd 30 847.2.n.k.130.6 48
77.32 odd 6 847.2.e.e.485.6 yes 12
77.37 even 15 847.2.n.k.753.6 48
77.39 odd 30 847.2.n.k.366.6 48
77.46 odd 30 847.2.n.k.807.1 48
77.51 odd 30 847.2.n.k.753.1 48
77.53 even 15 847.2.n.k.807.6 48
77.58 even 15 847.2.n.k.130.1 48
77.60 even 15 847.2.n.k.366.1 48
77.65 odd 6 847.2.e.e.606.6 yes 12
77.72 odd 30 847.2.n.k.487.1 48
77.74 odd 30 847.2.n.k.9.1 48
77.76 even 2 5929.2.a.bl.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.2.e.e.485.1 12 7.4 even 3
847.2.e.e.485.6 yes 12 77.32 odd 6
847.2.e.e.606.1 yes 12 7.2 even 3
847.2.e.e.606.6 yes 12 77.65 odd 6
847.2.n.k.9.1 48 77.74 odd 30
847.2.n.k.9.6 48 77.25 even 15
847.2.n.k.81.1 48 77.9 even 15
847.2.n.k.81.6 48 77.2 odd 30
847.2.n.k.130.1 48 77.58 even 15
847.2.n.k.130.6 48 77.30 odd 30
847.2.n.k.366.1 48 77.60 even 15
847.2.n.k.366.6 48 77.39 odd 30
847.2.n.k.487.1 48 77.72 odd 30
847.2.n.k.487.6 48 77.16 even 15
847.2.n.k.632.1 48 77.4 even 15
847.2.n.k.632.6 48 77.18 odd 30
847.2.n.k.753.1 48 77.51 odd 30
847.2.n.k.753.6 48 77.37 even 15
847.2.n.k.807.1 48 77.46 odd 30
847.2.n.k.807.6 48 77.53 even 15
5929.2.a.bk.1.1 6 11.10 odd 2 inner
5929.2.a.bk.1.6 6 1.1 even 1 trivial
5929.2.a.bl.1.1 6 77.76 even 2
5929.2.a.bl.1.6 6 7.6 odd 2