Properties

Label 5929.2.a.bg.1.4
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $4$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,11,0,0,0,-3,-12,0,0,0,0,0,0,21,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.6125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 9x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.4
Root \(2.36415\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.36415 q^{2} +3.58921 q^{4} +3.75713 q^{8} -3.00000 q^{9} +1.70400 q^{16} -7.09245 q^{18} -9.58240 q^{23} -5.00000 q^{25} -10.6831 q^{29} -3.48575 q^{32} -10.7676 q^{36} -1.36643 q^{37} +8.74072 q^{43} -22.6542 q^{46} -11.8208 q^{50} -13.1552 q^{53} -25.2564 q^{58} -11.6488 q^{64} +16.3336 q^{67} +9.97679 q^{71} -11.2714 q^{72} -3.23045 q^{74} +12.6254 q^{79} +9.00000 q^{81} +20.6644 q^{86} -34.3932 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 11 q^{4} - 3 q^{8} - 12 q^{9} + 21 q^{16} - 3 q^{18} - 8 q^{23} - 20 q^{25} + 2 q^{29} - 50 q^{32} - 33 q^{36} + 6 q^{37} - 12 q^{43} - 47 q^{46} - 5 q^{50} + 10 q^{53} - 2 q^{58} + 33 q^{64}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.36415 1.67171 0.835853 0.548953i \(-0.184973\pi\)
0.835853 + 0.548953i \(0.184973\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 3.58921 1.79460
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.75713 1.32835
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.70400 0.426000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −7.09245 −1.67171
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.58240 −1.99807 −0.999035 0.0439305i \(-0.986012\pi\)
−0.999035 + 0.0439305i \(0.986012\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.6831 −1.98380 −0.991898 0.127036i \(-0.959454\pi\)
−0.991898 + 0.127036i \(0.959454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −3.48575 −0.616199
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −10.7676 −1.79460
\(37\) −1.36643 −0.224640 −0.112320 0.993672i \(-0.535828\pi\)
−0.112320 + 0.993672i \(0.535828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 8.74072 1.33295 0.666474 0.745528i \(-0.267803\pi\)
0.666474 + 0.745528i \(0.267803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −22.6542 −3.34019
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −11.8208 −1.67171
\(51\) 0 0
\(52\) 0 0
\(53\) −13.1552 −1.80701 −0.903503 0.428581i \(-0.859014\pi\)
−0.903503 + 0.428581i \(0.859014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −25.2564 −3.31633
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −11.6488 −1.45610
\(65\) 0 0
\(66\) 0 0
\(67\) 16.3336 1.99547 0.997735 0.0672706i \(-0.0214291\pi\)
0.997735 + 0.0672706i \(0.0214291\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.97679 1.18403 0.592014 0.805928i \(-0.298333\pi\)
0.592014 + 0.805928i \(0.298333\pi\)
\(72\) −11.2714 −1.32835
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −3.23045 −0.375532
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.6254 1.42047 0.710235 0.703964i \(-0.248589\pi\)
0.710235 + 0.703964i \(0.248589\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 20.6644 2.22830
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −34.3932 −3.58574
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −17.9460 −1.79460
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −31.1009 −3.02079
\(107\) −13.0701 −1.26353 −0.631766 0.775159i \(-0.717670\pi\)
−0.631766 + 0.775159i \(0.717670\pi\)
\(108\) 0 0
\(109\) 8.34177 0.798997 0.399498 0.916734i \(-0.369184\pi\)
0.399498 + 0.916734i \(0.369184\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.5120 −1.83554 −0.917769 0.397114i \(-0.870012\pi\)
−0.917769 + 0.397114i \(0.870012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −38.3438 −3.56013
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.61347 0.320644 0.160322 0.987065i \(-0.448747\pi\)
0.160322 + 0.987065i \(0.448747\pi\)
\(128\) −20.5681 −1.81798
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 38.6151 3.33584
\(135\) 0 0
\(136\) 0 0
\(137\) 20.5312 1.75410 0.877051 0.480397i \(-0.159507\pi\)
0.877051 + 0.480397i \(0.159507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 23.5866 1.97935
\(143\) 0 0
\(144\) −5.11199 −0.426000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −4.90441 −0.403140
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) −22.5267 −1.83319 −0.916597 0.399811i \(-0.869076\pi\)
−0.916597 + 0.399811i \(0.869076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 29.8484 2.37461
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 21.2774 1.67171
\(163\) 6.84954 0.536497 0.268249 0.963350i \(-0.413555\pi\)
0.268249 + 0.963350i \(0.413555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 31.3723 2.39211
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.3153 0.920486 0.460243 0.887793i \(-0.347762\pi\)
0.460243 + 0.887793i \(0.347762\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −36.0023 −2.65413
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.6905 −1.64182 −0.820912 0.571055i \(-0.806534\pi\)
−0.820912 + 0.571055i \(0.806534\pi\)
\(192\) 0 0
\(193\) 14.5678 1.04861 0.524305 0.851530i \(-0.324325\pi\)
0.524305 + 0.851530i \(0.324325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −27.2550 −1.94184 −0.970918 0.239411i \(-0.923046\pi\)
−0.970918 + 0.239411i \(0.923046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −18.7856 −1.32835
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 28.7472 1.99807
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5.84313 0.402258 0.201129 0.979565i \(-0.435539\pi\)
0.201129 + 0.979565i \(0.435539\pi\)
\(212\) −47.2168 −3.24286
\(213\) 0 0
\(214\) −30.8996 −2.11225
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 19.7212 1.33569
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) −46.1294 −3.06848
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1377 −2.63517
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −30.1069 −1.94745 −0.973726 0.227725i \(-0.926871\pi\)
−0.973726 + 0.227725i \(0.926871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.54279 0.536022
\(255\) 0 0
\(256\) −25.3284 −1.58302
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 32.0492 1.98380
\(262\) 0 0
\(263\) −4.85603 −0.299435 −0.149718 0.988729i \(-0.547836\pi\)
−0.149718 + 0.988729i \(0.547836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 58.6248 3.58108
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 48.5389 2.93234
\(275\) 0 0
\(276\) 0 0
\(277\) 10.5714 0.635176 0.317588 0.948229i \(-0.397127\pi\)
0.317588 + 0.948229i \(0.397127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.1645 1.68015 0.840077 0.542467i \(-0.182510\pi\)
0.840077 + 0.542467i \(0.182510\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 35.8088 2.12486
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 10.4572 0.616199
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5.13386 −0.298400
\(297\) 0 0
\(298\) −52.0113 −3.01293
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −53.2565 −3.06456
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 45.3153 2.54918
\(317\) −0.441542 −0.0247995 −0.0123997 0.999923i \(-0.503947\pi\)
−0.0123997 + 0.999923i \(0.503947\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 32.3029 1.79460
\(325\) 0 0
\(326\) 16.1933 0.896866
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0143 −1.42988 −0.714939 0.699187i \(-0.753545\pi\)
−0.714939 + 0.699187i \(0.753545\pi\)
\(332\) 0 0
\(333\) 4.09930 0.224640
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.7116 1.99981 0.999904 0.0138879i \(-0.00442079\pi\)
0.999904 + 0.0138879i \(0.00442079\pi\)
\(338\) −30.7340 −1.67171
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 32.8400 1.77061
\(345\) 0 0
\(346\) 0 0
\(347\) 33.9916 1.82476 0.912381 0.409342i \(-0.134242\pi\)
0.912381 + 0.409342i \(0.134242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 29.1151 1.53878
\(359\) −15.2997 −0.807489 −0.403745 0.914872i \(-0.632292\pi\)
−0.403745 + 0.914872i \(0.632292\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −16.3284 −0.851177
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.4801 1.61702 0.808511 0.588481i \(-0.200274\pi\)
0.808511 + 0.588481i \(0.200274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −53.6437 −2.74465
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.4404 1.75297
\(387\) −26.2222 −1.33295
\(388\) 0 0
\(389\) 36.9632 1.87411 0.937054 0.349185i \(-0.113542\pi\)
0.937054 + 0.349185i \(0.113542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −64.4349 −3.24618
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −8.51999 −0.426000
\(401\) 15.0655 0.752336 0.376168 0.926552i \(-0.377242\pi\)
0.376168 + 0.926552i \(0.377242\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 67.9627 3.34019
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 39.6960 1.93467 0.967333 0.253507i \(-0.0815842\pi\)
0.967333 + 0.253507i \(0.0815842\pi\)
\(422\) 13.8140 0.672457
\(423\) 0 0
\(424\) −49.4258 −2.40033
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −46.9112 −2.26754
\(429\) 0 0
\(430\) 0 0
\(431\) 41.4399 1.99609 0.998044 0.0625092i \(-0.0199103\pi\)
0.998044 + 0.0625092i \(0.0199103\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 29.9404 1.43388
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.0473 1.38008 0.690039 0.723772i \(-0.257593\pi\)
0.690039 + 0.723772i \(0.257593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.2641 1.09790 0.548950 0.835855i \(-0.315028\pi\)
0.548950 + 0.835855i \(0.315028\pi\)
\(450\) 35.4623 1.67171
\(451\) 0 0
\(452\) −70.0328 −3.29406
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.0280 0.936872 0.468436 0.883497i \(-0.344818\pi\)
0.468436 + 0.883497i \(0.344818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2.73687 0.127193 0.0635967 0.997976i \(-0.479743\pi\)
0.0635967 + 0.997976i \(0.479743\pi\)
\(464\) −18.2039 −0.845096
\(465\) 0 0
\(466\) −52.0113 −2.40938
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 39.4656 1.80701
\(478\) −71.1772 −3.25557
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −42.6440 −1.93239 −0.966193 0.257821i \(-0.916996\pi\)
−0.966193 + 0.257821i \(0.916996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −44.0000 −1.98569 −0.992846 0.119401i \(-0.961903\pi\)
−0.992846 + 0.119401i \(0.961903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 36.2872 1.62444 0.812219 0.583352i \(-0.198259\pi\)
0.812219 + 0.583352i \(0.198259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 12.9695 0.575428
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −18.7440 −0.828375
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 75.7692 3.31633
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −11.4804 −0.500568
\(527\) 0 0
\(528\) 0 0
\(529\) 68.8225 2.99228
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 61.3675 2.65067
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −46.1682 −1.98493 −0.992463 0.122548i \(-0.960893\pi\)
−0.992463 + 0.122548i \(0.960893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) 73.6909 3.14792
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 24.9925 1.06183
\(555\) 0 0
\(556\) 0 0
\(557\) −24.2798 −1.02877 −0.514384 0.857560i \(-0.671980\pi\)
−0.514384 + 0.857560i \(0.671980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 66.5852 2.80873
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 37.4841 1.57280
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) −24.7563 −1.03602 −0.518010 0.855374i \(-0.673327\pi\)
−0.518010 + 0.855374i \(0.673327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 47.9120 1.99807
\(576\) 34.9465 1.45610
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −40.1906 −1.67171
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −2.32840 −0.0956966
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −78.9626 −3.23443
\(597\) 0 0
\(598\) 0 0
\(599\) −4.11667 −0.168203 −0.0841014 0.996457i \(-0.526802\pi\)
−0.0841014 + 0.996457i \(0.526802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −49.0009 −1.99547
\(604\) −80.8529 −3.28986
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −18.4525 −0.745288 −0.372644 0.927974i \(-0.621549\pi\)
−0.372644 + 0.927974i \(0.621549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.2257 1.29736 0.648679 0.761062i \(-0.275322\pi\)
0.648679 + 0.761062i \(0.275322\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.0481 0.599057 0.299528 0.954087i \(-0.403171\pi\)
0.299528 + 0.954087i \(0.403171\pi\)
\(632\) 47.4353 1.88687
\(633\) 0 0
\(634\) −1.04387 −0.0414574
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −29.9304 −1.18403
\(640\) 0 0
\(641\) −5.91529 −0.233640 −0.116820 0.993153i \(-0.537270\pi\)
−0.116820 + 0.993153i \(0.537270\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 33.8141 1.32835
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 24.5844 0.962800
\(653\) −34.2303 −1.33954 −0.669768 0.742571i \(-0.733606\pi\)
−0.669768 + 0.742571i \(0.733606\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −61.5018 −2.39034
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 9.69136 0.375532
\(667\) 102.369 3.96376
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −49.5307 −1.90927 −0.954633 0.297784i \(-0.903752\pi\)
−0.954633 + 0.297784i \(0.903752\pi\)
\(674\) 86.7917 3.34309
\(675\) 0 0
\(676\) −46.6597 −1.79460
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 45.1792 1.72873 0.864366 0.502863i \(-0.167720\pi\)
0.864366 + 0.502863i \(0.167720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 14.8942 0.567835
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 80.3612 3.05047
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29.4846 −1.11362 −0.556810 0.830640i \(-0.687975\pi\)
−0.556810 + 0.830640i \(0.687975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −52.1793 −1.95963 −0.979817 0.199896i \(-0.935939\pi\)
−0.979817 + 0.199896i \(0.935939\pi\)
\(710\) 0 0
\(711\) −37.8763 −1.42047
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 44.2021 1.65191
\(717\) 0 0
\(718\) −36.1709 −1.34989
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −44.9189 −1.67171
\(723\) 0 0
\(724\) 0 0
\(725\) 53.4154 1.98380
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 33.4018 1.23121
\(737\) 0 0
\(738\) 0 0
\(739\) 0.971330 0.0357309 0.0178655 0.999840i \(-0.494313\pi\)
0.0178655 + 0.999840i \(0.494313\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 47.5883 1.74585 0.872923 0.487858i \(-0.162222\pi\)
0.872923 + 0.487858i \(0.162222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −52.0113 −1.90427
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 23.2815 0.849553 0.424777 0.905298i \(-0.360353\pi\)
0.424777 + 0.905298i \(0.360353\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −26.7520 −0.972316 −0.486158 0.873871i \(-0.661602\pi\)
−0.486158 + 0.873871i \(0.661602\pi\)
\(758\) 74.4236 2.70319
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −81.4408 −2.94642
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 52.2867 1.88184
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −61.9931 −2.22830
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 87.3865 3.13296
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −97.8238 −3.48483
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 17.4287 0.616199
\(801\) 0 0
\(802\) 35.6171 1.25768
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −55.6248 −1.95566 −0.977832 0.209393i \(-0.932851\pi\)
−0.977832 + 0.209393i \(0.932851\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) −35.4041 −1.23411 −0.617055 0.786920i \(-0.711674\pi\)
−0.617055 + 0.786920i \(0.711674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 103.180 3.58574
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 85.1280 2.93545
\(842\) 93.8474 3.23420
\(843\) 0 0
\(844\) 20.9722 0.721893
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −22.4164 −0.769784
\(849\) 0 0
\(850\) 0 0
\(851\) 13.0937 0.448846
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −49.1059 −1.67841
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 97.9701 3.33688
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 31.3411 1.06134
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −45.6460 −1.54135 −0.770677 0.637226i \(-0.780082\pi\)
−0.770677 + 0.637226i \(0.780082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 68.6722 2.30709
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.9998 1.83537
\(899\) 0 0
\(900\) 53.8381 1.79460
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −73.3092 −2.43823
\(905\) 0 0
\(906\) 0 0
\(907\) 23.5735 0.782746 0.391373 0.920232i \(-0.372000\pi\)
0.391373 + 0.920232i \(0.372000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 47.3493 1.56618
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −20.3948 −0.672763 −0.336381 0.941726i \(-0.609203\pi\)
−0.336381 + 0.941726i \(0.609203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.83216 0.224640
\(926\) 6.47038 0.212630
\(927\) 0 0
\(928\) 37.2385 1.22241
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −78.9626 −2.58651
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 34.4819 1.11698 0.558489 0.829512i \(-0.311381\pi\)
0.558489 + 0.829512i \(0.311381\pi\)
\(954\) 93.3027 3.02079
\(955\) 0 0
\(956\) −108.060 −3.49490
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 39.2102 1.26353
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −60.3531 −1.94082 −0.970412 0.241454i \(-0.922376\pi\)
−0.970412 + 0.241454i \(0.922376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −100.817 −3.23038
\(975\) 0 0
\(976\) 0 0
\(977\) −12.3326 −0.394556 −0.197278 0.980348i \(-0.563210\pi\)
−0.197278 + 0.980348i \(0.563210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −25.0253 −0.798997
\(982\) −104.023 −3.31950
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −83.7571 −2.66332
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 85.7884 2.71558
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bg.1.4 4
7.6 odd 2 CM 5929.2.a.bg.1.4 4
11.7 odd 10 539.2.f.c.148.1 8
11.8 odd 10 539.2.f.c.295.1 yes 8
11.10 odd 2 5929.2.a.bc.1.1 4
77.18 odd 30 539.2.q.d.324.2 16
77.19 even 30 539.2.q.d.361.2 16
77.30 odd 30 539.2.q.d.361.2 16
77.40 even 30 539.2.q.d.214.1 16
77.41 even 10 539.2.f.c.295.1 yes 8
77.51 odd 30 539.2.q.d.214.1 16
77.52 even 30 539.2.q.d.471.1 16
77.62 even 10 539.2.f.c.148.1 8
77.73 even 30 539.2.q.d.324.2 16
77.74 odd 30 539.2.q.d.471.1 16
77.76 even 2 5929.2.a.bc.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.1 8 11.7 odd 10
539.2.f.c.148.1 8 77.62 even 10
539.2.f.c.295.1 yes 8 11.8 odd 10
539.2.f.c.295.1 yes 8 77.41 even 10
539.2.q.d.214.1 16 77.40 even 30
539.2.q.d.214.1 16 77.51 odd 30
539.2.q.d.324.2 16 77.18 odd 30
539.2.q.d.324.2 16 77.73 even 30
539.2.q.d.361.2 16 77.19 even 30
539.2.q.d.361.2 16 77.30 odd 30
539.2.q.d.471.1 16 77.52 even 30
539.2.q.d.471.1 16 77.74 odd 30
5929.2.a.bc.1.1 4 11.10 odd 2
5929.2.a.bc.1.1 4 77.76 even 2
5929.2.a.bg.1.4 4 1.1 even 1 trivial
5929.2.a.bg.1.4 4 7.6 odd 2 CM